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Lupus nephritis (LN), a complex complication of systemic lupus erythematosus,

requires in-depth cellular and molecular analysis for advanced treatment

strategies, including mRNA vaccine development. In this study, we analyzed

single-cell RNA sequencing data from 24 LN patients and 10 healthy controls,

supplemented by bulk RNA-seq data from additional LN patients and controls. By

applying non-negative matrix factorization (NMF), we identified four distinct

leukocyte meta-programs in LN, highlighting diverse immune functions and

potential mRNA vaccine targets. Utilizing 12 machine learning algorithms, we

developed 417 predictive models incorporating gene sets linked to key biological

pathways, such as MTOR signaling, autophagy, Toll-like receptor, and adaptive

immunity pathways. These models were instrumental in identifying potential

targets for mRNA vaccine development. Our functional network analysis further

revealed intricate gene interactions, providing novel insights into the molecular

basis of LN. Additionally, we validated the mRNA expression levels of potential

vaccine targets across multiple cohorts and correlated them with clinical

parameters such as the glomerular filtration rate (GFR) and pathological stage.

This study represents a significant advance in LN research by merging single-cell

genomics with the precision of NMF and machine learning, broadening our

understanding of LN at the cellular and molecular levels. More importantly, our

findings shed light on the development of targeted mRNA vaccines, offering new

possibilities for diagnostics and therapeutics for this complex autoimmune disease.
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Introduction

Lupus nephritis (LN), a complex and severe manifestation of

systemic lupus erythematosus, presents significant challenges in

both diagnosis and treatment (1). The heterogeneous nature and

intricate pathophysiology of LN call for advanced and nuanced

research approaches (2). Although traditional methodologies have

provided valuable insights, there is a growing need for more

advanced techniques to fully understand and address the

complexities of LN.

In this study, we selected four specific gene groups (MTOR-

related genes, autophagy-related genes, Toll-like receptor-related

genes, and adaptive immune system-related genes) based on their

critical roles in key biological processes and pathways relevant to

LN pathogenesis. The mTOR signaling pathway is vital for cellular

metabolism and immune function, autophagy maintains cellular

homeostasis and modulates immune responses, Toll-like receptors

are central to innate immunity and inflammation, and the adaptive

immune system is crucial for immune regulation and

autoimmunity. By focusing on these pathways, we aimed to

uncover the multifaceted mechanisms underlying LN and identify

potential therapeutic targets.

The advent of single-cell RNA sequencing (scRNA-seq)

technologies has revolutionized our understanding of diseases (3–

5). These technologies provide detailed insights into the cellular

mechanisms underlying systemic lupus erythematosus and LN (6,

7), revealing the diverse cell populations and unique expression

landscapes critical to the disease pathogenesis. By dissecting these

heterogeneous cell populations, scRNA-seq enables the

identification of novel cell types and states that are instrumental

in driving LN pathology.

Complementing scRNA-seq, machine learning algorithms (8–

10) have emerged as powerful tools for analyzing the vast and

complex datasets characteristic of modern genomics. In the context

of LN, these algorithms synthesize and interpret large-scale

genomic data, facilitating the development of predictive models

that uncover underlying patterns and correlations. Such models are

crucial for identifying potential biomarkers and novel therapeutic

targets, particularly in conditions where traditional statistical

methods are limited.

Recent advances in scRNA-seq combined with bulk RNA-seq

and machine learning have significantly enhanced our

understanding of complex diseases such as LN. Previous studies

have demonstrated the utility of integrating these technologies to

uncover disease mechanisms and develop predictive models. For

instance, researchers have successfully applied these methods in

various contexts, including LN and other diseases (11–15). These

studies have shown that combining scRNA-seq with bulk RNA-seq

provides a comprehensive view of cellular and molecular dynamics,

enabl ing the ident ificat ion of novel biomarkers and

therapeutic targets.

Building on these foundational works, our study aims to further

advance the field by employing non-negative matrix factorization

(NMF) (16, 17) and a diverse array of machine learning algorithms

to dissect the genetic and cellular complexities of LN. We aimed to
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perform a comprehensive cellular and molecular analysis of LN

utilizing NMF to dissect its genetic and cellular intricacies. Our

approach not only enhances the understanding of LN but also sets

the stage for the development of novel therapeutic strategies,

including the potential design of mRNA vaccines.

In the context of mRNA vaccine development, our research has

additional significance. The identification and characterization of

key antigens through our analysis could provide the basis for

designing mRNA vaccines tailored to the LN. These vaccines,

which target specific antigens identified in our study, could help

modulate the immune response in LN patients, potentially offering

a new approach for treatment. This aligns with the growing interest

in personalized medicine and the need for treatments that address

the unique aspects of autoimmune diseases such as LN.

Our use of state-of-the-art technologies to unravel the cellular

and molecular complexities of LN aims not only to deepen our

understanding of the disease but also to explore innovative

treatment options, such as mRNA vaccines. By integrating

scRNA-seq for cellular profiling, NMF for pattern identification,

and machine learning for predictive modeling, we sought to

elucidate the intricate genetic and cellular interactions in LN. This

comprehensive approach has the potential to transform the

management of LN, facilitating the transition to targeted

t r e a tment s and a move toward more pe r sona l i z ed

medical interventions.
Materials and methods

Data acquisition and preprocessing for
mRNA vaccine target identification

In our study, we obtained single-cell RNA sequencing (scRNA-

seq) data for twenty-four patients with lupus nephritis (LN) and ten

healthy controls from a previous study (18). These high-resolution

data were crucial for investigating cellular heterogeneity in LN, with

a specific focus on identifying potential mRNA vaccine targets.

