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Endoplasmic reticulum stress:
bridging inflammation and
obesity-associated adipose tissue
Kaile Ma †, Yanjiao Zhang †, Jingyi Zhao †, Lijuan Zhou and Min Li*

Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences,
Beijing, China
Obesity presents a significant global health challenge, increasing the

susceptibility to chronic conditions such as diabetes, cardiovascular disease,

and hypertension. Within the context of obesity, lipid metabolism, adipose tissue

formation, and inflammation are intricately linked to endoplasmic reticulum

stress (ERS). ERS modulates metabolism, insulin signaling, inflammation, as well

as cell proliferation and death through the unfolded protein response (UPR)

pathway. Serving as a crucial nexus, ERS bridges the functionality of adipose

tissue and the inflammatory response. In this review, we comprehensively

elucidate the mechanisms by which ERS impacts adipose tissue function and

inflammation in obesity, aiming to offer insights into targeting ERS for

ameliorating metabolic dysregulation in obesity-associated chronic diseases

such as hyperlipidemia, hypertension, fatty liver, and type 2 diabetes.
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1 Introduction

Obesity is a multifactorial chronic disease that prevails worldwide. According to the

World Health Organization (WHO), it is estimated that by 2025, one-fifth of the global

adult population will be obese (1), approximately 39% of adults will be categorized as

overweight, and around 13% of adults will be classified as obese (2). Obesity stands out as a

pivotal risk factor for a multitude of chronic metabolic conditions, including diabetes,

insulin resistance, fatty liver disease, hyperlipidemia, chronic kidney disease, cardiovascular

disease, hypertension and inflammation (3). It significantly escalates the incidence of

common ailments like cardiovascular diseases and type 2 diabetes. The dangers of obesity

are self-explanatory (4). Endoplasmic reticulum stress (ERS) is considered a potential target

for the treatment of inflammation, obesity and metabolic disorders (5).

The endoplasmic reticulum (ER) is an organelle located in eukaryotic cells. It plays a crucial

role in protein synthesis, folding, maturation, and the proper transport of correctly folded

proteins (6). Additionally, the ER interacts with the Golgi apparatus, mitochondria, lysosomes,

phagosomes, and the cell nucleus (7). ERS is characterized by the excessive accumulation of

unfolded proteins or misfolded proteins, triggering the unfolded protein response (UPR), which
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involves the activation of transcription within the organism. Ultimately,

this leads to the restoration of ER homeostasis and the amelioration of

ERS-related diseases (8). The UPR signaling pathway consists of three

main branches: PERK (protein kinase R-like ER kinase, encoded by the

EIF2AK3 gene), IRE1 (inositol-requiring enzyme 1, encoded by the

ERN1 gene), and ATF6 (activating transcription factor 6) (9). The

initial ER chaperone protein, immunoglobulin heavy chain binding

protein/glucose-regulated protein 78 (BiP/GRP78), resides on the ER

membrane. Its primary function is to bind to transducers of the three

branches of the UPR pathway and maintain them in an inactive state

(10). Amid ER, BiP/GRP78 is displaced by interactions with misfolded

proteins, instigating the liberation and activation of IRE1, PERK, and

ATF6. Ultimately, the three arms of the UPR pathway clear misfolded

proteins, hinder protein synthesis, foster ERS biosynthesis, and prompt

the transcription of ERS-associated chaperone genes (11). Numerous

studies indicate that ERS plays a crucial role in obesity. ER activation is

closely associated with obesity and inflammation, exerting a significant

impact on the functionality of adipose tissue in obesity (7, 12, 13).

Obesity is considered a chronic inflammatory state

characterized by excessive or abnormal accumulation of fat in

adipose tissue (14). This is primarily manifested by the

infiltration and activation of immune cells in metabolic organs

such as adipose tissue (15). The initial signals of obesity-related

inflammation is believed to stem from excessive metabolism,

namely nutrient and energy surplus. Therefore, the chronic

inflammation associated with obesity is also referred to as

metabolic inflammation (16). As a detrimental factor, obesity

significantly impairs the normal function of the ER, imposing

immense pressure on the UPR and inducing misfolding of

proteins, ultimately leading to ERS. Simultaneously, ERS can lead

to excessive generation of reactive oxygen species and disruption of

energy metabolism, ultimately resulting in oxidative stress and

inflammation (17). ERS is significantly elevated in both obese

individuals and obese mice adipose tissue. This elevation is a key

mechanism by which obesity induces the activation of

inflammatory and related stress responses such as JNK (c-Jun N-

terminal kinase), IKK (Inhibitor of KappaB Kinase), and NF-kB
(nuclear factor-kappa B). The different branches of the UPR are

sequentially activated under the crosstalk between ERS and

inflammation processes, playing significant roles in obesity. This

paper provides a comprehensive review of the mechanisms

underlying the crosstalk between ERS and obesity-related

inflammation, particularly within adipose tissue, with the aim of

fully exploring the therapeutic potential of targeting ERS for

obesity treatment.
2 The interaction between adipose
tissue functionality and ERS in obesity

