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Background and aims: Immunologically hot tumors, characterized by an

inflamed tumor microenvironment (TME), contrast significantly with

immunologically cold tumors. The identification of these tumor immune

subtypes holds clinical significance, as hot tumors may exhibit improved

prognoses and heightened responsiveness to checkpoint blockade therapy.

Nevertheless, as yet there is no consensus regarding the clinically relevant

definition of hot/cold tumors, and the influence of immune genes on the

formation of hot/cold tumors remains poorly understood.

Methods: Data for 33 different types of cancer were obtained from The Cancer

Genome Atlas database, and their immune composition was assessed using the

CIBERSORT algorithm. Tumors were categorized as either hot or cold based on

their distinct immune composition, ongoing immune response, and overall

survival. A customized immunogram was created to identify important

immunological characteristics. Kyoto Encyclopedia of Genes and Genomes and

Hallmark pathway enrichment were evaluated through gene set variation analysis.

Additionally, hub genes that regulate the tumor microenvironment were identified,

and their expression patterns were analyzed using single-cell RNA sequencing.

Furthermore, drug sensitivity and molecular docking analyses were performed to

identify potential drug candidates capable of transforming cold tumors into hot

tumors. For validation, a clinical cohort of patients diagnosed with pancreatic

adenocarcinoma was examined using multiplex immunohistochemistry.

Results: We were able to differentiate between hot and cold tumors in various

types of cancer (bladder urothelial carcinoma, pancreatic adenocarcinoma, and

cervical squamous cell carcinoma) by analyzing the presence of CD8+ T cells,

activated natural killer cells, and M2-type macrophages, as well as the cytolytic

activity and T cell proliferation. Hub genes that regulate the TME, including

PDCD1, CD276, and NT5E, were discovered. The increased expression of NT5E

and its prognostic significance were confirmed through multiplex

immunohistochemistry in pancreatic adenocarcinoma. Finally, dasatinib and
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tozasertib were identified as drug candidates capable of converting cold

pancreatic adenocarcinoma tumors into hot tumors.

Conclusion: In this study, we developed a framework for discerning clinically

significant immune subtypes across various cancer types, further identifying

several potential targets for converting cold tumors into hot tumors to

enhance anticancer treatment efficacy.
KEYWORDS

tumor microenvironment, pan-cancer, hot/cold tumors, immunotherapy,
pancreatic adenocarcinoma
1 Introduction

Previous studies have classified tumors into immunologically

hot and cold types based on the tumor microenvironment (TME),

which comprises a mixture of malignant and stroma cells involved

in a complex network of cellular and molecular interactions, among

which immune cells are particularly important (1–3). It is thought

that these characteristics impact the efficacy of immune checkpoint

blockade (ICB) therapy. Cold tumors are defined by an

immunosuppressive TME, characterized by a minimal immune

infiltration, particularly CD8+ T cells and natural killer (NK)

cells, leading to inadequate tumor control and poor response to

immune checkpoint therapies. In contrast, hot tumors typically

possess a TME with a prominent immune infiltration, and

sometimes display a heightened response to ICB therapy (1–3).

Although significant advancements have recently been made in

the definitions of cold/hot tumors and the understanding of their

influence on cancer immunity, they remain incompletely

understood (1–4). The main indicator of hot tumors is the

presence of intratumoral CD8+ cytotoxic T lymphocytes (CTLs),

which are major effector cells capable of recognizing and attacking

tumor cells (5, 6). However, various immunosuppressive factors in

the TME can cause dysfunction or exhaustion of CTLs and hinder

their cytotoxic activity (5, 6). As such, although the infiltration of

CTLs is a prerequisite, it is insufficient to determine whether the

immune system can control tumor growth, or if a patient will

respond favorably to ICB therapy. The application of biomarkers

may help to predict the therapeutic efficacy of ICB. For example,

patients with a high tumor mutational burden and tumor

programmed cell death-ligand 1 (PD-L1) expression may respond

better to immunotherapy targeting programmed cell death-1

(PD-1) than others. However, the predictive value of these

biomarkers has been unsatisfactory in real-world practice (7–9).

As such, it is crucial to develop an in-depth understanding of the

immune composit ion of the TME and its impact on

cancer immunity.

The priming and activation of CTLs can be facilitated by CD4+

T helper type 1 cells, NK cells, and certain subtypes of dendritic cells
02
(6, 10–12). However, CTL-mediated antitumor immunity can be

inhibited by immunosuppressive cells within the TME, such as M2

tumor-associated macrophages (TAMs), myeloid-derived

suppressor cells (MDSCs), cancer-associated fibroblasts, and

regulatory T cells (Tregs) (6, 10, 13, 14). Other studies have

further demonstrated that TAMs predominantly have an M2-type

phenotype and promote cancer progression by producing

angiogenic and anti-inflammatory factors (15). In contrast, it is

thought that M1-type TAMs possess anti-tumorigenic activities by

secreting pro-inflammatory mediators or modulating the anticancer

activity of other immune cells. For example, the release of

extracellular vesicles by M1 macrophages facilitates the

repolarization of M2 to M1 macrophages, thereby improving the

effectiveness of anti-PD-L1 treatment in mice (16). It has further

been recognized that the TME is constantly influenced by various

tumor cell-intrinsic and -extrinsic factors including tumor cell

immunogenicity, tumor-infiltrating T cell repertoire, T cell

proliferation, and T cell functional exhaustion, all of which

impact the establishment of the TME and influence its antitumor

immune response (17). As such, a classification framework that

incorporates immune composition and critical immunological

traits is needed for determining hot/cold immune phenotypes

with clinical relevance.

Transforming cold tumors into hot tumors is considered a

promising strategy to improve treatment outcomes of

immunotherapy and possibly conventional therapy (17). Several

recent studies have suggested means to help achieve this goal. For

example, KRAS mutations in pancreatic cancer trigger the

constitutive activation of downstream signaling (18). This

activation increases PD-L1 expression and recruits various

immunosuppressive cells, thereby inhibiting anticancer T cell

responses (19). These effects lead to a cold tumor milieu in

KRAS-mutant pancreatic adenocarcinoma (PAAD) (20). As such,

the conversion of cold tumors into hot tumors in KRAS-mutant

PAAD could be induced by treatment with KRAS inhibitors (21).

Furthermore, augmented autophagy in pancreatic cancer cells

results in the degradation of major histocompatibility complex

(MHC) class I molecules, which reduces the presentation of
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neoantigens by tumor cells. As a result, inhibition of autophagy has

been found to suppress tumor growth by enhancing MHC class I

expression and CTL-mediated tumor cell killing (22). These results

suggest that targeting the immunosuppressive TME can convert

cold tumors into hot tumors, thereby promoting anticancer

immune responses.

The present study outlines a method for tumor immune

phenotyping by delineating overall immune cell components and

critical immunological features in the TME. We utilized data from

The Cancer Genome Atlas (TCGA) database, which contains data

on 33 different types of cancers, to evaluate immune cell

compositions using the CIBERSORT algorithm. Furthermore, we

distinguished between hot or cold tumors by examining the

proportions of intratumoral CD8+ T cells, activated NK cells, and

M2 macrophages, as well as the scores of cytolytic activity and T cell

proliferation. Potential biomarkers were also identified and

validated, which could help to distinguish tumor immune

phenotypes and may have potential as targets to promote the

transition of tumors from cold-to-hot states.
2 Materials and methods

2.1 Data sources and preprocessing

The transcripts per million expression data of 33 cancer types

were obtained from the UCSC database and normalized. Only data of

cancer samples were used in this investigation, and all normal data

were excluded. Clinical metadata, mutation annotation data, and

copy number variation data were also obtained from the UCSC

database. Single-cell RNA sequencing (scRNA-seq) datasets of

PAAD, including CRA001160 (23), GSE111672 (24), GSE141017

(25), GSE148673 (26), GSE154778 (27), GSE158356 (28), GSE162708

(29), and GSE165399 (30), were downloaded from the Gene

Expression Omnibus (GEO: https://www.ncbi.nlm.nih.gov/geo/)

database and to identify the gene expression in various cell types.

Immunohistochemistry (IHC) data were further downloaded from

the Human Protein Atlas (HPA, http://www.proteinatlas.org)

database to verify protein expression in PAAD.
2.2 Immune infiltration analysis
and clustering

The CIBERSORT algorithm (31) of the IOBR packages (v.0.99.9)

(32) was employed to measure the infiltration of 22 immune cell types.

Using the R package “ConsensusClusterPlus” (v 1.64.0) (33), we

identified various clusters that differ in terms of immune infiltration

by consensus clustering for each cancer type. The number of clusters

was determined by the k value and the area under the cumulative

distribution function curve. To ensure the accuracy of our classification

results, we repeated this step 1,000 times. The Single-sample Gene Set

Enrichment Analysis (ssGSEA), as implemented in the R package

GSVA (version 0.99.9) (34), was utilized to quantify 13 immune

function scores derived from the work of He et al. (35), including T
Frontiers in Immunology
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cell proliferation (36) and MDSCs (37). Based on the infiltration levels

of CD8+ T cells, activated NK cells, and M2-type macrophages, as well

as the scores for cytolytic activity and T cell proliferation, we

categorized the clusters into two distinct groups: “hot-immune” and

“cold-immune.” Additionally, we utilized several computational

algorithms, including the Tumor Immune Estimation Resource

(TIMER) (38), EPIC (39), Microenvironment Cell Populations-

counter (MCP-counter) (40), xCELL (41), and quanTIseq (42), to

quantify immune cell infiltration and to identify key immune cell types

associated with hot and cold tumor phenotypes.
2.3 Cox proportional hazards
regression model

Based on the identified cold and hot tumor types, we performed a

univariate Cox regression model in the survival (v 3.2-7) package (43)

to analyze the prognostic relationship between cold and hot tumors.