Additionally, we integrated bulk RNA sequencing (RNA-seq)

datasets from the Gene Expression Omnibus (GEO) database to

construct a more comprehensive patient cohort for the construction

of our machine learning models. Rigorous preprocessing, including

normalization, batch effect correction, and quality control, was

applied to ensure data quality and comparability, which are

essential for accurate target identification. Details for the four

bulk RNA-seq cohorts are shown in Supplementary Table 1

(19–22).
Gene set curation for discovery of mRNA
vaccine targets

To identify potential targets for mRNA vaccine development,

we curated four gene sets associated with critical signaling

pathways, including the MTOR, autophagy, Toll-like receptor,

and adaptive immune system pathways. These curated gene sets
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represent a spectrum of biological functions and processes pivotal

for LN, and their analysis was integral to our approach to

identifying mRNA vaccine targets. The details for the four gene

sets are as follows:
Fron
1. MTOR-related genes (MTORGs): Sourced from MSigDB,

these genes are involved in the mTOR signaling pathway,

which is crucial for cell growth, proliferation, motility,

survival, protein synthesis, and transcription.

2. Autophagy-related genes (AutRG): Collected from a range

of databases , inc luding HADb, AUTOPHAGY

DATABASE, and MSigDB, as well as recent scientific

publications, these genes are essential in the process of

autophagy, the cellular mechanism of removing damaged

cells to regenerate newer, healthier cells.

3. Toll-like receptor-related genes (TolRGs): Based on recent

scientific studies, these genes are crucial for the Toll-like

receptor (TLR) signaling pathway, which is known for its

role in the innate immune system.

4. Adaptive immune system-related genes (AISRGs):

Collected from Reactome, these genes are crucial for the

adaptive immune response, offering insights into the host-

specific immune defense mechanisms against pathogens.
These curated gene sets, which represent a broad spectrum of

biological functions and processes, establish a foundation for our

comprehensive analyses. By focusing on these specific pathways, we

sought to elucidate the multifaceted nature of LN at the molecular

level, aiming to elucidate the genetic framework and regulatory

networks pivotal for LN.
Single-cell data analysis for vaccine
target identification

Our single-cell data analysis began with a detailed examination

of samples from 24 LN patients and 10 healthy controls. Using the

Seurat package (version 4.4.0) (23), a critical tool for single-cell

genomics, we performed initial data filtering to ensure the quality

and integrity of our analysis. The process involved the use of

rigorous quality control measures to filter out low-quality cells

and normalize the data for downstream analysis. For specific quality

control metrics and annotation procedures, we followed the

guidelines outlined in the original article.

We employed a two-step approach for dimensionality reduction

and visualization to elucidate the cellular landscape of LN. Initially,

we utilized principal component analysis (PCA) to reduce the high-

dimensional scRNA-seq data to a lower-dimensional space. PCA is

a robust and widely used method that highlights the primary

sources of variance in a dataset. This initial step is critical for

data refinement and identifying the major patterns, which facilitates

subsequent clustering analyses. Following PCA, we applied t-

distributed stochastic neighbor embedding (t-SNE) for further

dimensionality reduction and visualization. t-SNE is particularly

effective in capturing complex, nonlinear relationships within the

data and preserving local structures, making it well suited for
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visualizing distinct cellular clusters. The combination of PCA and

t-SNE enabled us to achieve a detailed and interpretable

representation of the cellular heterogeneity in LN.

The essence of our single-cell analysis was the identification and

characterization of distinct cellular clusters within the LN and

control cohorts. With the use of Seurat clustering algorithms, we

were able to delineate these clusters based on their unique gene

expression profiles. This approach allowed us to segregate the cell

populations into discernible groups, thereby enabling a more

granular understanding of the cellular composition of LN.

Postclustering, our analysis characterized four major cell types

predominant in the LN microenvironment: T/NK cells, myeloid

cells, B cells, and epithelial cells. This categorization was based on

the expression of canonical cell type-specific markers. Furthermore,

we identified 22 subcell types within these major categories, each

representing unique functional states and potential roles in the

pathophysiology of LN. We focused on identifying and

characterizing distinct cellular clusters within the LN and control

cohorts, with an emphasis on finding unique functional states and

potential roles in LN pathophysiology that could inform mRNA

vaccine development.
Application of non-negative matrix
factorization (NMF) in identifying
vaccine targets

We employed the NMF algorithm to decompose the high-

dimensional scRNA-seq data into a set of basic components and

corresponding coefficients. This method is particularly effective for

uncovering underlying structures in complex biological data, such

as transcriptional programs active in different cell types.

Specifically, we applied NMF to analyze leukocyte gene

expression in LN patients, which is crucial for identifying

nonoverlapping gene modules that could serve as targets for

mRNA vaccine development.

Our NMF application followed these steps:
1. Standardization: Negative values in the data were

standardized to zero to ensure compatibility with the

NMF algorithm.

2. Algorithm Execution: We used the consensus NMF

(cNMF) algorithm (17) and ran it for 100 iterations with

the number of components (k) ranging from 4 to 9. The

optimal number of components was determined using

diagnostic plots, as recommended in the cNMF tutorial

(https://github.com/dylkot/cNMF).

3. Identification of Meta-Programs: The cNMF algorithm

identified four distinct leukocyte meta-programs (MP1-

MP4), each representing a unique transcriptional

signature. These meta-programs were characterized by

clusters of top-scoring genes, indicating their prominence

in the LN transcriptional landscape.
A critical step in our NMF application was the identification of

nonoverlapping gene modules, which was achieved through a novel
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gene ranking algorithm. This algorithm involved constructing two

distinct ranking matrices. The first matrix detailed how each gene

contributed to the different factors, while the second matrix ranked

the factors based on their contribution to each gene. Genes were

incrementally assigned to each factor based on their contribution

levels until a gene’s contribution to another factor became more

significant, as indicated by a change in their rank across factors.

To further dissect the expression patterns, we employed

Pearson correlation analysis coupled with hierarchical clustering.

This approach allowed us to delve more deeply into the

relationships and similarities between different gene expression

programs. The culmination of this intricate analytical process was

the identification of four distinct meta-programs within the

leukocytes of LN patients. These clusters, identified as meta-

program 1 to 4, comprise the top-ranking genes, each signaling a

distinct transcriptional signature within the landscape of LN. These

meta-programs represent unique and coherent gene expression

patterns, shedding light on the underlying biological processes

and pathways active in LN.
Development of a predictive model for LN
status and vaccine targeting

We developed predictive models by examining the intersection

of meta-program 1 with key gene sets (MTORGs, AutRGs, TolRGs,

and AISRGs), focusing on identifying gene interactions and

expression patterns critical for LN and potential vaccine targets.