2.1 ERS in obesity

Obesity is characterized by a state of low-grade chronic

inflammation, primarily disrupting normal metabolic functions

within the body. It involves not only the regulation of glucose
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homeostasis and lipid pathways but also the integration of immune

responses and metabolic pathways. Dysfunction of the ER is a key

characteristic of these metabolic disorders. The ER regulates various

cellular processes through the UPR signaling pathway, including

nutrient metabolism, cell proliferation and death, inflammation, and

insulin signal transduction (18). The UPR is primarily utilized to

restore protein homeostasis and is one of the hallmarks of chronic

inflammation in adipose tissue of obese individuals. Under ERS, IRE1

oligomerizes and undergoes autophosphorylation, inducing the

cytoplasmic endonuclease (RNase) activity (19). After activation,

IRE1 induces splicing of XBP1 (X-box binding protein 1) mRNA

through its RNase domain, resulting in the excision of a 26-base pair

fragment to adapt to ERS (20). XBP1 is a powerful transcription factor

that enters the nucleus to bind specific DNA and initiate the expression

of genes involved in lipid production and protein folding, crucial for

responding to ERS effectively (21). Prolonged ERS can disrupt this

pathway, leading to abnormal lipid accumulation and dysfunction of

adipocytes, thereby promoting obesity-related diseases. The

cytoplasmic domain of PERK is a chaperone protein that can detect

ERS and lead to PERK autophosphorylation (22). PERK’s potential

therapeutic mechanism against excessive ERS is through reducing the

translation of misfolded proteins, thereby decreasing the influx of new

proteins into the ER compartment filled with misfolded proteins (23).

When PERK is activated, its target protein eIF2a (eukaryotic

translation initiation factor 2, alpha subunit) is activated.

Overexpression of the target protein eIF2a and its downstream

branches in cells can impair protein synthesis through various

mechanisms (24). Simultaneously, PERK-mediated eIF2a
phosphorylation is associated with abnormal glucose tolerance.

Reduced PERK activity promotes insulin secretion in response to

glucose stimulation, thereby influencing insulin sensitivity and b-cell
function (25). ATF6 is a transmembrane transcription factor with both

C-terminal and N-terminal domains. Under ERS, ATF6 is translocated

to the Golgi apparatus, where it is cleaved by proteases S1P

(Sphingosine-1-phosphate) and S2P (Sphingosine-2-phosphate),

releasing its cytoplasmic domain (ATF6f) (19). The N-terminal

cytoplasmic fragment of ATF6 can translocate to the nucleus under

the guidance of a nuclear localization signal, where it binds to

downstream factors of other branches and transfers to the nucleus.

Inside the nucleus, it serves as a transcription factor to induce the

transcriptional expression of various ERS genes [such as CHOP (C/

EBP homologous protein) and GADD (Growth Arrest and DNA

Damage)], thereby restoring normal metabolic function of the ER (26).

Internal ERS in the obese organism is illustrated in Figure 1. Obesity

can induce central and peripheral ERS, activating the UPR pathway,

where inflammation mechanisms such as JNK, NF-kB play critical

roles in metabolic disorders. Therefore, targeting ERS may be a

potential therapeutic target for obesity (27). Obesity-induced

excessive lipid stimulation triggers ERS. In obesity, inflammatory

signals, including those generated by excess lipids, can stimulate ERS

and inflammation reactions in multiple cells, playing a crucial role in

metabolic disorders (28). The effects of ERS and inflammation

pathways in obesity directly or indirectly disrupt the metabolic

functions of several tissues, including glucose and lipid metabolism,

underscoring the importance of understanding ER homeostasis and the

potential therapeutic role of ERS in obesity.
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2.2 The relationship between adipose
tissue function and ERS

2.2.1 Basic function of adipose tissue
Adipose tissue exhibits metabolic activity within the human

body and plays a pivotal role in the treatment of metabolic

disorders and their complications (29), such as obesity (30). It is

known that mammals have three types of adipose tissue. White

adipose tissue serves as the primary site for energy storage and

release, and it secretes hormones and cytokines that regulate

insulin resistance (31). Additionally, it is a major site for

mobilizing lipid distribution and metabolism throughout the

body (32). The imbalance between long-term nutrient intake

and energy expenditure results in an increase in the size

(hypertrophy) and number (hyperplasia) of adipocytes,

leading to the expansion of white adipose tissue and the

development of obesity (33). Brown adipose tissue mediates

non-shivering thermogenesis by expressing tissue-specific

uncoupling protein 1 (UCP1) in mitochondria (34), resulting

in a significant elevation of body temperature above ambient

temperature. This process promotes adaptive thermogenesis,

ATP (adenosine triphosphate) generation, and substrate

oxidation (35). Beige adipose tissue functions intermediate to

the other two fat depots, primarily involved in generating heat

to maintain body temperature (36). Adipose tissue, serving as a

molecular network linking obesity, adipokine secretion, chronic

inflammation, insulin resistance, and ERS, can secrete a variety

of adipokines, including interleukin-1b (IL-1b), interleukin-6
(IL-6), tumor necrosis factor-a (TNF-a), leptin, adiponectin,
Fibroblast Growth Factor 21 (FGF21), and vascular endothelial

growth factor(VEGF), among others. These adipokines are

closely associated with obesity, diabetes, insulin resistance and

inflammation (37).
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2.2.2 The interaction between adipose tissue
function and ERS