Tumors with p-values <0.05 were retained for further analysis.
2.4 Immune regulatory and checkpoint
gene analysis

We sourced immune regulatory genes, including chemokines,

receptors, major histocompatibility complex (MHC) genes,

immunoinhibitors, and immunostimulators, from the Sangerbox

database (44). Additionally, we obtained immune checkpoint genes,

encompassing both inhibitory and stimulatory genes, based on the

study by Thorsson et al. (45). We conducted an analysis of the

correlation between immune regulatory and checkpoint genes and

the infiltration of 22 immune cell types, as estimated by the

CIBERSORT algorithm, across various cancer types.
2.5 Gene set variation analysis

Gene expression enrichment was evaluated through GSVA

analysis under both unsupervised and parameter-free conditions

(34). GSVA was employed to examine the various Kyoto

Encyclopedia of Genes and Genomes (KEGG) and hallmark

pathways between hot and cold tumor types. Downloads for

KEGG and hallmark gene sets were obtained from the Molecular

Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb/

index.jsp), and hypergeometric p-values were adjusted using

Benjamini–Hochberg multiple testing correction.
2.6 Gene set enrichment analysis

The GSEA algorithm was applied to identify expression profiles

that could either activate or suppress hallmark pathways between

high- and low-survival groups. After 100 permutations, an enriched

gene set was obtained based on a p-value <0.05 and a false discovery

rate of 0.25.
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2.7 Analysis of drug sensitivity and
responsiveness to immunotherapy in PAAD

Data on drug sensitivity were obtained from The Genomics of

Drug Sensitivity in Cancer database (https://www.cancerrxgene.org/).

The half maximal inhibitory concentration (IC50) values of each

drug were downloaded using the R package “oncoPredict” (v 0.2)

(46). Subsequently, we conducted a correlation analysis between

drug sensitivity and the genes that control immune responses.

Furthermore, we computed the dissimilarities in drug sensitivity

among patients with hot and cold tumors. This investigation of the

correlation between drug sensitivity and immune regulatory gene

expression in various patient groups and subtypes was conducted

with the aim of identifying potential treatments to provide new

insights into personalized therapeutic strategies for patients with

PAAD. The tumor immune dysfunction and exclusion (TIDE)

algorithm was used to model the tumor immune evasion of hot/

cold-immune tumors (47). The processed RNA expression levels of

five patients with cancer were uploaded to the online TIDE database

website (http://tide.dfci.harvard.edu/) to derive the TIDE score of

each patient for predicting immunotherapy response.
2.8 Immunological feature analysis

The “ESTIMATE” R package (v 1.0.13) (48) was further applied

to calculate the three immune-related scores, namely StromaScore,

ImmuneScore, and ESTIMATEScore, for each patient.

Additionally, we conducted an analysis of the anticancer immune

response using the Tracking Tumor Immunophenotype (TIP)

database (http://biocc.hrbmu.edu.cn/TIP/) (49).
2.9 Docking drugs and protein molecules

The protein structures corresponding to several identified genes

were downloaded from the Protein Data Bank database (https://

www.rcsb.org/) (50) and pretreated with the UCSF Chimera (v

1.15). This included adding hydrogen, assigning partial charges and

protonation states, and energy minimization (51). The chemical

structure of active drug compounds was downloaded from the

ZINC15 database (https://zinc15.docking.org/) (52). All

compounds were subsequently docked into the binding sites of

target proteins using the software DOCK (v 6.10), and visualized

using the UCSF Chimera (v 1.14) and LigPlus (v 2019).
2.10 Multiplex immunohistochemistry

Paraffin-embedded sections of PAAD were obtained from the

Affiliated Hospital of Nantong University (Nantong, China). This

study was approved by the Ethical Committee of the Affiliated

Hospital of Nantong University. Immunofluorescent analysis was

performed to identify and assess the protein expression of

pancytokeratin (PANCK; tumor epithelium marker), CD8, 5’-
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nucleotidase ecto (NT5E; CD73), and CD163 (M2 macrophage

marker) in tumor tissues. All antibodies were purchased from

AiFang Biological, Changsha City, China (product numbers

AF20164, AF20211, AF301239, and AF20010 for PANCK, CD8,

NT5E, and CD163, respectively). Paraffin-embedded sections were

treated with xylene, briefly washed in a graded series of ethanol

(100%, 95%, 85%, 80%, 75% ethanol), and subsequently washed

with distilled water. The tissue slices were treated with antigen

retrieval buffer with ethylenediaminetetraacetic acid (pH 9.0), and

heated in a microwave oven. Next, the slices were immersed in a 3%

hydrogen peroxide solution and incubated at room temperature for

15 min to eliminate the endogenous peroxidase. Subsequently, they

were washed with phosphate-buffered saline (pH 7.4) in a

decolorization shaker for 5 min, and treated with goat serum for

blocking at room temperature for 30 min. Thereafter, staining was

performed according to the instructions provided by the

manufacturer (3-Color Multiple fluorescence Kit; AiFang

Biological). Images were captured using the ECLIPSE Ci series

microscope (Nikon, Tokyo, Japan), and were analyzed with the

HALO image analysis platform (Indica labs, Albuquerque, NM).
2.11 Statistical analysis

R 4.0.5 software (R Project for Statistical Computing, Vienna,

Austria) was used for data processing, statistical analysis, and

plotting. The correlation between two continuous variables was

evaluated using Pearson’s correlation coefficients, while the chi-

squared test was used to compare categorical variables, and the

Wilcoxon rank-sum test or t-test was used to compare

continuous variables.
3 Results

3.1 Pan-cancer clustering of tumor
immune subtypes with clinical relevance

The CIBERSORT algorithm was used to assess the infiltration

levels of 22 immune cell types and subsequently perform a consensus

cluster analysis. The 33 types of cancer samples were grouped into 2–9

clusters based on the type of cancer. Cumulative distribution function

curves of the consensus score matrix and proportion of ambiguous

clustering statistics were used to determine the optimal number for the

33 cancer types (Figure 1A). Using the Cox model, we estimated the

survival probability and determined the significance of clustering in

each cancer type. Kaplan–Meier (KM) survival analysis revealed

statistically significant findings for only eight of the 33 cancer types:

skin cutaneous melanoma (SKCM), bladder urothelial carcinoma

(BLCA), brain lower grade glioma (LGG), cervical squamous cell

carcinoma and endocervical adenocarcinoma (CESC), kidney renal

papillary cell carcinoma (KIRP), PAAD, thymoma (THYM), and

sarcoma (SARC) (Figure 1B).

We were able to differentiate the aforementioned clusters into

hot and cold tumor types by considering the infiltration of CD8+ T
frontiersin.org

https://www.cancerrxgene.org/
http://tide.dfci.harvard.edu/
http://biocc.hrbmu.edu.cn/TIP/
https://www.rcsb.org/
https://www.rcsb.org/
https://zinc15.docking.org/
https://doi.org/10.3389/fimmu.2024.1382842
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sang et al. 10.3389/fimmu.2024.1382842
cells, activated NK cells, andM2macrophages, along with the scores

of cytolytic activity and T cell proliferation. Increased numbers of

CD8+ T and activated NK cells, higher scores of cytolytic activity

and T cell proliferation, and fewer M2 macrophages were observed

in hot tumors compared with cold tumors in BLCA (Figure 1C;

