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Acne vulgaris is one of the most common skin diseases. The current

understanding of acne primarily revolves around inflammatory responses,

sebum metabolism disorders, aberrant hormone and receptor expression,

colonization by Cutibacterium acnes, and abnormal keratinization of follicular

sebaceous glands. Although the precise mechanism of action remains

incompletely understood, it is plausible that macrophages exert an influence

on these pathological features. Macrophages, as a constituent of the human

innate immune system, typically manifest distinct phenotypes across various

diseases. It has been observed that the polarization of macrophages toward the

M1 phenotype plays a pivotal role in the pathogenesis of acne. In recent years,

extensive research on acne has revealed an increasing number of natural

remedies exhibiting therapeutic efficacy through the modulation of

macrophage polarization. This review investigates the role of cutaneous

macrophages, elucidates their potential significance in the pathogenesis of

acne, a prevalent chronic inflammatory skin disorder, and explores the

therapeutic mechanisms of natural plant products targeting macrophages.

Despite these insights, the precise role of macrophages in the pathogenesis of

acne remains poorly elucidated. Subsequent investigations in this domain will

further illuminate the pathogenesis of acne and potentially offer guidance for

identifying novel therapeutic targets for this condition.
KEYWORDS

macrophages, acne vulgaris, inflammatory response, sebum metabolism, natural
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1 Introduction

Acne is a prevalent chronic inflammatory skin disease affecting

the hair follicles and sebaceous glands, with skin lesions primarily

appearing on the face and chest back. The clinical manifestations

encompass a diverse range of acneiform lesions, including

comedones, papules, pustules, nodules, and cysts. These are often

accompanied by excessive sebum secretion (1–3). Acne, affecting

9.4% of the global population, ranks as the eighth most prevalent

disease worldwide. Despite its clinical commonality, post-acne

erythema and scarring contribute significantly to psychological

disorders among young individuals, thereby elevating the risk of

mood disorders and psychiatric comorbidity (4–7). Consequently,

acne has emerged as a significant societal concern. Currently, the

internationally recommended pharmacological treatments for acne

encompass topical retinoids, benzoyl peroxide, antibiotic

ointments, as well as oral antibiotics and anti-androgen

medications (8–10). Despite their efficacy, these existing

therapeutic strategies often give rise to adverse effects such as

cutaneous irritation, dryness, and disturbances in the skin’s

microecology due to topical agents. Additionally, concerns

regarding the emergence of antibiotic-resistant bacteria have also

been raised (1). The management of acne is increasingly

challenging, thus necessitating an urgent exploration of novel

targets and mechanisms in acne research.

The pathogenesis of acne involves inflammatory responses,

hypersecretion of sebum, abnormal keratinization of the

sebaceous glands in hair follicles, colonization by Cutibacterium

acnes(C. acnes), and dysregulated androgen secretion (11–15). The

inflammatory response is observed throughout the entire course of

acne (16). Increasing evidence suggests that the inflammatory

reaction in acne is associated with abnormal sebum metabolism,

colonization of C. acnes, and abnormal androgen levels.

Macrophages are essential components of the inflammatory

response and, as integral members of the immune effector cells,

also contribute significantly to maintaining skin homeostasis.

Hence, it is imperative to investigate the role of macrophages in

the pathogenesis of acne. In this review, we initially introduced the

pivotal role of macrophages in skin physiology, elucidated their

intricate associations with sebum metabolism, androgen regulation

abnormalities, and C. acnes colonization, followed by a

comprehensive summary of natural compounds that modulate

the phenotypic alterations of acne-associated macrophages. This

review further elucidates the correlation between macrophages and

acne pathogenesis, as well as contributes to the development of

potential therapeutic agents.
2 Role of macrophages in the skin

Macrophages are derived from hematopoietic stem cell-derived

monocytes in the bone marrow (17), or originate from all tissues

during embryonic development through the yolk sac and fetal liver,

subsequently establishing themselves as resident cells within the

tissues (18, 19). Macrophage populations exhibit significant

heterogeneity across various tissues and perform important
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physiological functions specific to the tissues in which they

reside. In general, resident macrophages maintain tissue

homeostasis, while monocyte-derived macrophages primarily

contribute to host defense and pathological signaling (20, 21).