Key features of insulin resistance induced by obesity include

alterations in inflammatory signaling in adipocytes (38) and

infiltration of immune cells into adipose tissue (39). Adipose

tissue can also contribute to insulin resistance by disrupting

insulin signaling. The inflammatory cytokines secreted by adipose

tissue macrophages and adipocytes can activate inflammatory

signaling pathways, such as JNK (40), thereby promoting the

degradation of insulin receptor substrate 1 (IRS-1) and the

binding of IRS-1 to the insulin receptor (41). Pathological

expansion of adipose tissue leads to abnormal hypertrophy and

thickening of adipocytes, resulting in adipocyte hypoxia, chronic

low-grade inflammation, reduced vascularization, decreased

reactive oxygen species production, and ERS (42). ERS,

mitochondrial dysfunction, and oxidative stress are all directly

associated with adipose tissue dysfunction (43). ERS plays a role

in the modification, folding, and transport of proteins.

Abnormalities in ER function can significantly impair the

physiological function of adipose tissue, which serves as a vital

endocrine organ (44).

2.2.2.1 ERS regulates lipogenesis

ERS can regulate the formation and differentiation of adipocytes

through different branches, including the synthesis of triglycerides,

fatty acids, and cholesterol. This process is mainly regulated by

transcription factors, sterol regulatory element-binding proteins

(SREBPs), and acyltransferase (DGATs) (45). The PERK and

IRE1 arms of the UPR play a crucial role in adipogenesis and

differentiation, while the ATF6 arm is closely associated with the

process of adipogenesis (46). Research has indicated that the

downstream target factor XBP1 of the IRE1 branch is highly

expressed in adipocytes (47), and it can control the activity and
FIGURE 1

Mechanism of ERS and unfolded protein response: Under ERS, UPR is activated, causing the activation of three downstream branches, PERK, IRE1
and ATF6, and stimulating genes and transcription factors related to protein folding and ERAD.
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expression of key enzymes involved in phospholipid biosynthesis

(48). Transcription factor CCAAT-enhancer-binding protein alpha

(C/EBPa) and transcription factor CCAAT-enhancer-binding

protein beta (C/EBPb) are critical regulatory factors in

adipogenesis, and the IRE1/XBP1 pathway regulates adipogenesis

through interaction with the C/EBP family transcription factors

(49). During early adipogenesis, C/EBP-b induces the expression of

mRNA encoding the inactive form of the transcription factor XBP-1

(XBP-1u). Upon activation of the UPR, XBP-1u mRNA undergoes

unconventional splicing by IRE1 to generate mRNA encoding the

active XBP-1 protein (XBP-1s). In turn, XBP-1s binds and activates

the promoter of key adipogenic transcription factor C/EBP-a,
playing a crucial role in adipogenesis (46). The IRE1/XBP1

branch has been shown to be activated in mice fed a high-sugar

diet, directly influencing the expression of genes related to fatty acid

production, such as stearoyl-CoA desaturase 1 (SCD1),

diacylglycerol acyltransferase 2 (DGAT2), and acetyl-CoA

carboxylase 2 (ACC2). Mice lacking XBP1 in the liver exhibit

severe hypotriglyceridemia and hypocholesterolemia due to

reduced lipogenesis, further demonstrating the importance of the

IRE1/XBP1 branch in fatty acid synthesis (50). The PERK branch is

extensively studied, and it regulates adipogenesis through

downstream phosphorylation of eIF2a. Both in vivo and in vitro

studies have demonstrated that phosphorylation of eIF2a, in
response to ERS, can inhibit the development of adipocytes (51).

Activating transcription factor 4 (ATF4) and sterol regulatory

element-binding protein 1 (SREBP-1) are downstream branches

of eIF2a, primarily responsible for regulating the biosynthesis of

fatty acids and triglycerides (52). SREBP-1 can induce the

transcription of genes involved in fatty acid synthesis by targeting

downstream enzymes, promoting the production of fatty acid and

cholesterol (53). ATF4 regulates adipogenesis by modulating

PPARg (peroxisome proliferator-activated receptor g) through

downstream CHOP. The differentiation of beige adipocytes is

transiently regulated by decreased phosphorylation of eIF2a and

CHOP, exacerbating the metabolic consequences of obesity by

inhibiting adipogenesis and limiting lipid storage in adipose tissue

(54). Therefore, strict control of eIF2a phosphorylation represents a

pathway to optimize adipogenesis and ameliorate obesity and its

metabolic dysfunctions. Furthermore, the extent and duration of

eIF2a phosphorylation and its downstream integrated stress

response can regulate the expression of PPARg and C/EBP, which

are key transcription factors for adipogenesis (55). These central

regulators of adipogenesis interact positively to control and

coordinate the expression of the entire adipogenic processes,

including stimulating insulin-dependent glucose transport,

inducing other transcription factors, and inhibiting growth-

related genes (56). The impact of the ATF6 branch on adipose

tissue function is relatively less studied. Research suggests that

ATF6 can promote lipogenesis by activating SREBP-1, inducing

the production of lipogenic markers such as fatty acid synthase

(FAS), ACC2, and 3-hydroxy-3-methylglutaryl-coenzyme A

(HMG-CoA) (57). In vitro studies have demonstrated that

knockdown of ATF6 impairs adipogenesis and differentiation of

preadipocyte cell lines into mature adipocytes (58). During glucose

deprivation, ATF6 inhibits lipogenesis mediated by sterol
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regulatory element-binding protein 2 (SREBP2) (a substrate of

S1P/S2P) (59). The overall process of how ERS regulates

adipogenesis in the obese environment is illustrated in Figure 2.