Supplementary Figure 1A), CESC (Figure 1C; Supplementary

Figure 1B), PAAD (Figure 1C, Supplementary Figure 1C), SARC

(Figure 1C, Supplementary Figure 1D), and SKCM (Figure 1C,

Supplementary Figure 1E). These five types of cancer all exhibited a

strong consistency in the cold versus hot immune states, whereas

the remaining three types had only a few distinct features; for

example, hot LGG tumors exhibited lower cytolytic activity and T

cell proliferation than cold LGG tumors (Figure 1C; Supplementary

Figures 1F–H). In addition, there was no significant disparity in the
Frontiers in Immunology 05
abundance of CD8+ T cells between hot and cold THYM tumors,

while several immune-related scores were inversely correlated with

the presence of hot THYM tumors. KM analysis indicated that hot

tumors of seven of the eight cancer types were associated with better

survival than cold tumors, whereas the opposite was true for KIRP

(Figure 1D). These observations led to the selection of BLCA, CESC,

PAAD, SARC, and SKCM for further investigation, due to their

manifestation of a comparable hot/cold immune state, with a more

favorable prognosis observed for hot tumors. To verify the stability

and robustness of the results obtained using the CIBERSORT

algorithm, we used five additional algorithms, including TIMER,

EPIC, MCP-counter, xCell, and quanTIseq, to ensure that the two

consensus clusters were not biased by the analytical

algorithm (Figure 1E).
FIGURE 1

Identification of hot and cold tumors based on immune composition and activity. (A) Patients were divided into clusters based on immune
composition assessed using the CIBERSORT algorithms in pan-cancer. (B) Forest map showing pan-cancer prognostic differences among the
different clusters. (C) Infiltration of various immune cells and immunological feature scores in hot and cold tumors of the indicated cancer types.
(D) KM survival analysis of hot and cold tumors. (E) The TIMER, EPIC, MCP-counter, xCell, and quanTIseq algorithms were used to estimate the
immune composition in hot versus cold tumors of the indicated cancer types (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). CI, confidence
interval; ns, not significant.
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To further verify the distinct immune compositions in hot and

cold tumors and their implications on patient survival, we

conducted an mIHC analysis using a tissue array of 71 patients

with PAAD to identify the expression levels of CD8 (a marker of

CD8 T cells), CD163 (a marker of M2 macrophages), and PANCK

(a marker of cancer cells) (Figures 2A–D). This study revealed that
Frontiers in Immunology 06
CD8+ cells were sparsely distributed in the stromal regions, and

were scarcely detected in some PAAD samples. Additionally, the

total number of CD8+ T cells was found to be inversely correlated

with overall survival (Figure 2E), indicating a compromised CTL

response in PAAD. CD163+ cells were identified in both the tumor

and stroma regions, as depicted in Figure 2F. Remarkably, an
FIGURE 2

Multiplex immunohistochemistry (mIHC). (A–F) Numbers of cells expressing DAPI (A), PANCK (B), CD8 (C), CD163 (D), NT5E (E), and merged (F).
(G) Violin plots showing the differences in the numbers of CD8, NT5E, CD163, and PANCK-positive cells between the whole section, tumoral region,
and stromal region. (H) KM plot showing that the number of CD8-, NT5E-, CD163-, and PANCK-positive cells affected prognosis. DAPI, 4’,6-
diamidino-2-phenylindole; PANCK, pancytokeratin.
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increased presence of CD163+ cells in tumor regions was correlated

with reduced survival rates, whereas a greater abundance of stromal

CD163+ cells correlated with improved patient survival, as shown

in Figure 2G. These findings suggest that the CD163+ M2

macrophages within tumor regions are primarily responsible for

protumoral functions. As expected, PANCK+ cells were exclusively

identified in the tumoral region (Figure 2H). Interestingly, a

decrease in PANCK+ cell numbers was found to be correlated

with enhanced survival rates (Figure 2H), indicating that a lower

tumor purity or a higher stroma component within the TME may

be linked to the presence of hot tumors in PAAD. According to

these findings, we suggest that the levels of M2 macrophage

infiltration and tumor purity, which can be simply assessed

through routine immunohistochemistry (IHC) in clinical settings,

may serve as biomarkers for differentiating hot and cold tumors and

predicting the prognosis of patients with PAAD.
3.2 Analysis of immune subtype-associated
somatic mutations

The distribution of somatic mutations in the five

aforementioned cancer types was further examined, allowing

comparisons of the mutation frequencies in hot and cold tumors

(Figure 3). Only the top 15 genes in each cancer type were shown

due to their high mutation frequency. Genes with a mutation
Frontiers in Immunology 07
frequency exceeding 20% were as follows: TTN (58.3%) and RYR2

(21.7%) in BLCA, OBSCN (21.5%) in CESC, KRAS (88.4%), TP53

(74.0%), SMAD4 (27.4%) in PAAD, TP53 (53.0%) and ATRX

(21.2%) in SARC, HYDIN (45.7%), MXRA5 (39.5%), ADAM18

(27.6%), TACC2 (27.0%), EPHA6 (23.4%), FREM1 (22.0%), F8

(21.4%), XDH (21.4%), and DOCK3 (21.1%) in SKCM. We

identified a significant difference between hot and cold tumors in

the mutation frequency of all top 15 genes in BLCA and CESC, with

hot tumors containing more mutations (Figures 3A, B). In PAAD,

KRAS was the only gene more frequently mutated in cold tumors

than in hot tumors (Figure 3C). In SARC, hot tumors had more

mutations in FCGBP, but fewer mutations inMUC16 and ADGRV1,

than cold tumors (Figure 3D). In SKCM, TACC2 andHEPHL1 were

more frequently mutated in hot tumors, whereas most other genes

were more frequently mutated in cold tumors (Figure 3E).
3.3 Analysis of the immune landscape and
responsiveness to immunotherapy

We further determined the correlations between diverse

immune cells in the five abovementioned cancer types, identifying

a different pattern between hot and cold tumors for each cancer type

(Figures 4A–E; Supplementary Figures 2A–E). For example, CD8+

T cells in hot BLCA tumors were positively correlated with activated

NK cells, whereas this correlation was insignificant in cold BLCA
FIGURE 3

Somatic mutation analysis of hot and cold tumors. Waterfall plot showing differences in somatic mutation frequency between hot and cold tumors
in BLCA (A), CESC (B), PAAD (C), SARC (D), and SKCM (E). Significantly higher mutation frequencies in hot or cold tumors are highlighted in red and
blue text, respectively.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1382842
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sang et al. 10.3389/fimmu.2024.1382842
tumors (Figure 4A). Follicular helper T cells universally exhibited a

positive correlation with CD8+ T cells, particularly in cold tumors

(Figures 4A–E). The TIDE score has been widely used to predict

resistance to immunotherapy, with higher TIDE scores indicating a

higher potential for immune escape and lower immunotherapy

response rates (47). We further calculated the TIDE score to predict

responsiveness to immunotherapy, finding that hot tumors were

more likely to respond to immunotherapy than cold tumors in all

five of the examined cancer types (Figures 4F–J). We further

examined the crosstalk of certain critical stimulatory and

inhibitory components of cancer immunity in hot and cold

tumors. These findings suggested that CD8+ CTLs were positively

correlated with most of the immune suppressive signatures, such as

MDSC presence, T cell co-inhibition, antigen-presenting cell co-

inhibition, and inflammation-promotion (Supplementary

Figures 2F–J), suggesting that these factors may collectively

protect tumor cells from attack by CTLs.

Furthermore, we evaluated the activities of multiple steps in

anticancer immune response using the TIP database. These findings
Frontiers in Immunology 08
suggested that hot tumors generally displayed higher activity scores

than cold tumors, particularly in SARC and SKCM (Figures 4K–O).

Further, the priming stages of anticancer immune response were

significantly inhibited in cold tumors. For example, hot tumors

from multiple cancer types exhibited higher activity scores than

cold tumors for step 1 (release of cancer cell antigens), step 2

(cancer antigen presentation), and step 3 (priming and activation).

Further, in step 4 (trafficking of immune cells to tumors), we

consistently found that hot tumors exhibited higher scores for

various immune cell types, including CD8+ T cells and NK cells.

In step 5 (infiltration of immune cells into tumors), only cold

SKCM tumors exhibited lower activity scores than hot tumors,

whereas in the other four types of cancers, cold and hot tumors

displayed similar scores, indicating that most cold tumors were not

inherently immune-excluded relative to hot tumors. The scores for

step 7 (activity of killing cancer cells) were higher in PAAD and

SKCM hot tumors, and were comparable between BLCA, CESC,

and SARC hot and cold tumors. Interestingly, the scores for step 6

(recognition of cancer cells by T cells) were consistently lower in hot
FIGURE 4

Correlations between immune cells and immunological feature scores. Correlations between six immune cell infiltrations in BLCA (A), CESC
(B), PAAD (C), SARC (D), and SKCM (E). Comparison of the TIDE scores of hot and cold tumors of BLCA (F), CESC (G), PAAD (H), SARC (I), and SKCM
(J) (ns: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). The difference in TIP immune activity scores between hot and cold tumors in
BLCA (K), CESC (L), PAAD (M), SARC (N), and SKCM (O) (ns, p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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tumors than cold tumors, suggesting that insufficient neoantigen

recognit ion by T cel l receptors may be the cr i t ica l

immunosuppression factor in hot tumors despite the increased T

cell recruitment (Figures 4K–O).
3.4 Establishing an immunogram for hot
and cold tumors

To better describe the immune landscape of each tumor type, we

developed an immunogram by incorporating seven antitumoral

immune parameters (CD8+ T cells, activated NK cells, follicular

helper T cells, T cells proliferation, cytolytic activity, immunogenic

cell death, MHC class I) and five protumoral immune parameters

(M2 macrophages, MDSCs, Tregs, T cell co-inhibition,

inflammation-promotion). Consequently, a 12-axis radar plot was

generated to visualize the immune state of hot and cold tumors

(Figures 5A–E). We further found that only the values of axis 7 (M2

macrophages) were higher in all cold tumors (Figures 5A–E), while

those of axis 8 (MDSCs) were higher in cold tumors of the BLCA and

SARC groups (Figures 5A, D). Surprisingly, the values of axis 11

(MHC class I) were higher in cold tumors of PAAD (Figure 5C),

although the difference was not statistically significant (Figures 5F–J).