Additionally, macrophages exhibit significant plasticity and

undergo polarization in response to environmental changes

within different tissues, giving rise to distinct subtypes of

macrophages (22).

Traditionally, macrophages can be polarized into two distinct

phenotypes, namely classically activated M1 macrophages and

alternatively activated M2 macrophages (23). M1 macrophages

are stimulated by lipopolysaccharide (LPS) and interferon-g (IFN-
g) (24, 25) to elicit a pro-inflammatory response and secrete various

pro-inflammatory factors, including interleukin (IL)-1b, IL-6, IL-
12, IL-23, inducible nitric oxide synthase (iNOS), monocyte

chemotactic protein-1 (MCP-1), and tumor necrosis factor-alpha

(TNF-a) (18, 26). Activated M1 macrophages promote Th1 cell-

mediated immune responses, thereby safeguarding the host (27, 28).

Additionally, they generate reactive oxygen species (ROS) and

active nitrogen intermediates (29), which effectively eliminate

pathogens. However, these mechanisms can also lead to collateral

tissue damage and excessive inflammation, consequently impeding

tissue regeneration and wound healing processes (30, 31). During

the process of skin pathology, M1 macrophages play a crucial role in

eliminating pathogenic microorganisms. However, sustained

polarization toward the M1 phenotype can perpetuate a highly

inflammatory state within the lesions, impeding optimal wound

tissue healing (32–34).

M2 activation occurs in response to stimulation by IL-4, IL-10,

and IL-13 (35, 36). As reparative macrophages, M2 macrophages

play a crucial role in suppressing inflammatory responses and

facilitating tissue repair and wound healing (37, 38). They are

characterized by their ability to promote TH2 responses and

exhibit overexpression of cytokines such as IL-10, transforming

growth factor (TGF-b), vascular endothelial growth factor (VEGF),

epidermal growth factor (EGF), and arginase 1(Arg1) (35). M2

macrophages can be further classified into four subtypes: M2a, M2b,

M2c, and M2d, each exhibiting distinct functionalities (39). Among

these subtypes, IL-4 or IL-13 induces the polarization of M2a

macrophages which predominantly express IL-12, interleukin-1

receptor antagonist (IL-1RA), IL-8, and IL-10. This subtype plays

a crucial role in anti-inflammatory responses and tissue repair (40–

42); Immune complex and LPS/IL-1b stimulation triggers the

activation of M2b macrophages leading to increased secretion of

pro-inflammatory cytokines such as TNF-a, IL-6, and IL-1b. These
cells significantly contribute to immune regulation while also

promoting infection and tumor progression (43, 44); Activation

of M2c macrophages by either IL-10 or glucocorticoids results in

the release of numerous anti-inflammatory cytokines (IL-10, TGF-

b, IL-1RA). Primarily involved in tissue remodeling and

immunosuppression (45, 46), this subtype is often referred to as

“inactivated” macrophages; Lastly, the M2d phenotype arises from

synergistic induction by both IL-6 and adenosine A2a receptor

agonists; it primarily expresses IL-10 and VEGF, thereby facilitating

angiogenesis and tumor growth (42, 47). M2 macrophages are

involved in tissue repair and angiogenesis in skin lesions, but M2
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1383263
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1383263
hyperpolarization may lead to excessive collagen production and

scar formation (48). Therefore, maintaining the balance of M1/M2

macrophages is crucial for restoring the normal skin immune

environment, as disrupting this balance can lead to pathological

conditions (49, 50). Figure 1 provides an overview of the phenotype

and function of macrophages stimulated by various factors.

As crucial components of the skin’s immune response,

macrophages are present in both the dermis and epidermis.

Langerhans cells (LCs) in the epidermis develop similarly to

macrophages, originating from yolk sac-derived progenitor cells

and fetal liver monocytes. They are recruited into the epidermis

prenatally, and under homeostatic conditions, LCs undergo self-

renewal; only during inflammation do blood monocytes replenish

the population of epidermal LCs. LCs serve as the primary barrier of

the skin’s immune system, contributing to maintaining skin barrier

integrity, immune homeostasis, and limiting viral infections (51–

53). Dermal macrophages are also derived from the yolk sac and/or

fetal liver. Recent studies have found that CD163 perivascular

macrophages and CD64 perinerve macrophages exist in the

human dermis. When an injury occurs, dermal macrophages can

be rapidly activated to exert antigenic phagocytosis effect (54, 55).