The response of the UPR to ERS controls the function of adipose

tissue. On the other hand, dysfunction of adipose tissue can also

influence changes in obesity-related inflammation, metabolic

diseases, and ERS (60).
2.2.2.2 Adipose tissue dysfunction affects ERS

Hypertrophy and hyperplasia of adipose cells are the basic

features of adipose tissue in obesity. Chronic inflammation in

obesity is closely related to inflammatory cell infiltration and

cytokine network activation in adipose tissue (61). The

phenotypic and biological changes of adipose tissue are also

associated with metabolic diseases such as obesity, insulin

resistance, inflammation and diabetes (62). Studies have found

that ERS can promote obesity-induced insulin resistance, diabetes

and hepatic steatosis, and can induce lipogenesis, which is a bridge

between obesity and adipose tissue function (63). In the early stages

of obesity, adaptive ERS/UPR response is activated to regulate the

good function and metabolic homeostasis of adipose tissue.

However, when excessive ERS exceeds the normal carrying

capacity of obesity and fat cells, the maladaptive UPR triggers the

cell toward the apoptotic pathway (64).
2.2.3 Adipose tissue inflammation crosstalk ERS
2.2.3.1 Adipose tissue macrophages

Adipose tissue is closely related to chronic inflammation in

obesity to a large extent, and plays an important endocrine role in

regulating immunity, inflammation and energy homeostasis (65).

In the process of metabolic stress, the main way to promote adipose

tissue inflammation is the crosstalk between immune cells and

metabolic cells, that is, the interaction between macrophages and

adipose cells, which plays an important role in the metabolic

disorders caused by obesity (66). The role of the immune system

in adipose tissue is one of the new hotspots in the study of metabolic

regulation and obesity (67). Adipose tissue inflammation is closely

related to the function of macrophages in adipose tissue, which are

an important component of inflammation. There are two main

types, M1 macrophages and M2 macrophages. The former tends to

cause tissue damage and chronic inflammation (pro-inflammatory),

while the latter tends to promote wound healing and eliminate

inflammation (anti-inflammatory) (68). Obese adipose tissue

macrophages (ATM) are M1-like macrophages, which are mainly

involved in the chemokines secreted by adipose cells during lipid

overload. At the same time, M1 macrophages can secrete a large

number of chemokines and pro-inflammatory cytokines to attract

more macrophages and amplify adipose tissue inflammation (69).

Promoting the polarization of macrophages in obese adipose tissue

is also a current therapeutic approach to treat obesity through the

inflammatory pathway.
2.2.3.2 Adipokines secreted by adipose tissue

Adipose tissue, as a crucial endocrine organ, produces

adipokines, which are cell-signaling proteins that regulate
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various biological processes in target organs, including glucose

and lipid metabolism, inflammation, endothelial cell function,

angiogenesis, insulin sensitivity, and metabolic syndrome (70).

In obese individuals, the balance between pro-inflammatory

and anti-inflammatory adipokines is disrupted, leading to a

gradual increase in pro-inflammatory adipokines within

adipose tissue (71), which plays a critical role in the systemic

homeostasis. This article briefly outlines the roles of the

following adipokines in the cascade of inflammation and ERS

in obese adipose tissue.

2.2.3.2.1 Adiponectin

Adiponectin is a key adipokine involved in preventing adipose

tissue inflammation and improving insulin sensitivity (72),

primarily secreted by adipocytes in white adipose tissue.

Adiponectin mainly reduces cellular lipid content through two

pathways: one is by directly stimulating fatty acid oxidation and

reducing fatty acid synthesis (73); the other is by regulating the

circulating levels of insulin/insulin-like growth factor (IGF),

promoting insulin/IGF sensitivity and action, thereby indirectly

regulating fatty acid oxidation through the insulin/IGF system (74).

