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Department of Clinical Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine,
Tongji University, Shanghai, China
Background: Infection with Treponema pallidum instigates complex immune

responses. Prior research has suggested that persistent Treponema pallidum

infection can manipulate host immune responses and circumvent host defenses.

However, the precise role of immune cells in Treponema pallidum infection

across different stages remains a contentious issue.

Methods: Utilizing summary data from genome-wide association studies, we

employed a two-sample Mendelian randomization method to investigate the

association between 731 immunophenotypes and syphilis. Syphilis was

categorized into early and late stages in this study to establish a more robust

correlation and minimize bias in database sources.

Results: Our findings revealed that 33, 36, and 27 immunophenotypes of

peripheral blood were associated with syphilis (regardless of disease stage),

early syphilis and late syphilis, respectively. Subsequent analysis demonstrated

significant variat ions between early and late syphil is in terms of

immunophenotypes. Specifically, early syphilis showcased activated, secreting,

and resting regulatory T cells, whereas late syphilis was characterized by resting

Treg cells. More B cells subtypes emerged in late syphilis. Monocytes in early

syphilis exhibited an intermediate and non-classical phenotype, transitioning to

classical in late syphilis. Early syphilis featured naive T cells, effector memory T

cells, and terminally differentiated T cells, while late syphilis predominantly

presented terminally differentiated T cells. Immature myeloid-derived

suppressor cells were evident in early syphilis, whereas the dendritic cell

immunophenotype was exclusive to late syphilis.

Conclusion: Multiple immunophenotypes demonstrated associations with

syphilis, showcasing substantial disparities between the early and late stages of

the disease. These findings hold promise for informing immunologically oriented

treatment strategies, paving the way for more effective and efficient

syphilis interventions.
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1 Introduction

Syphilis, a chronic sexually transmitted disease caused by the

bacterium Treponema pallidum (TP), poses a significant threat to

global health. The World Health Organization reported a surge in

cases, reaching 7.1 million in 2020 (1). Syphilis is classified as early

stages (primary, secondary, and latent syphilis) and late stages (late

latent and tertiary syphilis) (2). Untreated latent syphilis can

progress to neurosyphilis, cardiosyphilis or syphilitic gumma,

causing damages to the brain, heart or nerves (3).

During the initial stages of infection, TP lipoproteins activate

dendritic cells (DCs) and macrophages through Toll-like receptor 2

(TLR2)-dependent signaling pathways. As these lipoproteins are

primarily located beneath the outer membrane of TP, systemic

inflammation in early syphilis is not evident (4). Rare TP’s outer

membrane proteins makes it difficult for pathogen-associated

pattern molecules to engage TLRs on macrophages and DCs,

hindering the activation of the innate pathogen recognition

system (4). TP appears to be primarily cleared through cellular

immunity, which is mediated by CD4+ and CD8+ T cells (5–8).

Research has predominantly focused on the changes in CD4+/CD8+

T cell ratios during disease development (6, 9, 10), TP immune

evasion facilitated by regulatory T (Treg) cells (7, 11, 12), and

immunosuppression resulting from an imbalance in T helper (Th)

1/Th2 cell differentiation (6, 13, 14). B cells have been less studied in

TP infection compared to T cells. However, some studies

demonstrate their role as immunoregulatory cells in addition to

antibody production and activation of T cells as antigen-presenting

cells (15). Notably, regulatory B cells have been found to inhibit

CD4+T cell proliferation and enhance forkhead box protein P3

(Foxp3) and cytotoxic T-lymphocyte associated protein (CTLA)-4

expression in Treg cells (16, 17). Understanding how immune cells

function after syphilis infection requires further study. Although

progress has been made in vitro culturing of syphilis (18), the lack of

a suitable inbred animal model and in vitro culture model poses

challenges for syphilis immunologic studies (19, 20). Despite

studying differences in immune cell types and functions in

syphilis patients with varying disease courses, how syphilis evades

the immune system remains controversial. Additionally, different

samples including peripheral blood (14, 21), cerebrospinal fluid

(22), blister fluid (21), and tissue (6) exhibit distinct

immunological compartments.