Macrophages play a pivotal role in various cutaneous disorders,

particularly inflammatory skin conditions (32). Foamy

macrophages have been observed abundantly in acne lesions (56),

and these cells have been found to express TREM2 (57). Tran et al.

utilized single-cell transcriptome analysis to demonstrate the
Frontiers in Immunology 03
enhanced specificity and abundance of TREM2-expressing

macrophages at the site of skin lesions in acne patients (58).

Further investigation into the macrophage phenotype in acne

revealed a persistent presence of M1-type macrophages within the

skin lesions, potentially contributing to chronic inflammation in

affected individuals (59).
3 Evidence of macrophages
involvement in acne

3.1 Macrophages and sebum metabolism

Recently, several authors have emphasized the association

between acne and metabolic diseases, positing that acne is

essentially a metabolic disorder (60, 61). Disruption of sebum

metabolism represents the primary characteristic of acne and is

also deemed a necessary condition for its onset (62, 63). Sebum

consists of triglycerides, free fatty acids, cholesterol, squalene, and

other constituents (64). The increase in sebum secretion from

related sebaceous glands leads to abnormal keratinization of the

follicular sebaceous glands, microbial proliferation, inflammation

induction as well as initiation of potential immune mechanisms and

inflammatory cascade reactions resulting in skin lesion

formation (65).
FIGURE 1

The stimulation of various factors induced the differentiation of macrophages into distinct M1 and M2 phenotypes, each exhibiting a unique cytokine
secretion profile to facilitate immune response.
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The squalene content in the skin sebum of acne patients increases

to varying degrees (66). Squalene induces macrophages to express

TREM2, promoting lipid uptake and catabolic metabolism, thereby

enhancing the metabolic activity of macrophages and their

phagocytic ability toward lipids and C. acnes (56, 67). Knockout of

TREM2 in macrophages can inhibit downstream signaling pathways

and negatively regulate the recruitment of macrophages, leading to

insulin resistance (IR), adipose cell hypertrophy, and lipid

accumulation (68). However, it has been observed that squalene

epoxide can be generated from squalene by TREM2-expressing

macrophages. This conversion results in the formation of a

polyunsaturated lipid known as squalene epoxide which possesses

ROS-clearing properties. Consequently, this process blocks the

antibacterial effect of macrophages directly triggering inflammation

and exacerbating acne (69, 70). Concurrently, squalene stimulates

TREM2 macrophages to induce the secretion of pro-inflammatory

cytokines (IL-18, IL-1b), suppress the production of anti-

inflammatory cytokine IL-10, and exacerbate inflammation. These

pro-inflammatory factors also contribute to IR and worsen sebum

metabolism disorders (15, 71). These findings unveil a distinctive

interaction pattern between TREM2 macrophages and sebum

metabolism in patients with acne. In summary, disruption of

sebum metabolism in acne leads to excessive squalene production,

which enhances the phagocytosis of lipids and C. acnes by TREM2

macrophages. However, the converted squalene epoxides effectively

eliminate ROS, thereby impeding the antimicrobial response of

macrophages. Consequently, these TREM2 macrophages fail to

reduce bacterial load but instead secrete IL-18 and upregulate

chemokine expression, resulting in a disease-specific inflammatory

response that further exacerbates sebum metabolism disorder.

Epidemiological evidence suggests a higher prevalence of acne

among individuals with obesity compared to those with normal

weight, and a positive correlation has been observed between body

mass index (BMI) and the severity of acne (72). The presence of

excessive peripheral androgens and IR often accompanies obesity,

which may contribute to the increased susceptibility of obese patients

to acne. In this context, adipose tissue macrophages play a pivotal role

in regulating inflammation (73, 74). Studies have demonstrated a

significant increase in pro-inflammatory M1 macrophage infiltration

in the adipose tissue of obese mice compared to normal-weight mice

(75, 76). Obesity can impair the innate immune function of adipose

tissue, promoting macrophage polarization toward a pro-

inflammatory phenotype and resulting in excessive secretion of

TGF-b by mature adipocytes (77), which subsequently induces

Th17 cell production (78). Th17 cells are capable of secreting IFN-

g and IL-17, contributing to the formation of acne lesions (79).