We employed twelve different machine learning algorithms,

including LASSO (24), Ridge (24), Elastic network (24), Stepglm

(25), SVM (26), GlmBoost (27), LDA (28), plsRglm (29), RSF (30),

GBMs (31), XGBoost (32), and naive Bayes (25). These algorithms

were implemented using the R programming language and

associated packages. Detailed descriptions of each algorithm,

including the parameter settings and configurations, are provided

in the Supplementary Materials (Supplementary Table 2). The R

scripts are available in a public GitHub repository (https://

github.com/lishamou/LN_ML/).

This diverse toolkit was essential for prioritizing diagnostic

accuracy and emphasizing key genes involved in LN pathogenesis.

This diverse toolkit included the choice of these algorithms because

of their proven efficacy in various predictive modeling scenarios,

especially in biomedical applications. We constructed a total of 417

predictive models, each representing a unique combination of gene

sets and algorithmic configurations. These models were optimized

for efficiency, prioritizing diagnostic accuracy and emphasizing the

importance of key genes in LN pathogenesis. The concordance

index (C-index) was used to assess the models’ predictive

performance, providing a clear measure of their diagnostic power.

The initial phase of model development utilized a combined

training dataset from the GSE32591 and GSE113342 cohorts,

providing a rich and diverse foundation for preliminary model

training. Model validation was subsequently conducted using the

GSE200306 and GSE81622 cohorts. These additional cohorts

ensured the robustness and generalizability of our models across

different patient populations and sample types. This step was
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critical for assessing the models’ performance consistency and

applicability across different patient groups. Our performance

assessment focused on the C-index, a widely recognized metric

for evaluating predictive accuracy. By calculating the C-index for

each model across all cohorts, we achieved a comprehensive view of

the discriminative ability of the models. This rigorous validation

process confirmed the reliability and potential clinical applicability

of the models, demonstrating their effectiveness in diverse sample

sets and laying the groundwork for their future integration into

clinical practice for LN.
Expression validation of potential mRNA
vaccine targets in an in-house cohort

Using q−PCR, we validated the expression of potential mRNA

vaccine targets within our in-house cohort. Blood samples were

collected from both healthy controls and LN patients at Shenzhen

Second People’s Hospital. All participants provided written

informed consent, and the study received ethical approval

(Approval No. 20220824001). RNA extraction, reverse

transcription, and q-PCR were carried out according to

previously established protocols. Samples from LN patients (n=3)

and healthy volunteers (n=3) were analyzed. The specific sequences

of primers used in the analysis are listed in Supplementary Table 3.
Expression validation and clinical
correlations of potential mRNA
vaccine targets

The expression levels of potential mRNA vaccine targets and

clincal correlations were examined using five datasets (20, 33–35)

(Supplementary Table 4). To understand the clinical significance of

these targets, we analyzed their correlation with critical clinical

parameters, including the glomerular filtration rate (GFR) and

pathological stage.
Functional network analysis for discovery
of mRNA vaccine targets

To elucidate the complex interplay among key gene sets in LN,

we used the GeneMANIA database (http://genemania.org/) (36, 37)

to construct comprehensive functional networks. This analysis

included hub genes from four critical sets: MTORGs, AutRGs,

TolRGs, and AISRGs. We carefully mapped the interactions

within and between these gene sets, considering various

interaction types, such as coexpression, physical interactions,

colocalization, shared pathways, shared protein domains, and

predicted and genetic interactions.

In addition to network construction, the GeneMania results

were used to perform Gene Ontology (GO) and KEGG enrichment

analysis for each of these hub gene sets. We augmented our analysis

using Cytoscape software (version 3.10.1) (38), an advanced

platform adept at visualizing intricate networks and assimilating
frontiersin.org
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various biological datasets. This network mapping and GO and

KEGG enrichment analysis were vital for understanding how these

hub genes contribute to LN and for guiding mRNA vaccine

target discovery.

To effectively communicate the results of our GO enrichment

analysis, we utilized the UpSet diagram. This visualization tool

provided a clear and concise representation of the overlapping and

unique GO terms across the hub gene sets. The diagram enabled us

to illustrate the convergence of biological processes and functions

among the MTORGs, AutRGs, TolRGs, and AISRGs, thereby

offering a comprehensive view of the multifaceted roles these

genes play in LN. Through this functional network analysis, we

aimed not only to map the intricate gene–gene interactions but also

to interpret the broader biological implications of these interactions.

The combined approach of network mapping and GO enrichment

analysis provided us with a deeper understanding of how these hub

genes contribute to the pathophysiology of LN, potentially guiding

future therapeutic strategies and biomarker discovery.
Mechanistic diagram drawing

We utilized Adobe Illustrator to visually represent the complex

molecular interactions and pathways implicated in LN.
Statistical analysis

Statistical analyses of both single-cell and bulk RNA sequencing

datasets were conducted using R (version 4.3.1), with a stringent

significance threshold set at a P value of less than 0.05. For the

predictive models, we used the concordance index (C-index) to

assess the predictive accuracy, providing a framework for evaluating

the performance of our models in identifying potential mRNA

vaccine targets.
Results

Cellular diversity in patients with lupus
nephritis revealed by single-cell RNA
sequencing analysis

In our comprehensive analysis of LN, we utilized single-cell

RNA sequencing (scRNA-seq) to investigate kidney samples from

24 LN patients and 10 healthy controls. The workflow for scRNA-

seq analysis is depicted in Figure 1A. The principal component

analysis (PCA) plot identifies four major cell types present in the

scRNA-seq dataset: B cells, epithelial cells, myeloid cells, and T/NK

cells. This dimensionality reduction technique provides an initial

overview of the cellular diversity within the samples.