Adiponectin activates PPARa, enhancing IRS signaling in the liver

and skeletal muscle, while also increasing fatty acid oxidation,

reducing intracellular lipid content, and improving insulin

resistance (75). The production of adiponectin decreases with

obesity, which is crucial for inflammation and also a significant

factor in the development of obesity and atherosclerosis. Adaptor

protein (APPL1) can transmit signals from adiponectin receptors to

downstream targets, playing a crucial role in the cascade of

adiponectin signaling. APPL1 serves as a key mediator in

regulating fatty acid oxidation and glucose uptake, and is essential

for adiponectin-induced activation of AMPK (adenosine

monophosphate-activated protein kinase) and p38 mitogen-
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activated protein kinase (p38MAPK) activation (75). Research has

demonstrated that inducers of ERS can lead to abnormal secretion

of adipokines in adipose tissue (76). When the UPR cascade of ERS

becomes dysregulated, IRE1 induces apoptosis in adipocytes

through downstream JNK signaling (11). Further characteristics

of this pathway include increased production of C/EBP homologous

protein and decreased synthesis of adiponectin. Adiponectin plays a

crucial role in regulating systemic fat deposition, insulin levels, and

cellular lipid metabolism.

2.2.3.2.2 Resistin

Resistin, a secretion factor exclusively present in adipose tissue,

plays a pivotal role in insulin resistance associated with diabetes and

obesity. In mice, resistin is primarily secreted by adipose tissue,

whereas in humans, its main sources are cells other than adipocytes,

including peripheral blood mononuclear cells, macrophages, and

bone marrow cells (77). Although human resistin is primarily

produced by macrophages rather than adipocytes, experimental

studies indicate that human resistin exacerbates adipose tissue

inflammation and leads to insulin resistance. Research has found

that resistin can induce ERS, inhibit endothelial at serine residues,

and consequently impair insulin phosphatidylinositol 3-kinase

(PI3K)/serine/threonine kinase (Akt) signaling. Additionally,

resistin signaling in vivo converges on common downstream

targets, primarily activating NF-kB and MAPK (JNK/ERK1/2/

p38) pathways. This modulation regulates pathways involved in

upregulating the expression of pro-inflammatory genes (IL-6, TNF-

a, monocyte chemoattractant protein-1), linking metabolic

disorders such as insulin resistance, glucose homeostasis, and

inflammatory response (78). There is also research indicating that

ERS in adipocytes of obese mice can downregulate the expression of

resistin in cultured mouse adipocytes, linking obesity and insulin

resistance through adipose tissue (79–81).
FIGURE 2

ERS regulates adipogenesis: The overactivation of ERS in adipose tissue causes downstream UPR to regulate adipogenesis. IRE1 stimulates CCAAT/
enhancer binding protein-A (C/EBPa) to promote lipogenesis and related transcription factors via XBP1s. PERK and ATF6 regulate lipogenesis by 1/
Sterol regulatory element binding protein 1 (SREBP-1).
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Adipose tissue communicates with various organs by producing

adipokines that impact organs such as the brain, heart, liver, and

muscles. Released adipokines can exert effects on obesity, adipose

tissue, adipocytes, and inflammation through the ERS response.
3 ERS-mediated inflammatory cascade

3.1 Overview of inflammation

Inflammation is a protective response in organisms, triggered

by stimuli such as infection, chemicals, or physical injury, causing

damage to host tissues or cells (82). Currently, inflammation is

mainly classified into acute inflammation and chronic

inflammation. The former is a transient response activated to

eliminate stimuli and repair tissues, while the latter is a long-term

response aimed ai eliminating pathogenic factors and/or repairing

damaged tissues. Obesity, defined as abnormal or excessive

accumulation of fat in adipose tissue, is considered a chronic

inflammatory disease (83). The inflammation caused by obesity

differs from inflammation in the general sense. In obesity,

inflammatory triggers are metabolic, resulting from excessive

consumption of nutrients (84). The inflammatory process in

obesity primarily operates through the UPR pathway of ERS

within the body. Evidence suggests that the initial process of

inflammation is initiated by increased oxidative stress, triggered

by impaired cellular functions such as ERS and mitochondrial

dysfunction (85). Obesity, on the other hand, leads to excessive

UPR, triggering inflammation and eliciting various cascading

responses to inflammatory signals (86).
3.2 ERS mediates an inflammatory cascade
through UPR

The crosstalk between the ER and inflammation primarily

occurs through the UPR pathway. UPR aims to clear ER

chaperones that persistently misfold and unfolded proteins

accumulated within the ER to restore normal ERS (87).

Simultaneously, the main purpose of UPR is to alleviate the

burden of unfolded proteins, restore organelle homeostasis,

reduce protein translation, and induce transcriptional

components of the ER machinery. This is achieved through the

induction of ER-associated degradation (ERAD) complexes, which

promote the degradation of misfolded proteins (88). The main UPR

reaction in inflammation are mediated by three branches: PERK,

IRE1, and ATF6. UPR signals can directly interfere with

inflammation-related pathways through various downstream

branches, including JNK, IKK, and NF-kB signaling (89), as well

as the production of reactive oxygen species (ROS) (90). Upstream

studies identifying multiple inflammatory factor expressions have

determined that JNK (91), IKK, and Akt are key intracellular factors

inducing metabolic tissue inflammation (92). Akt can coordinate

the activity of key inflammatory kinases (such as JNK and IKK),
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insulin receptor signaling components (such as IRS-1), and

translation machinery (via eIF2a) in the UPR, tightly linking

inflammation, metabolic dysregulation, and ERS functionality

(12). The NF-kB/IKK pathway is a commonly used signaling

pathway in inflammation, activated when cells are stimulated by

various factors, including cytokines, growth factors, ROS, and

microbial components such as lipopolysaccharide (LPS) (16). IKK

is composed of two catalytic subunits (Ikka and Ikkb) and one

regulatory subunit (Ikkg). IKK is activated through the classical NF-

kB signaling pathway. Ikkb is one of the most important kinases

mediating intracellular inflammatory stimuli (93). ERS can activate

IKK through the classical NF-kB pathway, inducing the expression

of downstream major regulatory factors (such as TNF-a) (94).