The Sterol Regulatory Element-Binding Protein(SREBP),

Peroxisome Proliferator-Activated Receptor (PPAR), and Liver X

Receptor(LXR) pathways play crucial roles in regulating metabolism

and are closely associated with obesity. Increasing evidence has

highlighted their involvement in the pathogenesis of acne (80–82).

Active LXR can inhibit sebum cell proliferation, stimulate lipid

synthesis required for epidermal barrier formation (83), and induce

increased sebum production (84). Additionally, LXR activation has

been shown to upregulate the expression of inflammatory factors

such as IFN-g and promote M1 macrophage polarization (85).
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The SREBP serves as a direct target gene of LXR (86), promoting

cholesterol biosynthesis and playing a crucial role in macrophage

lipid metabolism (87, 88). In macrophages, SREBP hinders

cholesterol efflux through the ATP-binding cassette transporter A1

(87, 89), potentially contributing to foam cell formation in acne.

Intriguingly, activation of SREBP induces alterations in cholesterol

metabolism that impede affection while inducing pro-inflammatory

M1 polarization in macrophages (90). The regulation of sebaceous

lipids involves the coordinated action of PPAR and LXR, which play a

synergistic role in controlling epidermal growth, differentiation, and

lipid metabolism (91, 92). Treatment with PPARg ligands has been
shown to reduce sebum production in human sebaceous glands (93);

however, it has also been observed that PPARg can enhance lipid

accumulation in these cells and promote sebum secretion when

patients are treated with PPARg agonists (91, 94). Additionally,

activation of PPARg inhibits immune activation markers such as

TNF-a, IL-6, and IL-1b in mouse macrophages (95).

Acne patients frequently experience complications such as IR,

obesity, and disturbances in glucose and lipid metabolism, which

collectively contribute to heightened levels of M1 macrophages in

sebum, thereby exacerbating tissue inflammation and metabolic

disorders that further promote acne development (Figure 2).
3.2 Macrophages and abnormal
androgen regulation

Abnormal regulation of androgens plays a pivotal role in the

pathogenesis of acne. Women with acne generally exhibit higher

levels of serum testosterone and dihydrotestosterone compared to

non-acne patients, albeit within the normal range (96, 97). A

questionnaire survey involving 400 women revealed that over

50% of acne patients reported experiencing premenstrual episodes

(98), suggesting that fluctuations in androgen production rather

than solely excessive androgen production are likely to be the

triggering factor for acne. The sebaceous gland serves as a pivotal

target organ for androgens. Sebum secretion and the development

of sebaceous glands are directly regulated by androgens, particularly

testosterone (T), which directly controls sebaceous glands. T is

enzymatically converted into dihydrotestosterone (DHT) by type I

5a-reductase (99). DHT promotes the proliferation of sebaceous

cells, augments sebum secretion, and induces the release of pro-

inflammatory factors. However, when there is an improper

excretion of increased sebum production, it accumulates within

hair follicles forming lipid thrombi that combine with C. acnes

invasion to trigger acne formation (100–102). The regulation of

androgens on sebaceous glands is closely related to the affinity

between androgens and androgen receptors (AR). Moreover, AR

can independently regulate the development of sebaceous glands,

stimulate excessive secretion, up-regulate certain inflammatory

factors, promote inflammatory response, and contribute to acne

pathogenesis (103, 104).

The binding of active androgens to AR can stimulate macrophages

to secrete pro-inflammatory factors IL-1, IL-6, and TNF-a (105),

which is consistent with the inflammatory response observed at acne

lesion sites. Androgen precursors can inhibit the secretion of
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corticotropin-releasing hormone and adrenocorticotropin through

feedback regulation, reducing the level of a-melanocyte stimulating

hormone that possesses anti-inflammatory effects, thereby indirectly

promoting the release of pro-inflammatory factors (102). It has been

demonstrated that IL-6 and TNF-a can stimulate androgen synthesis

and secretion (106). Therefore, it can be inferred that dysregulated

androgen regulation leads to macrophage-mediated secretion of pro-

inflammatory factors in acne lesions, inducing M1 macrophage

polarization, local inflammatory responses, further exacerbating

abnormal androgen levels, forming a vicious cycle contributing to

the onset and progression of acne symptoms.