Subsequently, t-distributed stochastic neighbor embedding (t-

SNE) plots were generated to provide a spatial representation of

these four principal cell types, further distinguishing 22 subcell

types within the LN landscape. The t-SNE visualization enables a

clearer understanding of the cellular heterogeneity in LN,
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cell populations.

In Figures 1B–E, violin plots depict the distribution and

variability of marker gene expression within the major cell types,

providing insights into the density and range of expression levels.

Specifically, Figure 1B focuses on B cells, Figure 1C on epithelial

cells, Figure 1D on myeloid cells, and Figure 1E on T/NK cells.

Conversely, t-SNE plots were generated to illustrate the spatial

distribution and clustering of these marker genes across four major

cell types, highlighting the relationships and proximities between

different cellular subpopulations (Supplementary Figure 1). This

combination of visualizations offers a comprehensive view of the

cellular landscape in the LN, integrating statistical distribution with

spatial organization.

Furthermore, the heatmap in Figure 1F shows the relative

abundance of marker genes across the four major cell types,

providing a quantitative view of gene expression levels. This

visualization underscores the heterogeneity and complexity of

gene expression patterns within the major cell types.

In addition, the detailed heatmap in Figure 1G illustrates the

relative abundance of marker genes across the 22 subcell types

identified in the t-SNE analysis. This detailed further elucidates the

specific gene expression signatures associated with each subcell

type, offering deeper insights into the cellular and molecular

landscape of LN.
Expansive development of predictive
models to illuminate key genomic
associations in LN for mRNA
vaccine development

A novel aspect of our study was the use of consensus non-

negative matrix factorization (cNMF) to analyze leukocytes from

LN patients, leading to the identification of four distinct

transcriptional meta-programs, as shown in Figure 2A. These

meta-programs, labeled 1 to 4, were characterized by gene

clusters with high expression levels, indicating their crucial roles

in the LN transcriptome. Each meta-program represented a unique

transcriptional profile, enhancing our understanding of leukocyte

gene expression in LN. The diversity of these meta-programs

revealed complex gene interactions and suggested that various

immunological pathways and cellular activation states are

intrinsic to LN.

These findings are particularly significant for the development

of mRNA vaccines targeting the LN. The identified cell types and

transcriptional profiles provide a rich source of potential antigens

for vaccine development. In particular, the unique expression

patterns of B cells and T/NK cells, key players in the immune

response, offer promising targets for vaccine design. Our focus on

elucidating these meta-programs and cellular diversity aims to

facilitate the identification of specific antigens that could be

utilized in mRNA vaccines to modulate the immune response in

LN patients.

By charting these expression profiles, we have established a

foundation for further investigations into immune cell behavior in
frontiersin.org
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LN. This detailed understanding of the genetic and cellular makeup

of LN is crucial for directing the development of future predictive

models, which could be instrumental in identifying suitable antigen

targets for mRNA vaccine development. Our results not only
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advance the knowledge of LN at the genetic level but also

contribute to the emerging field of personalized vaccine therapy,

potentially transforming the approach to this complex

autoimmune disease.
FIGURE 1

Dissecting the Single-Cell Landscape (A) Workflow of single-cell RNA sequencing (scRNA-seq) analysis for lupus nephritis (LN) patients. We analyzed
scRNA-seq data from kidney samples from 24 LN patients and 10 healthy controls. Principal component analysis (PCA) plot delineating four principal
cell types in the scRNA-seq dataset. Furthermore, the t-SNE plots provide a spatial representation of four principal cell types and 22 subcell types in
the LN landscape. Violin plots illustrating marker gene expression patterns across identified major cell types, including (B) B cells, (C) epithelial cells,
(D) myeloid cells, and (E) T/NK cells. (F) A heatmap showing the relative abundance of marker genes across the four major cell types. (G) Heatmap
showing the relative abundance of marker genes across the 22 subcell types.
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To revolutionize the diagnostic and therapeutic landscape for

LN, we developed an extensive suite of 417 predictive models,

integrating data from the first of our four identified meta-programs

with key gene sets that encompass vital biological pathways. These

pathways, from MTOR signaling to adaptive immunity, are critical

to the pathophysiology of LN. Our comprehensive gene list

included 42 MTOR-related genes (MTORGs), 95 autophagy-
Frontiers in Immunology 07
related genes (AutRGs), 22 Toll-like receptor-related genes

(TolRGs), and 101 adaptive immune system-related genes

(AISRGs), each revealing distinct expression patterns crucial for

understanding LN (Figure 2B). The number of models developed

for each gene group (MTORGs, AutRGs, TolRGs, and AISRGs) was

influenced by the combination of various machine learning

algorithms and their parameter settings. Initially, all possible
FIGURE 2

Leukocyte Meta-Programs and Identification of Key Pathway-Related Genes. (A) Identification of four distinct leukocyte meta-programs (MP1-MP4)
from the scRNA-seq dataset, each with a unique transcriptional signature, which could guide the development of targeted mRNA vaccines. (B) Four
Venn diagrams showing the intersections among four gene sets related to critical pathways identified with MP1, indicating potential molecular
targets for mRNA vaccines. (B) Heatmap providing a comparative view of gene expression levels within the major cell types of the LN single-cell
dataset, demonstrating the differential expression and potential functional roles of these genes in vaccine target selection.
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models were generated using different algorithmic configurations.

During the evaluation process, models with suboptimal

performance, such as those with low concordance index (C-

index) values, were excluded from the final analysis. For instance,

we developed 105 models for MTORGs, 101 models for AutRGs,

110 models for TolRGs, and 101 models for AISRGs. This

comprehensive approach ensured that only the most robust and

accurate models were retained, allowing for a thorough evaluation

of the predictive capabilities of each gene group in the context of

LN. The detailed lists of all genes included in the MTOG, AutRG,

TolRG, and AISRG groups, along with their annotations, are

provided in Supplementary Table 5. The heatmap in Figure 2C

encapsulates these expression patterns across the gene sets,

providing a visual guide to the intricate genomic associations in LN.

Utilizing a diverse array of 12 machine learning algorithms, we

assessed the diagnostic accuracy of our models using the C-index.