3.2.1 PERK branch
Activation of PERK is primarily associated with the Ikk-NF-kB

pathway. Upon ERS, PERK is activated, leading to phosphorylation of

its downstream effector eIF2a (95). Phosphorylation of eIF2a and

subsequent translational attenuation reduce the synthesis of IkB,
followed by activation of the transcription factor NF-kB, as part of the
stress response, thereby enhancing inflammation through NF-kB
nuclear translocation (96). Research indicates that NF-kB can be

activated through the inhibition of IkB translation via this pathway,

leading to the regulation of inflammatory mediators such as IL-6 and

TNF-a (97). TNF-a is a major pro-inflammatory cytokine that

induces the transcriptional upregulation of pro-inflammatory

molecules through the activation of MAPK and NF-kB pathways

(98). TNF-a can also increase the release of free fatty acids (FFA)

from adipocytes, inhibit the synthesis of adiponectin, and interfere

with the phosphorylation activity of tyrosine residues on the insulin

receptor substrate, thereby exerting insulin-resistance activity (99).

Meanwhile, phosphorylation of downstream eIF2a by PERK

increases the translation of downstream ATF4 and CHOP,

enhancing the translation of stress-responsive genes that promote

autophagy, thereby increasing the ability to maintain autophagy in

stressed cells (100). ATF4 is a transcription factor that plays a crucial

role in promoting survival, enhancing autophagy, ER folding

capacity, antioxidant response, and amino acid metabolism, among

other biological processes. ATF4 participates in cell apoptosis

through the expression of CHOP protein (101), and it can induce

eIF2a inhibition negative feedback release and glucose metabolism.

CHOP translocates into the nucleus, where it can activate members of

the BCL-2 (B-cell lymphoma 2) family such as Bcl-2-associated X

protein (BAX), promoting inflammation and oxidative stress

responses (102). Phosphorylation of eIF2a also activates nuclear

factor erythroid 2-related factor 2 (NRF2) and PI3K. NRF2 directly

interacts with NF-kB to induce inflammation. Under PI3K

activation, downstream protein Akt is activated. Activation of Akt

leads to the activation of mTOR (mammalian targe of rapamycin),

which in turn participates in processes such as gene transcription,

protein translation, ribosome biogenesis, integrating signals from

extracellular nutrients, energy, and growth factors. These

molecules are crucial for cell development, autophagy, and

apoptotic metabolism.
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3.2.2 IRE1 branch
The IRE1 branch is considered the oldest and most conservative

branch of the UPR, positioned at the intersection of several

molecular pathways in response to cellular stress (103). Upon

binding and dissociation from BiP, IRE1 undergoes dimerization,

autophosphorylation, and activates ribonuclease (RNase) activity

(104). IRE1 forms complex signaling platform with adaptor

proteins on the ER membrane, exerting its effects by controlling

the activation of the JNK and NF-kB pathways (105). Primarily

through activated IRE1 recruiting tumor necrosis factor receptor

(TNFR)-associated factor 2 (TRAF2) and apoptosis signal-

regulating kinase 1 (ASK1), it mediates JNK and NF-kB
activation (106). JNK is a crucial component of inflammatory

signaling, capable of activating the activator protein-1 (AP-1)

transcription factor complex, thereby increasing the expression of

inflammatory factors such as IL-6 and TNF-a (107). Meanwhile,

JNK can inhibit the downstream anti-apoptotic protein Bcl-2,

promote BAX-dependent cell apoptosis, and coordinate cell death

(108). The IRE1 branch mediates various inflammatory pathways

through the IRE1-TRAF2 axis, affecting biological metabolism. As a

core pathway, the IRE1-TRAF2 axis also activates the NF-kB
inflammatory pathway by enhancing the interaction between

nucleotide-binding oligomerization domain 1 and 2 (NOD1/2)

receptors and serine/threonine protein kinase 2 (RIPK2) (109).

TRAF2 plays a significant role in inflammation and biological

metabolism through the UPR branch. On the other hand, TRAF2

directly interacts with IKK and promotes the degradation of IkB
through IKK-mediated phosphorylation, thereby increasing the

nuclear translocation of NF-kB, which is one of the important

pathogenic mechanisms of obesity-related inflammation (110).

Phosphorylation of JNK and IKK also impairs insulin action and

glucose homeostasis (111).