Recent studies have revealed a close association between acne and

IR as well as hyperinsulinemia, with the severity of acne exhibiting a

consistent correlation (107). Hyperinsulinemia stimulates the IGF-1

receptor, leading to increased expression of IGF-1, augments adrenal

sensitivity to adrenocorticotropic hormone, facilitates adrenal

androgen production, enhances AR activity, and subsequently

manifests clinical characteristics indicative of aberrant androgen

regulation (108). The occurrence of IR is intricately linked to

inflammation (73). Macrophages, as the primary source of

inflammatory mediators, can secrete pro-inflammatory factors such

as TNF-a to facilitate IR formation by augmenting serine

phosphorylation of insulin receptor substrate-1 (109). Under

conditions characterized by IR or inflammation, macrophage-

mediated insulin signaling phosphorylates forkhead box O1

(FOXO1) and promotes nuclear exclusion. The heightened activity

of FOXO1 further stimulates excessive IL-1b production in

macrophages (110), which potentially exacerbates IR and

contributes to abnormal androgen regulation. Inhibiting FOXO1 in

macrophages can induce polarization toward an M2-like phenotype

in lipopolysaccharide-stimulated macrophages, thereby reducing

inflammatory response, alleviating IR, and diminishing androgen
Frontiers in Immunology 05
secretion along with AR activity (111, 112). In acne pathogenesis, IR

may promote the upregulation of FOXO1 expression in macrophages

leading to their polarization toward an M1 phenotype instead of an

M2 phenotype. This phenomenon subsequently aggravates IR and

disrupts normal androgen regulation.

In summary, dysregulated androgen signaling promotes the

polarization of cutaneous macrophages toward the M1 phenotype,

subsequently inducing the upregulation of pro-inflammatory

cytokines such as IL-6 and TNF-a, thereby triggering a local

inflammatory response. This cascade further enhances androgen

synthesis and secretion, ultimately leading to acne development.
3.3 Macrophages and C. acnes

The bacterium C. acnes is widely distributed on the skin and

constitutes the predominant microbe in the sebaceous glands of hair

follicles, accounting for approximately 89% (113). C. acnes has the

ability to produce endogenous porphyrins that oxidize squalene,

thereby promoting acne vulgaris formation in keratinocytes (114).

On the other hand, C. acnes can hydrolyze sebum into glycerol and free

fatty acids, stimulating hair follicles and exacerbating acne (115). Mice

exposed to an excess of C. acnes exhibit symptoms resembling human

acne, including redness and erythema. Microscopic examination

reveals a significant increase in infiltrating inflammatory cells such as

macrophages (116). Consequently, exposure to excessive amounts of C.

acnes is commonly employed to establish animal models mimicking

acne-like conditions (117).

According to extensive in vivo and in vitro investigations, it has

been observed that C. acnes infiltration into sebaceous glands leads to

the secretion of a diverse range of bioactive enzymes, including lipase.

This enzyme is capable of hydrolyzing triglycerides present in sebum,
FIGURE 2

Macrophages and sebum metabolism: Aberrant sebum metabolism promotes the polarization of TREM2 macrophages toward the M1 phenotype,
thereby inducing the upregulation of pro-inflammatory factors such as IL-18 and IL-1b. These cytokines themselves can contribute to IR,
exacerbating cortical metabolic disorders. Sebum metabolism is intricately linked to obesity, which can drive the polarization of adipose tissue
macrophages toward the M1 phenotype, influencing SREBP, PPAR, and LXR pathways and ultimately impacting sebum metabolism.
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resulting in the generation of free fatty acids and low molecular weight

polypeptides. The activation of toll-like receptors (TLRs) on

keratinocytes and sebum cells by these low molecular weight

peptides subsequently upregulates the expression levels of TLR2 and

TLR4. Additionally, this process triggers macrophages to adopt an M1

phenotype and release pro-inflammatory cytokines (such as IL-1 and

TNF-a), which play pivotal roles in acne-associated inflammatory

responses (118–120). IL-1b plays a pivotal role in the initiation of acne

inflammation (121). Simultaneously, pro-inflammatory cytokines like

IL-1b and TNF-a can also induce excessive production of proteolytic

enzymes (e.g., matrix metalloproteinases), leading to collagen fiber

degradation, impaired recombination, and subsequent alterations in

local skin tissue structure during the reparative phase of post-acne

erythema, ultimately resulting in scar formation (122, 123).