The models demonstrated high predictive accuracy, with significant

results across our training and validation datasets, as detailed in

Figure 3, Supplementary Figures 2-4, and Supplementary

Tables 6-9.

Model development commenced with a training dataset

amalgamating data from cohorts GSE32591 and GSE113342.

Model validation was conducted with two additional cohorts,

GSE200306 and GSE81622, a crucial step for verifying the

models’ consistent performance and generalizability across diverse

patient populations.

Notably, models utilizing MTORGs with combinations of

glmBoost plus naive Bayes algorithms and AutRGs with a

combination of Stepglm [bothward] plus naive Bayes

demonstrated exceptional predictive strength, achieving mean

AUC values of 0.927 and 0.903 across both training and

validation datasets, respectively. These results suggest their

potential for identifying key targets for mRNA vaccine

development (Figure 3). The performance of blood sample

analyses (GSE81622) was particularly noteworthy, suggesting a

less invasive approach for LN diagnostics and providing a

potential pathway for identifying blood-based biomarkers for

vaccine development (Supplementary Figure 4).

By exploring the expression of hub genes within single-cell

datasets, we discovered notable expression patterns in myeloid cells

(Supplementary Figure 5). These insights are invaluable for mRNA

vaccine development, as they highlight key genes that could be

targeted to modulate the immune response in LN patients.
Deciphering LN mechanisms: informing
mRNA vaccine development through
interaction networks, GO, and
KEGG enrichments

To further inform our mRNA vaccine development strategy, we

conducted a comprehensive network analysis using the

GeneMANIA database, revealing a complex matrix of gene

interactions central to LN pathophysiology (Figure 4A). This
Frontiers in Immunology 08
analysis highlighted the dynamic interplay among coexpressed

genes, physical and predicted interactions, shared pathways, and

genetic links, emphasizing the diverse biological processes involved

in LN.

Significant interactions involving MTORGs, such as CD9,

CDKN1A, ITGB2, and MYD88, and their interactions with other

genes, which form a complex network of immune responses in the

LN, were detected. These interactions span a range of biological

functions, from Toll-like receptor signaling to cell cycle regulation,

all of which are pivotal in understanding and targeting LN.

Our Gene Ontology (GO) enrichment analysis highlighted

significant overlaps in key biological processes such as interleukin

production and Toll-like receptor signaling (Figure 4A, Supplementary

Tables 10-13). The UpSet diagram (Supplementary Figure 6,

Supplementary Table 14) visually illustrates these functional

enrichments, clarifying the shared biological significance of these

pathways in LN.

Our study utilized KEGG pathway enrichment analysis to explore

the functional implications of the protein-protein interactions among

various groups of hub genes identified in LN using GeneMania results

(Figure 4B). The analysis revealed significant enrichment of specific

pathways associated with each gene group, providing deeper insights

into their roles in LN pathogenesis:

The genes associated with MTORGs were predominantly

enriched in pathways that regulate cell proliferation, apoptosis,

and immune response, including: (1) Cell Cycle; (2) p53 Signaling

Pathway: Critical for apoptosis and cell cycle control, (3) NF-kappa

B Signaling Pathway: Key regulator of immune response and

inflammation; (4) Toll-like Receptor Signaling Pathway:

Important in innate immunity; (5) Cellular Senescence; (6) Cell

Adhesion Molecules; (7) Complement and Coagulation Cascades:

Essential in inflammation and immune defenses.

TolRGs showed enrichment in pathways involved in immune

recognition and response, which are crucial for the activation of

adaptive and innate immune systems: (1) Toll-like Receptor

Signaling Pathway; (2) NF-kappa B Signaling Pathway; (3) MAPK

Signaling Pathway: Involved in cellular proliferation, differentiation,

and migration; (4) Neurotrophin Signaling Pathway; (5)

Phagosome: Key in pathogen elimination; (6) NOD-like Receptor

Signaling Pathway; (7) Neutrophil Extracellular Trap Formation:

Important for trapping pathogens.

AutRGs were enriched in pathways that deal with cell death,

stress responses, and inflammation: (1) Necroptosis: A form of

programmed cell death. (2) NOD-like Receptor Signaling Pathway;

(3) Apoptosis (4) MAPK Signaling Pathway (5) Cytokine-cytokine

Receptor Interaction; (6) Cytosolic DNA-sensing Pathway; (7) p53

Signaling Pathway.

AISRGs were found to be enriched in pathways that mediate

immune cell functions and responses, highlighting their roles in the

immune surveillance and response mechanisms: (1) B Cell Receptor

Signaling Pathway; (2) Phagosome (3) Neutrophil Extracellular

Trap Formation; (4) Natural Killer Cell Mediated Cytotoxicity:

(5) Fc gamma R-mediated Phagocytosis; (6) NF-kappa B

Signaling Pathway; (7) Toll-like Receptor Signaling Pathway.
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Validation of mRNA expression for
potential mRNA vaccine targets

Given the remarkable predictive strength of models utilizing

MTORGs with combinations of glmBoost plus naive Bayes

algorithms (constructed by CD9, CDKN1A, ITGB2, and MYD88)
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and AutRGs with a combination of Stepglm [bothward] plus naive

Bayes (constructed by BID, CASP1, CDKN1A, MYD88, PYCARD,

TNFSF10, and TOLLIP), which achieved mean AUC values of 0.927

and 0.903, respectively, we conducted further analyses to study the

genes incorporated in these two predictive models. The genes

analyzed included ITGB2, MYD88, CASP1, BID, CDKN1A,
frontiersin.or
FIGURE 3

Assessment of Predictive Model Performance in Identifying mRNA Vaccine Targets. This composite figure presents the mean concordance index (C-
index) results for our suite of machine learning models, stratified by gene set and algorithm combination. The subpanels detail the performance of
the models corresponding to each gene set (MTORG, AutRG, TolRG, and AISRG) in the training cohorts, confirming the diagnostic accuracy of our
models in identifying mRNA vaccine targets.
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PYCARD, and TNFSF10 across five cohorts. Two additional genes,

TOLLIP and CD9, were not detected in these cohorts and were

therefore excluded from further analysis.