As a “natural randomized controlled trial”, Mendelian

randomization (MR) minimizes the impact of confounding

factors on results by using complementary base pairing

between alleles for passage (23). This study employs MR to

analyze how different syphilis courses correlate with distinct

immunophenotypes, providing a foundation for testing syphilis
Abbreviations: TP, Treponema pallidum; GWAS, genome-wide association

studies; MR, Mendelian randomization; cDCs, circulating dendritic cells; SNPs,

single nucleotide polymorphisms; IVs, instrumental variables; AC, absolute

count; MFI, median fluorescence intensity; MP, morphological parameter; RC,

relative count; OR, odds ratio; 95%CI, 95% confidence interval; DCs,

dendritic cells.
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detection targets, developing, and delving deeper into the study of

disease mechanisms.
2 Methods

2.1 The assumptions of MR

Single nucleotide polymorphisms (SNPs) were selected as

instrumental variables (IVs) for genetic variation. In a two-

sample MR analysis, these SNPs were employed to explore the

correlation between 731 immunophenotypes across 7 panels and

syphilis. To minimize the potential bias affecting the results,

three crucial hypotheses were adopted as follows (Figure 1): (1)

Strength of the correlation between IVs and exposure was

assessed using F statistics. A robust relationship was defined by

F > 10. (2) IVs were assumed to be independent of confounding

variables, safeguarding against potential sources of bias. (3) IVs

were postulated to exert their impact solely through the

exposure, ensuring a direct and unadulterated influence on

the outcome.
2.2 IVs selection

To ensure the robustness of our findings, the significance level

of immunophenotype IVs was set to 1 × 10−5. The selection process

involved SNPs from Genome-wide association studies (GWAS)

with stringent criteria, including P < 5 × 10-8 and no linkage

disequilibrium (r2 < 0.001, clustering distance = 10000 kb) in

summary statistics (Figure 2). The strength of each IV was

evaluated through the calculation of the F statistic. After filtering

out IVs with low F statistics (F < 10), 17097 IVs were retained for

subsequent analysis.
2.3 Data sources for immunophenotypes

Comprehensive information on 731 immunophenotypes in

peripheral blood was obtained from published articles (24). These

immunophenotypes were classified into 4 trait types, comprising

118 absolute counts (AC), 389 median fluorescence intensity (MFI),

32 morphological parameters (MP) and 192 relative counts (RC).

These trait types were further divided into 7 panels, including B cell,

circulating DC, Treg cell, mature stages of T cell, TBNK (T cell, B

cell, natural killer cell), monocyte and myeloid cell (Figure 2).
2.4 GWAS data sources for syphilis

Syphilis GWAS summary statistics were sourced from 3

different GWAS datasets available in IEU OpenGWAS (https://

gwas.mrcieu.ac.uk/) (Figure 2). The syphilis GWAS, irrespective of

the disease stage, involved 213302 European individuals (Ncase =

350, Ncontrol = 212952). A total of 213117 European individuals

were part of the early syphilis GWAS (Ncase = 165, Ncontrol =
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212952), and 213125 European individuals participated in the late

syphilis GWAS (Ncase = 173, Ncontrol = 212952).
2.5 Statistical analysis

R 4.2.2 software was used for data analysis. The “TwoSample

MR” software package (version 0.5.7) was utilized to assess the

correlation between 731 immunophenotypes and syphilis. The

MR analysis was conducted using three methods: inverse variance

weighting (IVW), MR Egger, and weighted median, with IVW as

the p r imary me thod . De t a i l s cou ld be re ached in

Supplementary files.
3 Results

A total of 17907 SNPs were identified as IVs for GWAS. Each

SNP demonstrated an F statistic exceeding the empirical threshold

of 10, indicating robust validity.
3.1 Correlation between
immunophenotypes and syphilis
(regardless of disease stage)