In summary, C. acnes in the skin can induce macrophages to

polarize into M1 type and secrete pro-inflammatory factors, thereby

driving the inflammatory response associated with acne. On the

other hand, these pro-inflammatory factors contribute to collagen

fiber degradation and recombination, ultimately leading to the

development of acne erythema.
4 Natural plant products modulate the
influence of macrophages in acne

4.1 Quercetin

Quercetin is a natural flavonoid of significant medicinal value,

characterized by its yellow needle-like crystal monomer (124). It is

widely distributed in Chinese herbal medicine as well as various

vegetables and fruits. This compound exhibits diverse biological and

pharmacological effects, encompassing anti-inflammatory,

antioxidant, antibacterial, and cardiovascular protective properties

(125). The anti-inflammatory and antibacterial effects of quercetin

have shown promising potential in the treatment of acne (126, 127).

Studies have demonstrated that quercetin effectively inhibits the

upregulation of pro-inflammatory cytokines including IL-1b, IL-8,
IL-6, and TNF-a in C. acnes-stimulated macrophages. Furthermore,

quercetin significantly mitigated skin erythema induced by C. acnes.

The study also revealed that quercetin exerts an inhibitory effect on

TLR-2, a key innate immune receptor, thereby influencing the

functioning of the innate immune system. Although the specific

phenotype of macrophages stimulated by quercetin was not specified

in this study, considering TLR-2’s high expression on macrophage

surfaces and its impact on macrophage polarization, it is plausible to

suggest that quercetin promotes the polarization of macrophages

toward the M2 phenotype while reducing their M1 phenotype.

Consequently, we propose that quercetin can effectively suppress

pro-inflammatory factor secretion byM1macrophages in acne (128).
4.2 Baicalin

Baicalin is a lipophilic flavonoid glycoside isolated from

Scutellaria baicalensis (129). It has anti-inflammatory,

antioxidant, cardioprotective, anticancer, and antiviral effects
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(130, 131). It was found that baicalin significantly decreased the

expression of M1 macrophage-related cytokines such as IL-1b, IL-6,
TNF-a and NLRP3 in acne models, and inhibited the M1

polarization of macrophages by inhibiting the nuclear

translocation of NF-kB p65. Consequently, it is anticipated to

emerge as a viable therapeutic option for the management of

acne (132).
4.3 Schisandrin

Schisandrin (SCH) is a lignan-like compound that is the main

bioactive component isolated from Schisandra chinensis (133). It

has been reported to have a variety of biological activities, such as

anti-inflammatory, hepatoprotective, anti-tumor, and antioxidant,

and affects the respiratory, cardiovascular, and central nervous

systems (134). In addition, SCH has been found to prevent

lipopolysaccharide-induced inflammation (135). Therefore, some

scholars have studied the mechanism of SCH to improve acne.

Firstly, it was observed that SCH significantly suppressed caspase-1

activation and downregulated the expression of the inflammatory

cytokine IL-1b. Moreover, SCH exhibited the ability to attenuate

NLRP3 levels by inhibiting mitochondrial ROS production, ATP

release, and K efflux, thereby impeding NLRP3 inflammasome

activation. In conclusion, we propose that SCH exerts its acne-

inhibitory effects by restraining the phenotypic transformation of

M1 macrophages and mitigating inflammatory infiltration (136).

Acne comorbidities suggest that diabetes mellitus is closely

related to acne, and it has been found that SCH C can attenuate

diabetic nephropathy by regulating macrophage M1 to M2

polarisation via Swiprosin-1/IFN-g-Rb, which could also

potentially serve as a future target for SCH in the treatment of

acne (137).
4.4 Licochalcone A

The compound licochalcone A (LicA), derived from

glycyrrhizin (138), is a flavonoid with diverse pharmacological

effects including anti-inflammatory, antimicrobial, and

antioxidant properties in the skin (139). Cai et al. (140) found

that LicA significantly inhibited the binding of LPS and TLR4 and

blocked the activation of signaling pathways downstream of TLR4,

including MAPK and NF-kB, thereby suppressing macrophage

inflammation. Ludger et al. (141) found similar anti-

inflammatory effects of LicA in a model of skin irritation, and the

researchers further demonstrated that moisturizers containing LicA

can ameliorate disease severity in patients with mild to moderate

acne (142). Subsequent investigations have further elucidated the

mechanism of action of LicA on acne, revealing its potential for

alleviating ear inflammation and swelling symptoms in mice with

acne models. In vitro, experiments utilizing bone marrow-derived

macrophage (BMDM) cells have indicated that LicA hampers

NLRP3 inflammasome activation in C. acnes-induced

macrophages by impeding mitochondrial ROS production. LicA

inhibits the production of ROS in macrophages, which are secreted
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by M1-type macrophages and can further drive M1 polarisation, so