The mRNA expression levels of potential mRNA vaccine targets

were validated across various cohorts: (1) ITGB2: Expression levels
Frontiers in Immunology 10
were assessed in the Berthier Lupus Glomeruli, Berthier Lupus

Tubulointerstitium, Peterson Lupus Glomeruli, and ERCB Lupus

Tubulointerstitium cohorts (Figure 5A). (2) MYD88: Expression

was analyzed in the Berthier Lupus Glomeruli and ERCB Lupus

Glomeruli cohorts (Figure 5B). (3) CASP1: Expression levels were
FIGURE 4

Exploring the Gene Interaction Network for mRNA Vaccine Target Discovery in LN Pathogenesis. (A) GeneMANIA network analysis revealed a
comprehensive array of interactions among the hub genes relevant to LN, including MTORG, AutRG, TolRG, and AISRG. The types of interactions
(co-expression, physical contacts, co-localization, pathway sharing, and predicted genetic links) are denoted by colored lines. Nodes within the
network are color-coded according to enriched Gene Ontology (GO) terms, providing insights into the functions of these genes and their
interconnectedness, which is crucial for identifying potential targets for mRNA vaccine development. (B) KEGG pathway enrichment analysis.
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validated in the Berthier Lupus Glomeruli, Berthier Lupus

Tubulointerstitium, ERCB Lupus Glomeruli, and ERCB Lupus

Tubulointerstitium cohorts (Figure 5C). (4) BID: Expression was

assessed in the Berthier Lupus Glomeruli cohort (Figure 5D). (5)
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CDKN1A: Expression levels were analyzed in the Berthier Lupus

Tubulointerstitium cohort (Figure 5E). (6) PYCARD: Expression

was validated in the Berthier Lupus Glomeruli, Berthier Lupus

Tubulointerstitium, and ERCB Lupus Tubulointerstitium cohorts
FIGURE 5

Validation of mRNA Expression for Potential mRNA Vaccine Targets (A) Expression levels of ITGB2 across various cohorts: Berthier Lupus Glomeruli,
Berthier Lupus Tubulointerstitium, Peterson Lupus Glomeruli, and the ERCB Lupus Tubulointerstitium. (B) MYD88 expression in the Berthier Lupus
Glomeruli and ERCB Lupus Glomeruli cohorts. (C) CASP1 expression in the Berthier Lupus Glomeruli, Berthier Lupus Tubulointerstitium, ERCB Lupus
Glomeruli, and ERCB Lupus Tubulointerstitium cohorts. (D) BID expression in the Berthier Lupus glomeruli cohort. (E) CDKN1A expression in the
Berthier Lupus Tubulointerstitium cohort. (F) PYCARD expression in the Berthier Lupus Glomeruli, Berthier Lupus Tubulointerstitium, and ERCB
Lupus Tubulointerstitium cohorts. (G) TNFSF10 expression in the ERCB Lupus Tubulointerstitium, Berthier Lupus Glomeruli, and Berthier Lupus
Tubulointerstitium cohorts. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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(Figure 5F). (7) TNFSF10: Expression levels were assessed in the

ERCB Lupus Tubulointerstitium, Berthier Lupus Glomeruli, and

Berthier Lupus Tubulointerstitium cohorts (Figure 5G). All of the

above genes were upregulated in LN patients, except for CDKN1A.

Further study focused on the upregulated genes.
Correlation analysis of potential mRNA
vaccine targets with renal function

The correlation of potential mRNA vaccine targets with renal

function was investigated by analyzing their association with the

glomerular filtration rate (GFR) in three external validation cohorts:

(1) CASP1 showed a negative correlation with the GFR (Figure 6A).

(2) BID exhibited a negative correlation with the GFR (Figure 6B).

(3) ITGB2 was negatively correlated with the GFR (Figure 6C). (4)

TNFSF10: TNFSF10 was negatively correlated with the GFR

(Figure 6D). (5) The PYCARD showed a negative correlation with

the GFR (Figure 6E).
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Correlation analysis of potential mRNA
vaccine targets with pathological stage

The expression of potential mRNA vaccine targets was correlated

with pathological stage in two validation cohorts: (1) ITGB2:

Increased expression was observed in pathological stage Class IV

compared to Class III (Figure 7A). (2) CASP1 expression was higher

in patients with pathological stage III disease than in patients with

pathological stage II disease (Figure 7B). (3) PYCARD: Elevated

expression was found in pathological stage Class III compared to

Class II and in Class IV compared to Class II (Figure 7C).
Expression validation in in-house cohorts

The mRNA expression levels of potential mRNA vaccine targets

(ITGB2, MYD88, CASP1, BID, PYCARD, and TNFSF10) were

examined in our in-house cohorts of LN patients and controls using

real-time PCR analysis, further validating the findings (Figure 8).
FIGURE 6

Correlation Analysis of Potential mRNA Vaccine Targets with Renal Function in Three External Validation Cohorts Negative correlation of the
following genes with the glomerular filtration rate (GFR): (A) CASP1, (B) BID, (C) ITGB2, (D) TNFSF10, and (E) PYCARD.
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Discussion

Our study represents a pivotal advancement in the field of

precision medicine, particularly in the context of lupus nephritis

(LN) research. By employing the technology of single-cell RNA

sequencing, we have mapped the complex immunological

landscape of LN in unprecedented detail. This approach has not

only confirmed the findings of previous research (7, 18) but also

significantly expanded our understanding, particularly in terms of

the dynamic cellular processes within LN.

The implementation of non-negative matrix factorization (NMF)

on single-cell data has been particularly transformative, moving beyond

static snapshots of the immune environment in LN (18, 39) to reveal

dynamic leukocyte meta-programs. The application of NMF allowed

us to uncover four distinct leukocyte meta-programs within LN

samples, each representing a unique transcriptional signature that

highlights different aspects of immune function and cellular states.