Concerning other parameters, higher values were consistently

observed in hot tumors, regardless of cancer type. Collectively,

these results indicate a similar pattern in all five cancer types, i.e.,

greater numbers of CD8+ T cells and follicular helper T cells and

fewer M2 macrophages in hot tumors compared with cold tumors

(p < 0.0001) (Figures 5F–J). Of note, the pattern was not shared by

the other three types of cancer, namely KIRP, LGG, and THYM

(Supplementary Figures 3A–C).
3.5 Differentially expressed genes and
GSVA analysis

We selected 150 immune regulator genes and 60 immune

checkpoint genes based on the results of prior studies conducted

by Shen et al. (44) and Thorsson et al. (45), and compared their

expression between our hot and cold tumor datasets (Figure 6A).

The findings revealed that 22 genes, including key immune

checkpoint molecules such as PDCD1, TIGIT, and LAG-3, were

significantly upregulated in hot tumors across all five cancer types

(Figure 6B). Additionally, the expression of CD276 was found to be

elevated in cold tumors across all five cancer types, while NT5E

exhibited higher expression levels in cold tumors of the CESC,

PAAD, SARC, and SKCM groups (Figure 6C). Other DEGs

between hot and cold tumors are presented in Figure 6C.

Next, GSVA was employed to investigate the differential

enrichment of hallmark pathways in hot and cold tumors

(Supplementary Figures 4A–E). Our analysis revealed that the

apoptosis and bile acid metabolism pathways were enriched in

cold tumors of BLCA, CESC, SARC, and SKCM (Figure 7A); while

the angiogenesis, apical junction, and apical surface pathways were

enriched in cold tumors of BLCA, CESC, PAAD, and SARC

(Figure 7A). Correlation analysis was further performed using the
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hot tumors compared with cold tumors from all five cancer types),

in addition to the GSVA scores of the five enriched pathways.

Interestingly, almost all DEGs were positively correlated with the

apical surface and apoptosis pathways in all cancer types, indicating

that these genes were actively involved in the regulation of these two

pathways. In BLCA, numerous DEGs, except for CD160 and CD96,

were positively correlated with the angiogenesis and apical junction

pathways; however, this correlation was not observed in the other

four types of cancer (Figure 7B). We further performed GSVA on

the KEGG pathways in hot and cold tumors separately, the results

of which are shown in Supplementary Figures 5A–H.
3.6 Correlation analysis between immune
genes and cells

Correlations between immune cell infiltration and the levels of

previously indicated immune regulatory genes (44, 45) were further

examined (Supplementary Figure 6). The genes with strong

correlations to the indicated immune cell types are illustrated in

Figure 8A. Most selected genes were positively correlated with

CD8+ T cells in all cancer types, except for CD276, which was

negatively correlated with CD8+ T cells. CD276 was also negatively

correlated with activated NK cells, but positively correlated with M2

macrophages in most cancer types. Positive correlations between

most genes and activated NK cells were observed in BLCA, CESC,

SARC, and SKCM. Nevertheless, an opposite trend was observed in

PAAD, indicating an impaired recruitment of activated NK cells

under these conditions. M2 macrophages were also found to be

negatively associated with most genes in SKCM, PAAD, SARC, and

CSEC (Figure 8A). The Venn plots in Figure 8B demonstrate the

distribution of DEGs positively or negatively associated immune

cells, specifically CD8+ T cells, M2 macrophages, activated NK cells,

and follicular helper T cells. In PAAD, we further found that NT5E

and VEGFA may negatively regulate CD8+ T cells, while CCL13,

CCL18, NT5E, and TNFSF4 might positively regulate M2

macrophages (R > 0.2). Other genes that may regulate other

immune cells are listed in Supplementary Table 1.
3.7 Expression of NT5E and CD276 and
their impact on prognosis of PAAD

Overall, in the aforementioned experiments, we demonstrated

that cold tumors in PAAD express higher levels of NT5E and CD276.

Interestingly, a robust linear relationship between the expression of

NT5E and CD276 was noted in PAAD (R = 0.54, p = 2.6e-14)

(Figure 9A). In addition, levels of NT5E and CD276 were positively

associated with tumor grades, but not other clinicopathological

characteristics; notably, tumors from elderly patients expressed

higher levels of CD276 (Figure 9B). We further examined the links

between tumor heterogeneity and the expression of NT5E and

CD276, finding positive correlations between NT5E or CD276

expression and the degree of homologous recombination deficiency

and loss of heterozygosity (Supplementary Figures 7A–C).
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KM survival analysis of the TCGA dataset and the other two

independent PAAD cohorts revealed that NT5E and CD276

negatively influenced patient survival (Figures 9C–H).

Subsequently, patients with PAAD were further classified into

four groups based on their immune subtypes and NT5E

expression: NT5Ehigh-hot, NT5Ehigh-cold, NT5Elow-hot, and

NT5Elow-cold. Subsequent KM analysis revealed that the
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NT5Elow-hot group had the best survival rate among these

groups (Figures 10A, B). Similarly, the CD276low-hot group was

associated with a better survival rate compared with that of the

CD276high-hot, CD276high-cold, and CD276low-cold groups

(Figures 10C, D). GSEA between the NT5Ehigh-cold and

NT5Elow-hot groups (Figure 10E), and between the CD276high-

cold and CD276low-hot groups (Figure 10F) revealed that the
FIGURE 5

Immunograms showing the primary characteristics of cold and hot tumors. Radar charts showing the 12 main characteristics of cold and hot tumors
of BLCA (A), CESC (B), PAAD (C), SARC (D), and SKCM (E). Histogram showing the 12 main characteristics of cold and hot tumors of BLCA (F), CESC
(G), PAAD (H), SARC (I), and SKCM (J) (ns, p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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hypoxia pathway was enriched in the NT5Ehigh-cold and

CD276high-cold groups (Figures 10E, F). Positive correlations

between the hypoxia pathway and NT5E or CD276 were

prominent, as shown in Figures 10G, H. As expected, KM

survival analysis showed that hypoxia negatively influenced the

prognosis of PAAD (Figure 10I). Moreover, we identified significant

differences in overall survival between the NT5Ehigh-Hypoxiahigh

and NT5Elow-Hypoxialow groups (Supplementary Figure 8A), as

well as between the CD276high-Hypoxiahigh and CD276low-

Hypoxialow groups (Supplementary Figure 8B).
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Subsequently, multiple single-cell RNA sequencing datasets of

PAAD were applied to examine the expression patterns of NT5E

and CD276 across different cell populations within the TME. The

findings revealed predominant expression of CD276 and NT5E in

monocytes/macrophages, fibroblasts, and malignant cells, as

illustrated in Figures 11A, B. Additionally, protein expression and

subcellular localization of CD276 and NT5E were examined using

the results of immunohistochemistry analysis of PAAD tissue

sections extracted from the HPA database (Figure 11C). Next, an

mIHC assay was conducted to examine NT5E protein expression
FIGURE 6

Differentially expressed immune genes between hot and cold tumors. (A) Heatmap showing the differentially expressed immune checkpoint and
immune regulatory genes between hot and cold tumors of BLCA, CESC, PAAD, SARC, and SKCM. (B) Upset plot showing the upregulated immune
genes in hot tumors of BLCA, CESC, PAAD, SARC, and SKCM. (C) Upset plot showing the downregulated immune genes in hot tumors (*p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001).
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and its correlation with hot and cold TME in patients with PAAD,

as well as its impact on patient survival. This assay detected NT5E,

CD163, and PANCK in the PAAD tissue array, revealing the

presence of NT5E+ cells in both tumoral and stromal regions

(Figures 2A–E). Moreover, a positive correlation was observed

between the numbers of NT5E+ cells and CD163+ cells in tumor

regions, indicating a potential association between increased NT5E
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expression and the cold TME in PAAD (Supplementary Figure 9).

Ultimately, we demonstrated that a greater abundance of NT5E+

cells, irrespective of their spatial distribution, were correlated with

diminished patient survival in PAAD, thereby confirming the

findings of transcriptomic analysis (Figure 2H). The overview

image of mIHC staining of the PAAD tissue array is shown in

Supplementary Figure 10.
FIGURE 7

Enrichment of hallmark pathways between hot and cold tumors. (A) Venn plots showing the different hallmark pathways between hot and cold
tumors of the indicated cancer types (left: upregulated in hot tumors, right: downregulated in hot tumors). (B) Correlations between 23 genes and
five pathways in the indicated cancer types (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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3.8 Predicting drug sensitivity in hot and
cold tumors

Herein, we sought to investigate the potential of the DEGs

between hot and cold tumors as candidate drug targets in PAAD.

Therefore, we employed the oncoPredict to forecast gene

correlations with drug responses. Our findings revealed that two
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drugs (dasatinib and tozasertib) exerted a positive influence on the

majority of genes found to be upregulated in hot tumors.