Two-sample MR analysis using IVW method unveiled a

significant correlation between 731 immunophenotypes and

syphilis (regardless of disease stage). Among these, 33

immunophenotypes exhibited significant association to syphilis

(P < 0.05). Notably, B cell panels accounted for 27.3% (9/33), Treg

cells for 24.2% (8/33), cDC for 18.2% (6/33), TBNK for 12.12% (4/

33), monocytes for 9.09% (3/33), maturation stages of T cells for

6.06% (2/33), and myeloid cells for 3.03% (1/33). The forest pot

depicting these correlations is presented in Figure 3.
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3.2 Correlation between
immunophenotypes and early syphilis

In the analysis of early syphilis, 36 immunophenotypes

demonstrated significant correlations (P < 0.05). Treg cell panels

were prominent, accounting for 44.44% (16/36), followed by B cell

panels at 16.67% (6/36), maturation stages of T cell panels at 16.67%

(6/36), monocyte panels at 8.33% (3/36), myeloid cell panels at

8.33% (3/36), TBNK panels at 5.56% (2/36). The forest plot

depicting these correlations is presented in Figure 4.
3.3 Correlation between
immunophenotypes and late syphilis

In the context of late syphilis, 27 immunophenotypes displayed

significant correlations (P < 0.05). B cell panels were prevalent,

constituting 48.15% (13/27), followed by Treg cell panels at 7.41%

(2/27), TBNK panels at 11.11% (3/27), monocyte panels at 11.11%

(3/27), cDC panels at 11.11% (3/27), myeloid cell panels at 7.41%

(2/27), maturation stages of T cell panels at 3.70% (1/27). The forest

plot depicting these correlations is presented in Figure 5.
3.4 Comparison of immunophenotypes
across syphilis stages

Upon comparing all immunophenotypes across the three syphilis

stages, early syphilis exhibited 13 shared immunophenotypes with

syphilis (regardless of disease stage), while late syphilis shared 10

immunophenotypes. Notably, CD25 on IgD+CD38-B cells and

IgD+CD38dimB cells were consistently present in all stages of

syphilis, emphasizing their potential as key markers (Table 1). Treg

cell immunophenotypes, especially activated and secreting types,

were predominantly associated with early syphilis. Monocytes in
FIGURE 1

Overview of MR assumptions.
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early syphilis displayed intermediate type (CD14+CD16+). Effector

memory mature T cells were present in early syphilis, while

terminally differentiated mature T cells were found in late syphilis.

Intriguingly, cDC immunophenotypes only emerged in late syphilis,

indicating distinctive immune responses across syphilis stages.
Frontiers in Immunology 04
4 Discussion

In this study, we conducted a comprehensive analysis using

publicly available GWAS data to explore the correlation between

syphilis and 731 immune immunophenotypes. The findings
FIGURE 2

Overview of MR analysis.
FIGURE 3

Forest plot: 33 immunophenotypes correlated with syphilis (regardless of disease stage).
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FIGURE 4

Forest plot: 36 immunophenotypes correlated with early syphilis.
FIGURE 5

Forest plot: 27 immunophenotypes correlated with late syphilis.
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revealed significant associations between syphilis and immune cell

panels, including B cells, cDCs, Tregs, TBNKs, monocytes, myeloid

cells, and maturation stages of T cells. Moreover, distinctive

immunophenotypic differences were identified between early and

late syphilis in peripheral blood.