These findings offer a deeper understanding of LN, providing insights

into the underlying mechanisms of immune dysregulation and

suggesting potential targets for therapeutic intervention, particularly

in the realm of mRNA vaccine development.
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In this study, we selected four specific gene groups (MTOR-

related genes, autophagy-related genes, Toll-like receptor-related

genes, and adaptive immune system-related genes) because of their

essential roles in crucial biological processes and pathways

implicated in LN pathogenesis. The mTOR signaling pathway is

crucial for cell growth, proliferation, and survival. Dysregulation of

this pathway has been implicated in various autoimmune diseases,

including LN, where it influences immune cell metabolism and

function. Understanding the role of MTOR-related genes can

provide insights into the metabolic aspects of LN and potential

therapeutic targets. Autophagy is a fundamental cellular process

involved in the degradation and recycling of cellular components. It

plays a significant role in maintaining cellular homeostasis and

regulating immune responses. In LN, autophagy has been linked to

both protective and pathogenic effects, making it a critical area of

study for understanding disease mechanisms and identifying

therapeutic interventions.

In further detailing the implications of our findings, we have

illustrated the complex interplay of the mTOR and autophagy

pathways and their implications for mRNA vaccine development

in a mechanistic diagram (Figure 9). This diagram summarizes the
FIGURE 7

Correlation Analysis of Potential mRNA Vaccine Targets with Pathological Stage in Two External Validation Cohorts. (A) Increased expression of
ITGB2 in pathological stage class IV patients compared with class III patients. (B) Elevated CASP1 expression in pathological stage class III patients
compared with class II patients. (C) PYCARD was more highly expressed in patients with pathological stage III disease than in patients with Class II
disease and in patients with Class IV disease than in patients with Class III disease. * p < 0.05, ** p < 0.01.
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activation of the mTOR pathway by various triggers, leading to the

subsequent suppression of autophagy, and identifying specific

mRNA targets within these pathways—namely MTORGs (ITGB2

and MYD88) and AutRGs (BID and CASP1). It shows how

dysregulation of these pathways contributes to the pathogenesis

of LN and underscores potential therapeutic intervention points for

mRNA-based strategies. Renal mTORC1 activation, which has been

associated with disease activity and prognosis in LN, is significantly

activated in podocytes, mesangial cells, endothelial cells, and

tubular epithelial cells (40, 41). This activation correlates strongly

with clinical indicators such as serum albumin, complement C3,

proteinuria, and other pathological biomarkers. Meanwhile,

autophagy, generally inhibited by mTOR activation, plays a
Frontiers in Immunology 14
crucial role in immune system regulation, affecting T and B cell

differentiation and the function of antigen-presenting cells (42–44).

The intricacies of these pathways underscore the potential for

therapeutic interventions targeting mTOR and autophagy to

modulate disease progression in lupus nephritis. This illustration

serves to bridge our comprehensive genomic analysis with practical

therapeutic applications, underlining the translational potential of

our study.

Toll-like receptors (TLRs) are essential components of the

innate immune system and are responsible for recognizing

pathogen-associated molecular patterns and initiating immune

responses. Dysregulation of TLR signaling has been associated

with increased inflammation and autoimmunity in patients with
FIGURE 8

Real-time PCR Analysis of mRNA Expression Levels of Potential mRNA Vaccine Targets. The mRNA expression levels of ITGB2, MYD88, CASP1, BID,
PYCARD, and TNFSF10 were examined in our in-house cohorts of LN patients and healthy controls using real-time PCR analysis. * p < 0.05, ns:
not significant.
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LN. Investigating TLR-related genes will help elucidate the

contribution of innate immune responses to LN pathogenesis.

The adaptive immune system is central to the development and

progression of autoimmune diseases. Genes involved in the adaptive

immune response, including those regulating T and B-cell function,

are critical for understanding the immunopathology of LN. Studying

AISRGs provides insights into the mechanisms of immune

regulation and potential targets for immunomodulatory therapies.

We developed 417 predictive models using 12 machine learning

algorithms, focusing on key gene sets related to mTOR, autophagy,

Toll-like receptors, and adaptive immune system signaling

pathways. The high predictive accuracy of these models,

particularly those utilizing combinations of glmBoost and naive

Bayes algorithms for MTORGs (mean AUC=0.927) and Stepglm

[both] and naive Bayes for AutRGs (mean AUC=0.903),

underscores their potential in identifying key molecular targets

for LN treatment. These results suggest that certain gene

interactions and expression patterns are pivotal in LN

pathogenesis and could be exploited for therapeutic purposes.

The exceptional predictive strength of models focusing on

MTORGs and AutRGs indicates that these pathways play critical

roles in LN. By targeting these pathways, we can potentially develop

mRNA vaccines that modulate specific immune responses. The

identification of key genes within these pathways provides a

foundation for designing personalized mRNA vaccines aimed at

correcting immune dysregulation in LN patients.
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In the area of predictive analytics, our study underscores the

potential of computational biology with an extensive array of

machine learning algorithms. Our suite of 417 predictive models

transcends conventional approaches, encapsulating the subtleties of

disease progression and patient heterogeneity. This rich predictive

framework not only aids in refining diagnostic techniques but also

plays a critical role in identifying potential mRNA vaccine targets.

Our validation of potential mRNA vaccine targets included

analyzing their expression levels using five external datasets and

correlating them with clinical parameters such as the glomerular

filtration rate (GFR) and pathological stage. These analyses

confirmed the clinical relevance of these targets, highlighting their

potential roles in LN pathophysiology and as targets for mRNA vaccine

development. Furthermore, we validated the mRNA expression levels

of these targets within our in-house cohorts using quantitative real-

time PCR. This step was crucial for verifying the consistency of our

findings across different cohorts and experimental conditions, thereby

reinforcing the robustness of our identified targets.