Importantly, these agents also negatively influenced most genes

that were upregulated in cold tumors, which is a desirable effect

(Figure 12A). The regulatory mechanisms underlying the effects of

these two drugs may differ between hot and cold tumors, as specific

genes, such as endothelin receptor type B (EDNRB), CCL14, and C-
FIGURE 8

Identification of critical immune regulators. (A) Correlations between the expression of immune genes and infiltration of CD8+ T cells, follicular
helper T cells, M2 macrophages, and activated NK cells in the indicated cancer types. (B) Venn plots showing the intersections of differentially
expressed genes and immune cell-associated genes in CD8+ T cells, follicular helper T cells, M2 type macrophages, and activated NK cells in the
indicated cancer types (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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X-C motif chemokine ligand 12 (CXCL12), were regulated more

strongly by both drugs in hot tumors (Figure 12B). In addition, both

drugs negatively affected the expression ofNT5E in cold tumors, but

minimally affected its levels in hot tumors (Figure 12B). The effects

of these two drugs were more marked in cold tumors versus hot

tumors (Figure 12C), as indicated by the lower IC50 values. This

evidence suggested that these agents could exert more beneficial

effects on cold tumors. The beneficial effects of these two drugs were
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further indicated by the positive correlations between the

differentially expressed immune genes and the ImmuneScore,

StromaScore, and ESTIMATEScore (three scores used to estimate

the extent of tumor immune infiltration) (Figure 12D). The effects

on various immune cells were further evaluated, and the results

indicated that both drugs positively regulated T cell subtypes,

particularly CD4+ memory-activated cells in hot tumors

(Figures 12E, F).
FIGURE 9

Clinical characterization of CD276 and NT5E in PAAD. (A) Correlations between the levels of CD276 and NT5E in PAAD. (B) Comparison of the
expression of CD276 and NT5E between patients with PAAD grouped by clinicopathological characteristics. (C, E, G) KM survival curve of OS
between patients with high and low NT5E expression in TCGA databases GSE78229, and GSE62452. (D, F, H) KM survival curve of OS between
patients with high and low CD276 expression in the three aforementioned datasets. (ns, p > 0.05; *p < 0.05; **p < 0.01). H, high expression; HR,
hazard ratio; L, low expression; OS, overall survival.
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3.9 Binding of predicted drug molecules
with differentially expression genes

We further downloaded the chemical structures of dasatinib and

tozasertib from the ZINC15 database. The complete protein

structures of the products of the 44 DEGs between hot and cold

PAAD were successfully retrieved and preprocessed (Supplementary

Table 2). Next, we explored the binding potential between proteins

and drugs. According to the docking scores (Supplementary Table 2),

the top three molecules that exhibited the most potent binding

affinity with dasatinib were PRF1, CXCR6, and ADORA2A.
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Further, 2D and 3D molecular visualization of drug-protein

interactions demonstrated that dasatinib displayed strong

interactions with the PRF1 amino acid residue Ala121 (Figure 13A)

and the CXCR6 residue Tyr278 (Figure 13B). Furthermore, pockets

were identified on the surface of the PRF1, CXCR6, and ADORA2A

which would allow the formation of a stable complex with dasatinib

(Figures 13A–C). The top three molecules exhibiting the most robust

binding affinity with tozasertib were ADORA2A, PRF1, and CCR6

(Figures 13D–F). Tozasertib exhibited robust interactions with the

PRF1 residues Ser234, Arg232, and Asp120 amino acids, as well as the

Thr220 residue of CCR6 through hydrogen bonds (Figures 13E, F). In
FIGURE 10

Combined effects of CD276 and NT5E on hypoxia and survival in PAAD. (A, B) Sankey diagrams for NT5E or CD276 expression and hot and cold
clusters. (C, D) KM survival curve of OS between patients in the four indicated groups. (E, F) GSEA between patients in the two indicated groups.
(G, H) Correlation between NT5E or CD276 expression and the hypoxia pathway. (I) KM survival curve of OS between patients with high and low
hypoxia scores.
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addition, the pockets on the surface of ADORA2A and CCR6

interacted with tozasertib to form a complex (Figures 13D, F).
4 Discussion

Overall, this study presented a clinically relevant method for

categorizing tumor immune phenotypes. Through this approach,

we were able to divide the tumor clusters into immunologically hot

and cold categories. We further examined five cancer types that

shared some features in terms of hot versus cold tumors, namely

BLCA, CESC, PAAD, SARC, and SKCM. In contrast to cold

tumors, hot tumors were associated with a higher chance of

survival, and displayed higher numbers of CD8+ T cells and

activated NK cells, higher scores of T cell proliferation and

cytolytic activity, and decreased inflow of M2 macrophages.

Additional research revealed that the hot and cold tumors had

distinct somatic mutations, gene expression, hallmark pathways,

and immune landscapes.

We further determined that the hot/cold immune phenotype

was closely associated with immune cell-cell interactions.

Specifically, we found that CD8+ T cells were significantly

positively correlated with follicular helper T cells and activated

NK cells. This finding was consistent with those previously reported

by Niogret et al. (53), suggesting that follicular helper T cells assist

in reinstating the antitumor activity of exhausted CD8+ T cells,

possibly through the production of interleukin-21 (IL-21).

Moreover, dendritic cells recruited by intratumoral NK cells can

activate CD8+ T cells through the cross-presentation of neoantigens

to CD8+ T cells (54). Subsequently, the activated CD8+ T cells and

NK cells exert antitumor effects in a concerted and collaborative

manner. According to Nicolai et al., stimulator of interferon genes
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(STING) agonists can effectively promote the activity of NK cells to

eliminate tumor cells resistant to CD8+ T cells (55). Evidence from

numerous studies have suggested that CD8+ T cells are suppressed

by M2 macrophages (56). This is consistent with our findings

indicating that M2 macrophages were enriched and inversely

associated with CD8+ T cells in cold tumors. M2 macrophages

may promote immune evasion and tumor progression through

multiple mechanisms. For example, M2 macrophage-derived

extracellular vesicles may trigger CD8+ T cell exhaustion, and

thereby promote tumor progression in hepatocellular carcinoma

(57). Additionally, M2 macrophages can inhibit T and NK cell-

mediated antitumor activity by secreting an array of

immunosuppressive cytokines, including IL-10 and transforming

growth factor-b (TGF-b), or by expressing co-inhibitory ligands

that directly inhibit T cell activation (58, 59).

A previous study has used cancer immunograms to visualize the

overall immune landscape of the TME (60), and aids in identifying

critical immunosuppressive factors and selecting appropriate

targeting strategies for immunotherapy. Our research presents an

immunogram through a radar plot that employs seven antitumoral

parameters and five protumoral parameters to illustrate the

immunological characteristics of each tumor. Previous studies

have suggested several immunograms for the personalized

treatment of breast cancer (61), lung cancer (62), hepatocellular

carcinoma (63), and urothelial cancer (64). Importantly, our

immunogram includes parameters that were not previously used

in combination, and have identified critical immunological factors

involved in the establishment of hot or cold tumors. However, as

most immunograms have not been tested in clinical settings, clinical

trials are necessary to evaluate the potential of these models,

including the one presented here, in guiding individualized

cancer treatment.
FIGURE 11

scRNA-seq and IHC analysis. (A) The RNA expression levels of CD276 and NT5E across different cell types based on nine scRNA-seq databases.
(B) The protein expression levels of CD276 and NT5E in tumor tissues are also shown.
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NT5E and CD276 were found to be upregulated in cold tumors,

suggesting that they may play key roles in inhibiting CD8+ T cells

and promoting M2 macrophages. Recent studies have further

demonstrated that NT5E overexpression hinders CD8+T cell

recruitment and directly inhibits T cell antitumor activity in

several preclinical cancer models (65, 66). It has also been

reported that tumor necrosis factor-a (TNF-a) and interferon-a
(IFN-a) induce NT5E expression in mesenchymal stem cells,
Frontiers in Immunology 17
thereby promoting the polarization of anti-inflammatory M2

macrophages (67); however, another study showed that NT5E is

not required for M2 macrophage polarization (68). As such, the

impact of NT5E on M2 macrophages warrants further

investigation. It has further been shown that CD276 (B7-H3)

increases the ability of colorectal cancer cell lines to resist

apoptosis by activating the Janus kinase 2-signal transducer and

activator of transcription 3 (JAK2-STAT3) pathway (69). CD276
FIGURE 12

Drug prediction for hot and cold tumors. (A) Heatmap showing changes in gene expression induced in all tumors by the two drugs. (B) Heatmap
showing changes in gene expression induced by the two drugs in hot and cold tumors. (C) Box plots showing the difference in drug sensitivity
between hot and cold tumors. (D) Heatmap showing the correlation between genes and three immune scores across all, hot, and cold tumors.
(E, F) Radar charts showing the impact of drugs on immune cell infiltration across all, hot, and cold tumors. (*p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001). FIC50, half maximal inhibitory concentration.
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may further stimulate the nuclear factor-kB (NF-kB) pathway and
enhance angiogenesis in colorectal cancer (70). Nevertheless, the

role of CD276 in tumorigenesis and immune responses remains

unclear in several types of cancer.