In the context of early syphilis, a distinctive prominence of Treg

cell immunophenotypes was observed, constituting a substantial
Frontiers in Immunology 06
44.44% of the identified correlations. Intriguingly, a spectrum of

Treg cell activity was noted, encompassing activated, secreting, and

resting Treg cells during this stage. In contrast, late syphilis

predominantly featured resting Treg cells, indicating a shift in Treg

cell dynamics over the course of the disease progression. Treg cells, as

a vital subset of CD4+T cells, played a crucial role in inhibiting the

host immune response during early syphilis. This inhibition
TABLE 1 The immunophenotypes that overlap with syphilis (regardless of disease stage) in early or late syphilis.

outcome trait type panel exposure nsnp pval or(95%CI)

Early syphilis

RC B cell IgD- CD38dim B cell 25 0.040 1.13 (1.01 - 1.26)

RC B cell IgD+ CD38dim B cell 32 0.006 0.88 (0.80 - 0.96)

MFI B cell CD25 on IgD+
CD38- B cell

27 0.011 1.10 (1.02 - 1.19)

RC Treg Activated CD4
Treg cell

19 0.048 0.83 (0.69 - 1.00)

RC Treg CD39+ secreting CD4
Treg cell

20 0.017 0.87 (0.78 - 0.98)

RC Treg CD28- CD127- CD25
++ CD8+ T cell

20 0.023 1.23 (1.03 - 1.46)

RC Treg CD28- CD4-CD8-
T cell

24 0.029 0.81 (0.67 - 0.98)

MFI Treg CD3 on CD39+
activated CD4
Treg cell

27 0.009 1.22 (1.05 - 1.41)

MFI Treg CD28 on CD4
Treg cell

25 0.031 1.10 (1.01 - 1.21)

AC TBNK CD4+ CD8dim T cell 17 0.047 1.25 (1.00 - 1.55)

MFI Maturation stages
of T cell

CD4 on effector
memory CD4+ T cell

20 0.004 0.77 (0.64 - 0.92)

MFI Monocyte CD40 on CD14+
CD16+ monocyte

20 0.004 0.85 (0.76 - 0.95)

MFI Monocyte CD14 on CD14+
CD16+ monocyte

17 0.014 0.69 (0.52 - 0.93)

Late syphilis

RC B cell IgD+ CD38dim B cell 15 0.024 1.32 (1.04 - 1.68)

MFI B cell CD25 on IgD+
CD38- B cell

27 0.011 1.10 (1.02 - 1.19)

RC B cell CD20- B cell 18 0.007 1.22 (1.05 - 1.41)

MFI B cell CD20 on IgD+
CD38dim B cell

29 0.043 1.19 (1.01 - 1.40)

RC B cell IgD+ CD24- B cell 18 0.045 1.18 (1.00 - 1.39)

MFI cDC HLA DR on
myeloid DC

16 0.021 1.18 (1.02 - 1.35)

MFI cDC HLA DR on
plasmacytoid DC

22 0.037 1.17 (1.01 - 1.35)

MFI cDC HLA DR on DC 19 0.038 1.19 (1.01 - 1.41)

RC TBNK TCRgd T cell 18 0.041 1.16 (1.01 - 1.34)

RC Maturation stages
of T cell

Terminally
differentiated CD4+
T cell

22 0.044 0.75 (0.56 - 0.99)
AC, absolute count; MFI, median fluorescence intensitie; MP, morphological parameter; RC, relative count; DC, dendritic cell; nsnp, single nucleotide polymorphisms; Treg cell, regulatory T cell.
Bold value indicates immunophenotypes observed in all stages of syphilis.
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facilitated the evasion of TP from the host immune defense

mechanisms, thereby contributing to the progression of the disease

(7, 12, 25). Remarkably, individuals with early syphilis exhibited a

higher prevalence of Treg cells in peripheral blood compared to

healthy counterparts (25). This phenomenon might be attributed to

the stimulation of monocytes by TpF1 (miniferritin produced by TP),

resulting in the release of immunosuppressive factors such as

interleukin (IL)-10 and transforming growth factor (TGF)-b,
consequently fostering the differentiation of Treg cells (11).