we hypothesized that LicA could inhibit M1-type macrophage

polarisation by inhibiting ROS production (143).
4.5 Phenolic compounds from Quercus
acutissima Carruth. leaves

The perennial tree Quercus acutissima Carruth., belonging to

the Fagaceae family, exhibits anti-allergic, anti-inflammatory, and

anti-edema properties, making it an effective treatment for

conditions such as eczema, boils, diarrhea, and tonsillitis (144).

The researchers conducted a comparative analysis of the effects of

phenolic compounds derived from Quercus acutissima Carruth.

leaves, namely hyperoside, astragalin, kaempferol 3-O-(6”-galloyl)-

b-D-glucopyranoside, quercetin 3-O-(6”-O-galloyl)-b-D-

glucopyranoside, pedunculagin, and casuarinin on acne. Among

these compounds, casuarinin exhibited superior efficacy. In vitro

assays using RAW264.7 cells demonstrated that the extracts

effectively suppressed the production of NLRP3, IL-1b, and 5a
reductase in macrophages. This effect can be attributed to the

inhibitory action of phenolic compounds present in Quercus

acutissima Carruth. leaves on M1 macrophage polarization and

subsequent reduction in inflammatory response (145).
4.6 Cembrene diterpenoids from the
cultured soft coral sinularia flexibilis

Diterpenoids, the most abundant class of metabolites in soft

corals, exhibit diverse biological activities including anti-tumor,

anti-inflammatory, and antibacterial effects (146). The diterpenoid

compound derived from Taiwan soft coral has been discovered to

possess inhibitory effects on the expression of pro-inflammatory

proteins, including iNOS and cyclohexane-2 (COX-2), in LPS-

stimulated macrophages (147). Six cembrene diterpenoids were

isolated from cultured soft coral sinularia flexibilis by researchers,

who observed their significant reduction of ear edema induced by C.

acnes in rats. Moreover, these compounds demonstrated a decrease

in the expression of inducible NO synthase in RAW264.7 cells. We

propose that cembrene diterpenoids inhibit M1 macrophage

polarization, thereby reducing NO production during this

process. Additionally, cembrene diterpenoids were found to

significantly inhibit the phosphorylation of related proteins within

the MAPK pathway in skin lesions. Therefore, the therapeutic

potential of cultured soft coral Sinularia flexibilis-derived

cembrene diterpenoids for acne treatment is supported and they

play an active role as an alternative therapy for acne patients (148).
4.7 Meconopsis quintuplinervia Regel

The Meconopsis quintuplinervia Regel (MQ), a plant belonging to

the genus Meconopsis Vig in the Papaveraceae family, predominantly

thrives in the Tibet Autonomous Region. Initial investigations have

revealed that its active extract primarily comprises flavonoids and
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polyphenols. According to Tibetan Medicine Annals, it is documented

that MQ possesses properties such as heat-clearing and detoxification,

antioxidation, anti-inflammatory, and analgesic effects. It is commonly

employed for treating ailments including headaches, hepatitis,

pneumonia, and edema, among others (149). In a murine model of

acne, it has been observed that MQ mitigates erythema and

inflammatory infiltration in ear acne. Furthermore, the expression of

M1-related cytokines (IL-6, IL-1b, and TNF-a) was reduced in an

inflammatory macrophage cell model, while phosphorylation of

proteins associated with the MAPKs pathway such as ERK and JNK

was significantly inhibited in RAW264.7 cells. Additionally, nuclear

translocation of NF-kB p65 was suppressed. Hence, MQ exhibits

therapeutic potential by modulating macrophage infiltration and

polarization within acne lesions (150).
4.8 Kaempferia parviflora extracts

The herbaceous plant Kaempferia parviflora (KP), a member of

the ginger family (151), exhibits anti-inflammatory, anti-allergic,

and anti-obesity effects (152). It is rich in various flavonoids such as

5,7-dimethoxy-flavonoids, 5-hydroxy-3,7,4’- trimethoxyflavone,

and 5-hydroxy-3,7- dimethoxyflavone (153), which have been

implicated in metabolic diseases, cognitive disorders, and cancer

research (154). The extracts of Kaempferia parviflora (KP) were

observed to attenuate the expression of inflammatory cytokines,

specifically TNF-a, in lipopolysaccharide-stimulated macrophages.