Overall, in the present study, we found that cold tumors were

associated with shorter survival. On this basis, we questioned

whether NT5E and CD276, which are upregulated in cold tumors

and are linked to poor survival, could be used as biomarkers and

potential targets to convert cold tumors into hot tumors. Our

analysis of the roles of these two genes in PAAD was further

prompted by their linear co-expression patterns, which suggested

that they may be functionally connected. GSEA revealed that the

hypoxia pathway was enriched in the NT5Ehigh and CD276high

tumors. Indeed, NT5E has been reported as a hypoxia-responsive

gene (71), and a previous pan-cancer study revealed that NT5E is

overexpressed and correlated with a worse prognosis in several
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cancer types, including PAAD (72). Previous studies have reported

that CD276 regulates hypoxia by stimulating aberrant angiogenesis,

which elevates hypoxemia within the TME, thereby hindering the

entry of CD8+ T cells (73). As such, the regulation of NT5E and

CD276 on hypoxia may be responsible for establishing the cold

immune state in PAAD. Studies have also suggested that targeting

NT5E has therapeutic effects in some preclinical cancer models

(74, 75). Moreover, a phase I clinical trial using a small-molecule

NT5E inhibitor in patients with pancreatic cancer is ongoing; early

results are promising, with an overall response rate of 41%. In our

cohort, NT5E was abundant in both the tumoral and stromal

regions of PAAD tissues. Moreover, the levels of NT5E were

associated with poor patient survival. These findings indicate that

examining the expression of NT5E protein through traditional IHC

staining in clinical practice may help to select patients with cold

tumors for NT5E-targeted therapy. We further speculate that
FIGURE 13

Visualization of drug-protein interactions. (A) PRF1, (B) CXCR6, and (C) ADORA2A bound with dasatinib. (D) ADORA2A, (E) PRF1, (F) CCR6 bound
with tozasertib.
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targeting CD276 and NT5E in combination may improve

treatment outcomes.

The current study has some limitations that may impact the

interpretation of our results. First, our analyses centered on five

cancer types, and we primarily focused on the identification of

biomarkers in PAAD. Further, we only conducted some

experimental validation using the PAAD cohort. Therefore, larger

clinical cohorts, ideally comprising multiple cancer types, are

required to further test the usefulness and credibility of potential

biomarkers, and more functional studies are needed to better

understand the role of these molecules. In addition, our study

only included a limited number of immune regulatory genes,

meaning there may be other, unidentified crucial genes involved

in the development of hot/cold TME. Nevertheless, we hope that the

platform established in the current analysis could help explore more

genes and identify critical biomarkers, candidate drugs, and drug

targets for cancer immunotherapy.
5 Conclusion

In summary, our research developed a tumor classification

approach that utilizes parameters linked to immune cell

infiltration and immunological traits in the TME. This

classification allowed for the differentiation of hot and cold

tumors, as well as the prediction of patient survival. The tumor

and immune phenotypes varied significantly between hot and cold

tumors. The increased expression of some hub genes in cold tumors

suggests a potential role of these molecules in treating cold tumors

or inducing cold-to-hot tumor transition. Moreover, dasatinib and

tozasertib may be useful in modulating the TME in cold tumors,

and thereby promoting anticancer immune response.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author/s.
Ethics statement

The studies involving humans were approved by The Ethical

Committee of the Affiliated Hospital of Nantong University. The

studies were conducted in accordance with the local legislation and

institutional requirements. The human samples used in this study

were acquired from primarily isolated as part of your previous study

for which ethical approval was obtained. Written informed consent

for participation was not required from the participants or the

participants’ legal guardians/next of kin in accordance with the

national legislation and institutional requirements.
Frontiers in Immunology 19
Author contributions

MS: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Software, Validation, Visualization,

Writing – original draft, Writing – review & editing. JiG:

Conceptualization, Data curation, Formal Analysis, Investigation,

Methodology, Software, Validation, Writing – original draft. JuG:

Data curation, Investigation, Methodology, Software, Writing –

original draft. GT: Data curation, Investigation, Methodology,

Software, Validation, Writing – original draft. QW: Investigation,

Methodology, Visualization, Writing – original draft. JW:

Investigation, Methodology, Validation, Writing – original draft.

XD: Conceptualization, Data curation, Funding acquisition, Project

administration, Resources, Validation, Writing – original draft. LM:

Supervision, Validation, Writing – original draft, Conceptualization,

Data curation, Project administration, Resources, Software. XZ:

Visualization, Writing – original draft, Writing – review & editing,

Conceptualization, Data curation, Formal Analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by the National Natural Science Foundation of

China (32170915, 82172931).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1382842/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1382842/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1382842/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1382842
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sang et al. 10.3389/fimmu.2024.1382842
References
1. Xiao L, Yeung H, Haber M, Norris MD, Somers K. Immunometabolism: A ‘hot’
switch for ‘cold’ pediatric solid tumors. Trends Cancer. (2021) 7:751–77. doi: 10.1016/
j.trecan.2021.05.002

2. Duan Q, Zhang H, Zheng J, Zhang L. Turning cold into hot: Firing up the tumor
microenvironment. Trends Cancer. (2020) 6:605–18. doi: 10.1016/j.trecan.2020.02.022

3. Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-
Wittmann S, Amigorena S, et al. Cold tumors: A therapeutic challenge for
immunotherapy. Front Immunol. (2019) 10:168. doi: 10.3389/fimmu.2019.00168

4. Sahu A, Kose K, Kraehenbuehl L, Byers C, Holland A, Tembo T, et al. In vivo
tumor immune microenvironment phenotypes correlate with inflammation and
vasculature to predict immunotherapy response. Nat Commun. (2022) 13:5312.
doi: 10.1038/s41467-022-32738-7

5. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. (2015)
348:56–61. doi: 10.1126/science.aaa8172

6. Raskov H, Orhan A, Christensen JP, Gogenur I. Cytotoxic cd8(+) t cells in cancer
and cancer immunotherapy. Br J Cancer. (2021) 124:359–67. doi: 10.1038/s41416-020-
01048-4

7. Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for
solid tumours: Clinical dilemmas and future trends. Signal Transduct Target Ther.
(2023) 8:320. doi: 10.1038/s41392-023-01522-4

8. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res.
(2020) 30:660–9. doi: 10.1038/s41422-020-0343-4

9. Kovacs SA, Fekete JT, Gyorffy B. Predictive biomarkers of immunotherapy
response with pharmacological applications in solid tumors. Acta Pharmacol Sin.
(2023) 44:1879–89. doi: 10.1038/s41401-023-01079-6

10. Farhood B, Najafi M, Mortezaee K. Cd8(+) cytotoxic t lymphocytes in cancer
immunotherapy: A review. J Cell Physiol. (2019) 234:8509–21. doi: 10.1002/jcp.v234.6

11. Le DT, Huynh TR, Burt B, Van Buren G, Abeynaike SA, Zalfa C, et al. Natural
killer cells and cytotoxic t lymphocytes are required to clear solid tumor in a patient-
derived xenograft. JCI Insight. (2021) 6:e140116. doi: 10.1172/jci.insight.140116

12. Fu C, Jiang A. Dendritic cells and cd8 t cell immunity in tumor
microenvironment. Front Immunol. (2018) 9:3059. doi: 10.3389/fimmu.2018.03059

13. Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, et al. Myeloid-derived suppressor
cells as immunosuppressive regulators and therapeutic targets in cancer. Signal
Transduct Target Ther. (2021) 6:362. doi: 10.1038/s41392-021-00670-9

14. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-
associated fibroblasts and immune cells in the tumor microenvironment: New findings
and future perspectives. Mol Cancer. (2021) 20:131. doi: 10.1186/s12943-021-01428-1

15. Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in
cancer immunotherapy. Front Immunol. (2022) 13:888713. doi: 10.3389/fimmu.2022.888713

16. Choo YW, Kang M, Kim HY, Han J, Kang S, Lee JR, et al. M1 macrophage-
derived nanovesicles potentiate the anticancer efficacy of immune checkpoint
inhibitors. ACS Nano. (2018) 12:8977–93. doi: 10.1021/acsnano.8b02446

17. Zhang J, Huang D, Saw PE, Song E. Turning cold tumors hot: From molecular
mechanisms to clinical applications. Trends Immunol. (2022) 43:523–45. doi: 10.1016/
j.it.2022.04.010

18. Qian ZR, Rubinson DA, Nowak JA, Morales-Oyarvide V, Dunne RF, Kozak
MM, et al. Association of alterations in main driver genes with outcomes of patients
with resected pancreatic ductal adenocarcinoma. JAMA Oncol. (2018) 4:e173420.
doi: 10.1001/jamaoncol.2017.3420

19. Coelho MA, de Carne Trecesson S, Rana S, Zecchin D, Moore C, Molina-Arcas
M, et al. Oncogenic ras signaling promotes tumor immunoresistance by stabilizing pd-
l1 mrna. Immunity. (2017) 47:1083–1099.e1086. doi: 10.1016/j.immuni.2017.11.016

20. Gu M, Gao Y, Chang P. Kras mutation dictates the cancer immune environment
in pancreatic ductal adenocarcinoma and other adenocarcinomas. Cancers (Basel).
(2021) 13:2429. doi: 10.3390/cancers13102429

21. Kemp SB, Cheng N, Markosyan N, Sor R, Kim IK, Hallin J, et al. Efficacy of a
small-molecule inhibitor of krasg12d in immunocompetent models of pancreatic
cancer. Cancer Discovery. (2023) 13:298–311. doi: 10.1158/2159-8290.CD-22-1066

22. Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, et al.
Autophagy promotes immune evasion of pancreatic cancer by degrading mhc-i.
Nature. (2020) 581:100–5. doi: 10.1038/s41586-020-2229-5

23. Peng J, Sun BF, Chen CY, Zhou JY, Chen YS, Chen H, et al. Single-cell rna-seq
highlights intra-tumoral heterogeneity and Malignant progression in pancreatic ductal
adenocarcinoma. Cell Res. (2019) 29:725–38. doi: 10.1038/s41422-019-0195-y

24. Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, Baron M, et al.
Integrating microarray-based spatial transcriptomics and single-cell rna-seq reveals
tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol. (2020)
38:333–42. doi: 10.1038/s41587-019-0392-8

25. Kolodkin-Gal D, Roitman L, Ovadya Y, Azazmeh N, Assouline B, Schlesinger Y, et al.
Senolytic elimination of cox2-expressing senescent cells inhibits the growth of premalignant
pancreatic lesions. Gut. (2022) 71:345–55. doi: 10.1136/gutjnl-2020-321112
Frontiers in Immunology 20
26. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy
number and clonal substructure in human tumors from single-cell transcriptomes. Nat
Biotechnol. (2021) 39:599–608. doi: 10.1038/s41587-020-00795-2

27. Lin W, Noel P, Borazanci EH, Lee J, Amini A, Han IW, et al. Single-cell
transcriptome analysis of tumor and stromal compartments of pancreatic ductal
adenocarcinoma primary tumors and metastatic lesions. Genome Med. (2020) 12:80.
doi: 10.1186/s13073-020-00776-9

28. Kemp SB, Steele NG, Carpenter ES, Donahue KL, Bushnell GG, Morris AH, et al.
Pancreatic cancer is marked by complement-high blood monocytes and tumor-
associated macrophages. Life Sci Alliance. (2021) 4:e202000935. doi: 10.26508/
lsa.202000935

29. Zhou Y, Liu S, Liu C, Yang J, Lin Q, Zheng S, et al. Single-cell rna sequencing
reveals spatiotemporal heterogeneity and Malignant progression in pancreatic
neuroendocrine tumor. Int J Biol Sci. (2021) 17:3760–75. doi: 10.7150/ijbs.61717

30. Zhao X, Li H, Lyu S, Zhai J, Ji Z, Zhang Z, et al. Single-cell transcriptomics
reveals heterogeneous progression and egfr activation in pancreatic adenosquamous
carcinoma. Int J Biol Sci. (2021) 17:2590–605. doi: 10.7150/ijbs.58886

31. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015)
12:453–7. doi: 10.1038/nmeth.3337

32. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. Iobr: Multi-omics immuno-
oncology biological research to decode tumor microenvironment and signatures. Front
Immunol. (2021) 12:687975. doi: 10.3389/fimmu.2021.687975

33. Wilkerson MD, Hayes DN. Consensusclusterplus: A class discovery tool with
confidence assessments and item tracking. Bioinformatics. (2010) 26:1572–3.
doi: 10.1093/bioinformatics/btq170

34. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The
molecular signatures database (msigdb) hallmark gene set collection. Cell Syst. (2015)
1:417–25. doi: 10.1016/j.cels.2015.12.004

35. He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers
based on immunogenomic profiling. J Exp Clin Cancer Res. (2018) 37:327. doi: 10.1186/
s13046-018-1002-1

36. Legut M, Gajic Z, Guarino M, Daniloski Z, Rahman JA, Xue X, et al. A genome-
scale screen for synthetic drivers of t cell proliferation. Nature. (2022) 603:728–35.
doi: 10.1038/s41586-022-04494-7

37. Kobayashi Y, Kushihara Y, Saito N, Yamaguchi S, Kakimi K. A novel scoring
method based on rna-seq immunograms describing individual cancer-immunity
interactions. Cancer Sci. (2020) 111:4031–40. doi: 10.1111/cas.v111.11

38. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. Timer: A web server for
comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. (2017) 77:
e108–10. doi: 10.1158/1538-7445.AM2017-108

39. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous
enumeration of cancer and immune cell types from bulk tumor gene expression data.
Elife. (2017) 6:e26476. doi: 10.7554/eLife.26476.049

40. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and stromal cell
populations using gene expression. Genome Biol. (2016) 17:218. doi: 10.1186/s13059-
016-1070-5

41. Aran D, Hu Z, Butte AJ. Xcell: Digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. (2017) 18:220. doi: 10.1186/s13059-017-1349-1

42. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al.
Molecular and pharmacological modulators of the tumor immune contexture
revealed by deconvolution of rna-seq data. Genome Med. (2019) 11:34. doi: 10.1186/
s13073-019-0638-6

43. Abd ElHafeez S, D’Arrigo G, Leonardis D, Fusaro M, Tripepi G, Roumeliotis S.
Methods to analyze time-to-event data: The cox regression analysis. Oxid Med Cell
Longev. (2021) 2021:1302811. doi: 10.1155/2021/1302811

44. Shen W, Song Z, Zhong X, Huang M, Shen D, Gao P, et al. Sangerbox: A
comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta.
(2022) 1:e36. doi: 10.1002/imt2.v1.3

45. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The
immune landscape of cancer. Immunity. (2018) 48:812–830.e814. doi: 10.1016/
j.immuni.2018.03.023

46. Maeser D, Gruener RF, Huang RS. Oncopredict: An r package for predicting in
vivo or cancer patient drug response and biomarkers from cell line screening data. Brief
Bioinform. (2021) 22:bbab260. doi: 10.1093/bib/bbab260

47. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of t cell dysfunction
and exclusion predict cancer immunotherapy response. Nat Med. (2018) 24:1550–8.
doi: 10.1038/s41591-018-0136-1

48. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun. (2013) 4:2612. doi: 10.1038/ncomms3612
frontiersin.org

https://doi.org/10.1016/j.trecan.2021.05.002
https://doi.org/10.1016/j.trecan.2021.05.002
https://doi.org/10.1016/j.trecan.2020.02.022
https://doi.org/10.3389/fimmu.2019.00168
https://doi.org/10.1038/s41467-022-32738-7
https://doi.org/10.1126/science.aaa8172
https://doi.org/10.1038/s41416-020-01048-4
https://doi.org/10.1038/s41416-020-01048-4
https://doi.org/10.1038/s41392-023-01522-4
https://doi.org/10.1038/s41422-020-0343-4
https://doi.org/10.1038/s41401-023-01079-6
https://doi.org/10.1002/jcp.v234.6
https://doi.org/10.1172/jci.insight.140116
https://doi.org/10.3389/fimmu.2018.03059
https://doi.org/10.1038/s41392-021-00670-9
https://doi.org/10.1186/s12943-021-01428-1
https://doi.org/10.3389/fimmu.2022.888713
https://doi.org/10.1021/acsnano.8b02446
https://doi.org/10.1016/j.it.2022.04.010
https://doi.org/10.1016/j.it.2022.04.010
https://doi.org/10.1001/jamaoncol.2017.3420
https://doi.org/10.1016/j.immuni.2017.11.016
https://doi.org/10.3390/cancers13102429
https://doi.org/10.1158/2159-8290.CD-22-1066
https://doi.org/10.1038/s41586-020-2229-5
https://doi.org/10.1038/s41422-019-0195-y
https://doi.org/10.1038/s41587-019-0392-8
https://doi.org/10.1136/gutjnl-2020-321112
https://doi.org/10.1038/s41587-020-00795-2
https://doi.org/10.1186/s13073-020-00776-9
https://doi.org/10.26508/lsa.202000935
https://doi.org/10.26508/lsa.202000935
https://doi.org/10.7150/ijbs.61717
https://doi.org/10.7150/ijbs.58886
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.3389/fimmu.2021.687975
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1186/s13046-018-1002-1
https://doi.org/10.1186/s13046-018-1002-1
https://doi.org/10.1038/s41586-022-04494-7
https://doi.org/10.1111/cas.v111.11
https://doi.org/10.1158/1538-7445.AM2017-108
https://doi.org/10.7554/eLife.26476.049
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1155/2021/1302811
https://doi.org/10.1002/imt2.v1.3
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/ncomms3612
https://doi.org/10.3389/fimmu.2024.1382842
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sang et al. 10.3389/fimmu.2024.1382842
49. Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, et al. Tip: A web server for
resolving tumor immunophenotype profiling. Cancer Res. (2018) 78:6575–80.
doi: 10.1158/0008-5472.CAN-18-0689

50. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The
protein data bank. Nucleic Acids Res. (2000) 28:235–42. doi: 10.1093/nar/28.1.235

51. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC,
et al. Ucsf chimera–a visualization system for exploratory research and analysis. J
Comput Chem. (2004) 25:1605–12. doi: 10.1002/jcc.v25:13

52. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. Zinc: A free tool to
discover chemistry for biology. J Chem Inf Model. (2012) 52:1757–68. doi: 10.1021/ci3001277

53. Niogret J, Berger H, Rebe C, Mary R, Ballot E, Truntzer C, et al. Follicular helper-
t cells restore cd8(+)-dependent antitumor immunity and anti-pd-l1/pd-1 efficacy. J
Immunother Cancer. (2021) 9:e002157. doi: 10.1136/jitc-2020-002157