Moreover, an augmentation in mature CD4+T cells and CD8+T

cells was observed in early syphilis, aligning with analogous

findings in TBNK results. However, the available data did not allow

for conclusive inferences regarding alterations in the CD4+/CD8+

ratio. Notably, the peripheral blood of early syphilis patients exhibited

a significant decrease in CD4+T cells compared to CD8+T cells,

potentially attributed to the pyroptosis of CD4+T cells (9, 10). In the

context of late syphilis, B cell-related immunophenotypes took center

stage, constituting 48.15% of the identified correlations. This

prevalence included various B cell subtypes such as plasma cells,

memory B cells, transitional B cells, naive cells (IgD+CD38-), and

activated B cells (IgD+CD38dim). The presence of these B cell subsets

in early syphilis indicated a diverse and dynamic immune response.

Notably, neurosyphilis patients exhibited elevated levels of CXCL13

in their cerebrospinal fluid, suggesting a potential mediation of B cell

aggregation (26, 27). However, the precise mechanism by which B

cells in the peripheral blood of syphilis patients regulate immunity

remains unclear and warrants further investigation.

The differentiation of monocytes from hematopoietic precursor

cells in the bone marrow into macrophages and DCs plays a pivotal

role in the immune response (28). Monocyte subpopulations,

broadly categorized as classical (CD14+CD16−), non-classical

(CD14−CD16+), and intermediate (CD14+CD16+), exhibit distinct

functions (24). Our data illuminate that the monocyte

immunophenotype in early syphilis is characterized by an

abundance of intermediate (CD14+CD16+) and non-classical

(CD14−CD16+) monocytes, while late syphilis is marked by

classical (CD14+CD16−) monocytes. Intermediate monocytes are

actively involved in antigen presentation and inflammation,

whereas classical monocytes primarily function as immune

surveillance cells, specializing in immune phagocytosis (29).

Consistent with our findings, studies by Liu et al. have

demonstrated that TP can augment the expression of CD14 and

CD16 in monocytes in vitro, leading to the differentiation of

monocytes into intermediate monocytes (30). This increase in

intermediate monocytes may exert a profound impact on T cell

subset differentiation and contribute to immune evasion. Notably,

stimulated by TP, intermediate monocytes have the capacity to

release immunosuppressive factors such as IL-10 and TGF-b,
thereby promoting the proliferation and differentiation of Treg

cells (11). In the immunological milieu of early syphilis, a significant

upregulation of interferon-gamma (IFN-g) is noted in the plasma,

accompanied by a propensity of Th cells to differentiate towards the

Th1 phenotype (6, 14). Concurrently, the pro-inflammatory

characteristics of non-classical monocytes tilt the immune

response towards Th2 (31). Furthermore, TP, through the TLR2
Frontiers in Immunology 07
signaling pathway, can stimulate the maturation of DCs. These

activated DCs, in turn, secrete a repertoire of cytokines, including

IL-2, IL-6, and tumor necrosis factor (TNF)-a, triggering an

inflammatory response (32). Intriguingly, our early syphilis data

did not reveal a distinct conventional cDC immunophenotype. A

plausible hypothesis posits that DCs may initially encounter the

skin mucous membranes during early infection (33), as blister fluid

from skin lesions has been reported to contain higher

concentrations of activated monocytes, macrophages, and DCs

compared to peripheral blood (34, 35). This underlines the

dynamic interplay of immune cells at the site of infection,

offering valuable insights into the localized immune responses

during early syphilis.

Despite the robust analysis conducted in this study, several

limitations must be acknowledged. The lack of complete information

on the database hindered a precise definition and distinction between

early and late syphilis. Additionally, the study’s reliance on a European

database may limit the generalizability of conclusions to other ethnic

groups. Future research should aim to address these limitations and

conduct reverse MR verification. The identified syphilis-related

immunophenotypes offer valuable insights for vaccine development,

disease prevention, and research into immune escape mechanisms.

Further investigations, especially in diverse populations, will enhance

our understanding of syphilis immunopathogenesis.

In conclusion, this study provides a comprehensive analysis of

the correlation between syphilis and immune immunophenotypes,

unraveling distinct immune responses in early and late syphilis. The

findings may contribute to the broader understanding of syphilis

pathogenesis and offer implications for therapeutic and

preventive interventions.
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