Additionally, it exhibited inhibitory effects on NO production and

downregulated the expression of iNOS and COX-2. Furthermore, it

suppressed the phosphorylation of IĸBa and NF-kB as well as the

enhanced nuclear translocation of NF-kB p65. Lastly, KP extracts

demonstrated an inhibitory effect on sebum cell-mediated lipid

synthesis. In conclusion, KP extracts possess potential anti-acne

properties by modulating M1 macrophage polarization and

reducing inflammatory infiltration (155).
4.9 Jumihaidokuto

Jumihaidokuto (JHT) is a traditional Japanese-Chinese herbal

medicine formulated with platycodon root, dandelion, bamboo

leaves, bupleurum root, snake seed root, tuckahoe, oak bark,

licorice, Schisandra spicule and ginger (156). The herb possesses

heat-clearing and detoxifying properties, commonly employed in

the treatment of suppurative dermatosis, urticaria, eczema, and

athlete’s foot among other ailments (156, 157). JHT has

demonstrated efficacy in inhibiting acne breakouts (157).

Experimental findings indicate that JHT significantly enhances

the expression of M2-associated CD206 cells as well as M1-

associated CD86 and CD192 markers, suggesting a non-selective

activation of macrophages rather than targeting specific subtypes.

Considering its observed inhibition of rat ear acne model rashes at

24 hours and beyond, it is hypothesized that macrophage activation

may contribute to the reduction or acceleration of dermatitis

regression; however, further investigation is required to elucidate

the underlying mechanism (158).
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5 Conclusion

The pathological features of acne include inflammation,

disturbance of sebum metabolism, abnormal androgen regulation,

colonization of C. acnes, and abnormal keratosis of hair follicles and

sebaceous glands (159–163). These characteristics are not

independent but rather intertwined and mutually causal (164).

With the continuous advancement of research on macrophages in

various fields, including inflammation and metabolism, our

understanding of macrophages is expanding. As summarized in

this paper, the close association between macrophages and acne

suggests a reciprocal relationship between these two fields. In the

context of acne pathogenesis, macrophages polarize into pro-

inflammatory M1 type and secrete pro-inflammatory cytokines,

thereby connecting these underlying mechanisms. Although there

have been sufficient studies on the role of macrophages in sebum

metabolism disorder, abnormal androgen regulation, and

colonization of C. acnes as independent pathogenic factors (165,

166), their specific involvement in acne remains limited, and further

studies are needed to understand the specific mechanisms of

macrophage regulation in acne. In recent years, the occurrence

and mechanisms of macrophages in the context of inflammatory

skin disease have been a focal point of research in the field of

dermatology. Further investigation into the mechanism of

macrophages in acne will not only advance our knowledge

of acne but also shed light on the prevention and treatment of

other inflammatory skin disease, such as rosacea (167, 168).

Studies conducted in the past have indicated that natural plant

products possess therapeutic properties that can be beneficial in

treating acne. However, fewer studies have been conducted on the

therapeutic effects of natural plant products on acne through

macrophage modulation, focusing mainly on flavonoids, phenols,

lignans, and other compound classes. Most of these studies

indirectly indicate that they can treat acne through macrophage

targeting by investigating the inhibition of M1 macrophage-

associated cytokine expression by natural compounds. Moreover,

most of these studies are based on animal experiments and lack

validation in large-scale, long-term clinical studies. These

limitations highlight the need for further research to bridge the

gap between basic experiments and clinical translation. We

encourage researchers to further explore and elucidate the

signaling pathways associated with macrophages, to study the

mechanisms linking macrophages to the pathological process of

acne, and to further investigate the key targets of natural plant

compounds that regulate macrophages, so as to provide value for

the development of new drugs and to further provide new ideas and

effective strategies for the treatment of acne and even inflammatory

skin diseases in the future.
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