The integration of functional network analysis using

GeneMANIA has provided valuable insights into the roles of

central hub genes in LN. This network-oriented view has allowed

us to gain a holistic understanding of the molecular interactions of

LN, which is crucial for identifying key antigenic targets for mRNA

vaccine development and offering a path toward more personalized

and effective treatments. By mapping these complex interactions,

we identified potential molecular targets central to LN
FIGURE 9

Mechanistic Diagram of mTOR Pathway Activation and Autophagy Suppression in LN. The diagram represents the molecular interactions and
pathways activated by environmental and genetic triggers leading to LN. It highlights the dual role of the mTOR pathway in enhancing protein
synthesis and metabolic activities while suppressing autophagy. Critical mRNA vaccine targets identified within the MTORGs and AutRGs pathways
are shown, with potential implications for mRNA vaccine development aimed at modulating the immune response in LN. The targets identified,
ITGB2 and MYD88 from the MTORGs, along with BID and CASP1 from the AutRGs, each play a crucial role in the pathophysiology of LN.
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pathophysiology, enhancing our understanding of the underlying

disease mechanisms and highlighting novel therapeutic targets.

The synergistic use of single-cell genomics, NMF, and machine

learning in our research shed light on LN treatment. We not only

elucidated the mechanisms of the disease but also established a

foundation for the development of targeted mRNA vaccines. These

vaccines, which were designed to address the specificities of LN, could

revolutionize the therapeutic landscape for this condition.

While our study provides valuable insights into potential

mRNA vaccine targets for LN, several limitations must be

acknowledged. Personalized mRNA vaccines rely heavily on

patient-specific genomic information, protein profiles, and gene

expression data. Our current results, although promising, are

limited in their capacity to fully capture the personalized nature

required for effective mRNA vaccine development.

In conclusion, our study has significantly enriched LN research

by introducing novel methodologies that set new standards for the

investigation of autoimmune diseases. These advancements hold

immense promise for personalized patient care. In the future, the

continuation of research based on our findings is expected to refine

both diagnostic and therapeutic tools, facilitating in an era of

improved outcomes for patients with LN, particularly through the

development of custom-designed mRNA vaccines.
Data availability statement

The single-cell RNA sequencing data were accessed from the

ImmPort database (accession code SDY997: https://www.immport.

org/shared/study/SDY997). The bulk RNA sequencing datasets

used were obtained from the GSE32591 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE32591), GSE113342 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113342),

GSE200306(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE200306), and GSE81622(https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE81622).
Ethics statement

The studies involving humans were approved by the Research

Ethics Committee in Shenzhen Second People’s Hospital. The

studies were conducted in accordance with the local legislation

and institutional requirements. The participants provided their

written informed consent to participate in this study.
Author contributions

LM: Conceptualization, Formal analysis, Project administration,

Supervision, Writing – original draft, Writing – review & editing. YL:

Formal analysis, Funding acquisition, Visualization, Writing – original

draft. ZW: Formal analysis, Visualization, Writing – original draft. ZP:

Conceptualization, Project administration, Supervision, Writing –

review & editing. MW: Data curation, Funding acquisition,

Resources, Writing –review & editing.
Frontiers in Immunology 16
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

work was supported by grants from the Shenzhen Science and

Technology Program (grant number JCYJ20190809095811254,

JCYJ20200109140412476, GCZX2015043017281705), the Clinical

Research Project in Shenzhen (grant numbers 20213357002 and

20213357028), Team-based Medical Science Research Program

(grant number 2024YZZ06), and the Special Funds for the

Construction of High Level Hospitals in Guangdong Province (2024).
Conflict of interest

The authors declare the research was conducted in the absence

of any commercial or financial relationships that could be construed

as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1381445/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Additional t-SNE plots detailing the distribution of specific marker genes of
four major cell types, namely, (A) B cells, (B) epithelial cells, (C) myeloid cells,

and (D) T/NK cells.

SUPPLEMENTARY FIGURE 2

Diagnostic precision of the predictive models in the training cohort. The C-
indexes for the predictivemodels across MTORG, AutRG, TolRG, and AISRG in

the GSE32591 and GSE113342 training cohorts stratified by gene set and
algorithm combination.

SUPPLEMENTARY FIGURE 3

Validation of the efficacy of the predictive models in the renal sample cohort

(Test 1 cohort). The performance of the predictive models across MTORG,
AutRG, TolRG, and AISRG in the GSE200306 cohort.

SUPPLEMENTARY FIGURE 4

Predictive model validation in the blood sample cohort (Test 2 cohort). The
performance outcomes across MTORG, AutRG, TolRG, and AISRG in the

GSE81622 cohort delineate the diagnostic potential of the models in a

noninvasive context.

SUPPLEMENTARY FIGURE 5

Single-cell expression of the hub genes. Dot plot showing the expression

patterns of the (A) MTORG, (B) AutRG, (C) TolRG, and (D) AISRG hubs across
various cell types within the single-cell dataset.
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SUPPLEMENTARY FIGURE 6

The intersection of the functional enrichments across gene sets. The
intersection of the functional enrichments across four gene sets (MTORGs,

AutRGs, TolRGs, and AISRGs) was visualized with an UpSet diagram.

SUPPLEMENTARY TABLE 1

Details of the external datasets used for validation.

SUPPLEMENTARY TABLE 2

Machine learning algorithms and their parameter configurations.

SUPPLEMENTARY TABLE 3

Specific primer sequences for q-PCR analysis.

SUPPLEMENTARY TABLE 4

Details of the external datasets used for validation.

SUPPLEMENTARY TABLE 5

Gene list corresponding to Figure 2B.

SUPPLEMENTARY TABLE 6

MTORG Model Performance.
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SUPPLEMENTARY TABLE 7

AutRG Model Performance.

SUPPLEMENTARY TABLE 8

TolRG Model Performance.

SUPPLEMENTARY TABLE 9

AISRG Model Performance.

SUPPLEMENTARY TABLE 10

The GO enrichment results for MTORGs.

SUPPLEMENTARY TABLE 11

The GO enrichment results for AutRGs.

SUPPLEMENTARY TABLE 12

The GO enrichment results for TolRGs.

SUPPLEMENTARY TABLE 13

The GO enrichment results for AISRGs.

SUPPLEMENTARY TABLE 14

The intersection of the functional enrichments across four gene sets.
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