3.2.3 ATF6 branch
ATF6 is a member of the type II transmembrane receptor and

leucine zipper protein family, with its N-terminal DNA-binding

domain located in the cytoplasm and its C-terminal domain

situated in the lumen of the ER (112). Under ERS stimulation,

GRP78 dissociates from ATF6, and ATF6 is then transported to the

Golgi apparatus through interaction with the protein transport vesicle

coat protein COPII. ATF6 is cleaved by S1P and S2P in the Golgi

apparatus into its active amino-terminal form (113). The active form

can then enter the nucleus and regulate the expression of endoplasmic

reticulum chaperone proteins (114). Similar to IRE1 and PERK, ATF6

also participates in inflammatory pathways by modulating NF-kB
activity (115). ATF6 can induce the degradation of IkB by activating

Akt and IKKa, b, g. Under ERS, ATF6 can also influence the

activation of acute phase reaction protein (APR) and activate the

transcription of inflammatory genes in the cell nucleus. Processing of

ATF6 generates active transcription factors that, in addition to

targeting genes encoding endoplasmic reticulum chaperones,

mediating inflammation, and ERAD components, also play crucial

roles in lipid biosynthesis and endoplasmic reticulum expansion (116).

It has been shown that ATF 6 can enhance the induction of ERAD
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proteins by forming heterodimers with spliced XBP1. The activation

of ATF6 inhibits the induction of SREBP-mediated lipogenic genes by

recruiting the corepressor histone deacetylase at the target gene

promoter in hepatocytes, thereby regulating lipid metabolism (59).

Additionally, research has demonstrated that ATF6 also exerts

inhibitory effects on gluconeogenesis. It has been shown that ATF6

modulates the activity of the key transcription factor cAMP response

element-binding protein (CREB) by competing with the

transcriptional coactivator transducer of regulated CREB activity 2

(TORC2), thereby suppressing gluconeogenesis in the mouse liver

(117). The increase in ERS promotes the expression of ER quality

control genes through association with ATF6a. ATF6a reduces

hepatic glucose output by disrupting the interaction between CREB

and TORC2, thereby contributing to glucose homeostasis. ERS

induces inflammatory cascades through the UPR pathway as

illustrated Figure 3.

Obesity is a systemic chronic inflammation that plays a

causative role in complications such as obesity-related insulin

resistance and type 2 diabetes (118). Some well-known

inflammatory pathways, such as protein kinases JNK, IKK, and

NF-kB, are considered key molecular links between obesity,

metabolic inflammation, and glucose homeostasis. Obesity is

closely associated with inflammation pathways through the UPR

pathway of ERS, with widespread activation of components and

downstream signaling cascades (50).
4 Treatment of inflammation in obese
adipose tissue

4.1 WATME-specific immunotherapy

Traditional methods of preventing or treating obesity typically

include lifestyle changes, behavioral adjustments, dietary control,

medication, or surgical interventions. However, obesity is regulated

by a multitude of factors and variables, making it a highly complex

disease. The conventional treatments have their limitations. Given

the critical role of the immune system in regulating the metabolism,

fat accumulation, and inflammation associated with obesity, a new

therapeutic approach has emerged. This method focuses on

al leviat ing inflammation in the white adipose t issue

microenvironment (WATME) by targeting cells, signaling

pathways, and secreted cytokines, known as “WATME-specific

immunotherapy.” It plays a key role in treating obesity and

obesity-induced diseases such as type 2 diabetes and coronary

heart disease. The chronic systemic inflammation induced by

obese WATME can lead to prolonged hyperinsulinemia, resulting

in b-cell dysfunction and ultimately the development of type 2

diabetes. Additionally, the pro-inflammatory cytokines secreted by

obese WATME are closely linked to the development of

atherosclerosis. Therefore, employing WATME-specific

immunotherapy to inhibit the secretion of pro-inflammatory

cytokines can effectively treat diseases induced by obesity, such as

type 2 diabetes and coronary heart disease (119).
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4.2 Nanoparticle therapy

The inflammatory microenvironment is considered a potential

therapeutic target for treating metabolic diseases associated with

obesity, and modulating the adipose tissue microenvironment is

highly promising. Studies have tested (120) the treatment of obesity

through nanoparticles that induce increased energy expenditure

and regulate the adipose tissue microenvironment, creating an

inflammatory environment within adipose tissues. Various

nanomodulators have been applied locally in WAT, and the

results show that under nanoparticle treatment, the levels of

TNF-a and the number of macrophages significantly decrease.

The findings prove that nanoparticles loaded with Amlexanox

and modified with anti-VCAM-1 antibodies can increase energy

expenditure, prevent the development of obesity, and

simultaneously, the particle system can remodel the adipose tissue

microenvironment, improving inflammation in adipose tissues and

alleviating systemic metabolic disorders.
4.3 Targeting ERS for treatment

ERS and its downstream UPR branches play pivotal roles in

linking inflammation with the microenvironment of obese adipose

tissue. Approaches to regulate ERS and thereby affect inflammation

in adipose tissues are gaining attention. Recent studies (121) have

uncovered that dysregulation of miRNAs can impact the

functionality of fat, liver, and muscle tissues. Knockout studies

have shown that miR-149 may influence ERS through negative

targeting of the ATF6 signaling pathway. Additionally, research

suggests that miRNAs could represent a potential mechanism for

regulating the renin-angiotensin system (RAS) signaling pathways.
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Treating adipocytes with angiotensin II alters miRNAs targeting

ERS and inflammation, leading to adipocyte dysfunction.