54. Kyrysyuk O, Wucherpfennig KW. Designing cancer immunotherapies that
engage t cells and nk cells. Annu Rev Immunol. (2023) 41:17–38. doi: 10.1146/
annurev-immunol-101921-044122

55. Nicolai CJ, Wolf N, Chang IC, Kirn G, Marcus A, Ndubaku CO, et al. Nk cells
mediate clearance of cd8(+) t cell-resistant tumors in response to sting agonists. Sci
Immunol. (2020) 5:eaaz2738. doi: 10.1126/sciimmunol.aaz2738

56. Chen S, Saeed A, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in
immunoregulation and therapeutics. Signal Transduct Target Ther. (2023) 8:207.
doi: 10.1038/s41392-023-01452-1

57. Pu J, Xu Z, Nian J, Fang Q, Yang M, Huang Y, et al. M2 macrophage-derived
extracellular vesicles facilitate cd8+t cell exhaustion in hepatocellular carcinoma via the
mir-21-5p/yod1/yap/beta-catenin pathway. Cell Death Discovery. (2021) 7:182.
doi: 10.1038/s41420-021-00556-3

58. Liu M, Liu L, Song Y, Li W, Xu L. Targeting macrophages: A novel treatment
strategy in solid tumors. J Transl Med. (2022) 20:586. doi: 10.1186/s12967-022-03813-w

59. Shao Y, Lan Y, Chai X, Gao S, Zheng J, Huang R, et al. Cxcl8 induces m2
macrophage polarization and inhibits cd8(+) t cell infiltration to generate an
immunosuppressive microenvironment in colorectal cancer. FASEB J. (2023) 37:
e23173. doi: 10.1096/fj.202201982RRR

60. Blank CU, Haanen JB, Ribas A, Schumacher TN. Cancer immunology. The
“cancer immunogram. Science. (2016) 352:658–60. doi: 10.1126/science.aaf2834

61. Valenza C, Trapani D, Fusco N, Wang X, Cristofanilli M, Ueno NT, et al. The
immunogram of inflammatory breast cancer. Cancer Treat Rev. (2023) 119:102598.
doi: 10.1016/j.ctrv.2023.102598

62. Karasaki T, Nagayama K, Kuwano H, Nitadori JI, Sato M, Anraku M, et al. An
immunogram for the cancer-immunity cycle: Towards personalized immunotherapy of
lung cancer. J Thorac Oncol. (2017) 12:791–803. doi: 10.1016/j.jtho.2017.01.005
Frontiers in Immunology 21
63. Hu Y, Sun H, Zhang H, Wang X. An immunogram for an individualized
assessment of the antitumor immune response in patients with hepatocellular
carcinoma. Front Oncol. (2020) 10:1189. doi: 10.3389/fonc.2020.01189

64. van Dijk N, Funt SA, Blank CU, Powles T, Rosenberg JE, van der Heijden MS.
The cancer immunogram as a framework for personalized immunotherapy in
urothelial cancer. Eur Urol. (2019) 75:435–44. doi: 10.1016/j.eururo.2018.09.022

65. Briceno P, Rivas-Yanez E, Rosemblatt MV, Parra-Tello B, Farias P, Vargas L,
et al. Cd73 ectonucleotidase restrains cd8+ t cell metabolic fitness and anti-tumoral
activity. Front Cell Dev Biol. (2021) 9:638037. doi: 10.3389/fcell.2021.638037

66. Tu E, McGlinchey K, Wang J, Martin P, Ching SL, Floc’h N, et al. Anti-pd-l1 and
anti-cd73 combination therapy promotes t cell response to egfr-mutated nsclc. JCI
Insight. (2022) 7:e142843. doi: 10.1172/jci.insight.142843

67. Watanabe Y, Fukuda T, Hayashi C, Nakao Y, Toyoda M, Kawakami K, et al.
Extracellular vesicles derived from gmscs stimulated with tnf-alpha and ifn-alpha
promote m2 macrophage polarization via enhanced cd73 and cd5l expression. Sci Rep.
(2022) 12:13344. doi: 10.1038/s41598-022-17692-0

68. Eichin D, Laurila JP, Jalkanen S, Salmi M. Cd73 activity is dispensable for the
polarization of m2 macrophages. PloS One. (2015) 10:e0134721. doi: 10.1371/
journal.pone.0134721

69. Zhang T, Jiang B, Zou ST, Liu F, Hua D. Overexpression of b7-h3 augments anti-
apoptosis of colorectal cancer cells by jak2-stat3. World J Gastroenterol. (2015)
21:1804–13. doi: 10.3748/wjg.v21.i6.1804

70. Wang R, Ma Y, Zhan S, Zhang G, Cao L, Zhang X, et al. B7-h3 promotes
colorectal cancer angiogenesis through activating the nf-kappab pathway to induce
vegfa expression. Cell Death Dis. (2020) 11:55. doi: 10.1038/s41419-020-2252-3

71. Wicks EE, Semenza GL. Hypoxia-inducible factors: Cancer progression and
clinical translation. J Clin Invest. (2022) 132:e159839. doi: 10.1172/JCI159839

72. Xue XM, Liu YY, Chen XM, Tao BY, Liu P, Zhou HW, et al. Pan-cancer analysis
identifies nt5e as a novel prognostic biomarker on cancer-associated fibroblasts
associated with unique tumor microenvironment. Front Pharmacol. (2022)
13:1064032. doi: 10.3389/fphar.2022.1064032

73. Cheng N, Bei Y, Song Y, Zhang W, Xu L, Zhang W, et al. B7-h3 augments the
pro-angiogenic function of tumor-associated macrophages and acts as a novel adjuvant
target for triple-negative breast cancer therapy. Biochem Pharmacol. (2021)
183:114298. doi: 10.1016/j.bcp.2020.114298

74. Zhou WT, Jin WL. B7-h3/cd276: An emerging cancer immunotherapy. Front
Immunol. (2021) 12:701006. doi: 10.3389/fimmu.2021.701006

75. Roh M, Wainwright DA, Wu JD, Wan Y, Zhang B. Targeting cd73 to augment
cancer immunotherapy. Curr Opin Pharmacol. (2020) 53:66–76. doi: 10.1016/
j.coph.2020.07.001
frontiersin.org

https://doi.org/10.1158/0008-5472.CAN-18-0689
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1002/jcc.v25:13
https://doi.org/10.1021/ci3001277
https://doi.org/10.1136/jitc-2020-002157
https://doi.org/10.1146/annurev-immunol-101921-044122
https://doi.org/10.1146/annurev-immunol-101921-044122
https://doi.org/10.1126/sciimmunol.aaz2738
https://doi.org/10.1038/s41392-023-01452-1
https://doi.org/10.1038/s41420-021-00556-3
https://doi.org/10.1186/s12967-022-03813-w
https://doi.org/10.1096/fj.202201982RRR
https://doi.org/10.1126/science.aaf2834
https://doi.org/10.1016/j.ctrv.2023.102598
https://doi.org/10.1016/j.jtho.2017.01.005
https://doi.org/10.3389/fonc.2020.01189
https://doi.org/10.1016/j.eururo.2018.09.022
https://doi.org/10.3389/fcell.2021.638037
https://doi.org/10.1172/jci.insight.142843
https://doi.org/10.1038/s41598-022-17692-0
https://doi.org/10.1371/journal.pone.0134721
https://doi.org/10.1371/journal.pone.0134721
https://doi.org/10.3748/wjg.v21.i6.1804
https://doi.org/10.1038/s41419-020-2252-3
https://doi.org/10.1172/JCI159839
https://doi.org/10.3389/fphar.2022.1064032
https://doi.org/10.1016/j.bcp.2020.114298
https://doi.org/10.3389/fimmu.2021.701006
https://doi.org/10.1016/j.coph.2020.07.001
https://doi.org/10.1016/j.coph.2020.07.001
https://doi.org/10.3389/fimmu.2024.1382842
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Immune regulatory genes impact the hot/cold tumor microenvironment, affecting cancer treatment and patient outcomes
	1 Introduction
	2 Materials and methods
	2.1 Data sources and preprocessing
	2.2 Immune infiltration analysis and clustering
	2.3 Cox proportional hazards regression model
	2.4 Immune regulatory and checkpoint gene analysis
	2.5 Gene set variation analysis
	2.6 Gene set enrichment analysis
	2.7 Analysis of drug sensitivity and responsiveness to immunotherapy in PAAD
	2.8 Immunological feature analysis
	2.9 Docking drugs and protein molecules
	2.10 Multiplex immunohistochemistry
	2.11 Statistical analysis

	3 Results
	3.1 Pan-cancer clustering of tumor immune subtypes with clinical relevance
	3.2 Analysis of immune subtype-associated somatic mutations
	3.3 Analysis of the immune landscape and responsiveness to immunotherapy
	3.4 Establishing an immunogram for hot and cold tumors
	3.5 Differentially expressed genes and GSVA analysis
	3.6 Correlation analysis between immune genes and cells
	3.7 Expression of NT5E and CD276 and their impact on prognosis of PAAD
	3.8 Predicting drug sensitivity in hot and cold tumors
	3.9 Binding of predicted drug molecules with differentially expression genes

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