Regarding the XBP1 branch, studies employing XBP1 inhibitors

to intervene in obesity have demonstrated the ability to alleviate

abnormal ERS and oxidative stress within fat cells, thereby

significantly inhibiting abnormal fat formation, reducing lipid

droplet accumulation, and blocking triglyceride synthesis to

prevent cascading adipocyte proliferation and the progression of

obesity (122). Furthermore, it has been discovered that

ubiquitination of proteins associated with endoplasmic reticulum

stress can exacerbate the intercellular transmission of ERS signals,

resulting in adipocyte dysfunction and insulin resistance (123).

Therefore, targeting ERS represents a potential therapeutic

target for treating inflammation in obese adipose tissue and

obesity-related complications. This strategy highlights the

importance of understanding the molecular pathways involved in

ERS and its connection to obesity and its sequelae, opening avenues

for developing targeted interventions to combat obesity and its

associated disorders.
5 Conclusion

Obesity is a major risk factor for hypertension, arteriosclerosis,

type 2 diabetes, insulin resistance, ischemic heart disease,

dyslipidemia, and other metabolic disorders. The prevalence of

obesity is increasing globally, yet pharmacological treatments for

obesity and its associated diseases are significantly limited.

Understanding the pathogenesis of obesity is crucial for its

treatment. This article reviews the mechanisms by which

endoplasmic reticulum stress affects obesity, adipose tissue, and

related inflammation. It highlights the role of the endoplasmic
FIGURE 3

ERS-induced inflammatory cascade: PERK, IRE1 and ATF6 activate the inflammatory pathway with NF-kB, JNK and IKK as the core through the
downstream branches, respectively. PERK directly activates NF-kB via NRF2 and also mediates Akt activation of autophagy and associated
inflammatory transcription factors. IRE1 mainly mediates downstream inflammatory pathways through the IRE1-TRAF2 axis, and can also lead to
apoptosis through Bcl2. ATF6 can induce autophagy through active forms and regulate inflammatory responses through the NF-kB pathway.
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reticulum in interacting with insulin signaling, inflammatory

signals, carbohydrate and lipid metabolism, cell proliferation,

autophagy, and apoptosis through UPR branches, playing a

significant role in metabolic diseases characterized primarily by

metabolic damage such as inflammation, nutritional metabolic

damage, and insulin resistance. Adipose tissue, as an important

endocrine organ in obesity, targets the treatment of obesity through

the interaction of adipose tissue endoplasmic reticulum stress,

secreted adipokines, and inflammation.

Furthermore, ERS is inextricably linked to the onset and

progression of various metabolic diseases associated with obesity.

The UPR branches of ERS tightly connect obesity, inflammation, and

insulin resistance. Nitrosylation of its branch IRE1 can impair the

UPR, thereby promoting insulin resistance in obese mice. Targeting

the kinase activity of IRE1 may be beneficial for metabolic syndrome

and inflammatory lipid disorders (124). Thus, targeting ERS to inhibit

the secretion of pro-inflammatory cytokines can effectively treat

complications such as type 2 diabetes and coronary heart disease.

Additionally, the UPR, as a cellular response activated in ERS, also

plays a key role in the pathogenesis of non-alcoholic fatty liver disease

(NAFLD), hepatitis, and hepatocellular carcinoma. In NAFLD, lipid

accumulation triggers liver ERS and activates the UPR response.

Phosphorylated IRE1a can induce the expression of XBP1s and

caspase-2, leading to liver steatosis, hepatocyte damage, and insulin

resistance (IR). Similarly, phosphorylated PERK induces the

phosphorylation of eIF2a and the expression of ATF4, further

promoting the pathological process of liver steatosis (125).

Currently, the treatment for NAFLD is based on dietary control,

physical activity, and surgical weight loss, but the UPR has recently

been proven to be an ideal target for various drugs aimed at alleviating

the progression of NAFLD. This underscores the significant research

value of studying ERS and its UPR branches’mechanisms (126, 127).

Research on weight loss medications has always been a hot

topic. Currently, systemically administered anti-obesity drugs

approved by the FDA primarily act by manipulating central

nervous system pathways or by inhibiting appetite and reducing

fat absorption through the gastrointestinal tract. However, these

methods may trigger stimulant or depressant-like syndromes

related to the nervous system and potentially increase the

metabolic load on the kidneys. Thus, there is an urgent need to

explore new strategies for treating obesity and its complications that

can enhance pharmacological safety. Many basic studies targeting

ERS have identified potential targets for treating obesity and its

complications. However, clinical studies based on ERS targets are

relatively scarce, and the development of clinical drugs still faces
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certain challenges. Medications and clinical trials capable of

targeting ERS to effectively reduce weight and alleviate obesity

complications are eagerly awaited for further research. This

review analyzes the mechanisms of action in targeting ERS for the

treatment of inflammation in obese adipose tissue, with the hope

that subsequent research will focus more on ERS as a target,

providing potential targets for the treatment of obesity and its

metabolic diseases.
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