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Towards a survival risk prediction
model for metastatic NSCLC
patients on durvalumab using
whole-lung CT radiomics
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Nikolaos Nikolaou2†, Ignacio Gonzalez-Garcı́a3†,
José Domingo Salazar2, Paul Metcalfe2 and Joachim Reischl4†

1Oncology Data Science, AstraZeneca, Waltham, MA, United States, 2Oncology Data Science,
AstraZeneca, Cambridge, United Kingdom, 3Clinical Pharmacology and Quantitative Pharmacology,
Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, United Kingdom, 4Diagnostic
Science, Precision Medicine, AstraZeneca, Gothenburg, Sweden
Background: Existing criteria for predicting patient survival from immunotherapy

are primarily centered on the PD-L1 status of patients. We tested the hypothesis

that noninvasively captured baseline whole-lung radiomics features from CT

images, baseline clinical parameters, combined with advanced machine learning

approaches, can help to build models of patient survival that compare favorably

with PD-L1 status for predicting ‘less-than-median-survival risk’ in the metastatic

NSCLC setting for patients on durvalumab. With a total of 1062 patients, inclusive

of model training and validation, this is the largest such study yet.

Methods: To ensure a sufficient sample size, we combined data from treatment

arms of three metastatic NSCLC studies. About 80% of this data was used for

model training, and the remainder was held-out for validation. We first trained

two independent models; Model-C trained to predict survival using clinical data;

and Model-R trained to predict survival using whole-lung radiomics features.

Finally, we created Model-C+R which leveraged both clinical and

radiomics features.

Results: The classification accuracy (for median survival) of Model-C, Model-R,

and Model-C+R was 63%, 55%, and 68% respectively. Sensitivity analysis of

survival prediction across different training and validation cohorts showed

concordance indices ([95 percentile]) of 0.64 ([0.63, 0.65]), 0.60 ([0.59, 0.60]),

and 0.66 ([0.65,0.67]), respectively. We additionally evaluated generalization of

these models on a comparable cohort of 144 patients from an independent

study, demonstrating classification accuracies of 65%, 62%, and 72% respectively.

Conclusion: Machine Learning models combining baseline whole-lung CT

radiomic and clinical features may be a useful tool for patient selection in

immunotherapy. Further validation through prospective studies is needed.
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Introduction

Lung cancer is the leading cause of cancer death and makes up

around 25% of cancer deaths worldwide (1). The 5-year survival for

patients with non-small cell lung cancer (NSCLC) is approximately

25% but drops to almost 7% in the case of metastatic NSCLC

(mNSCLC). Recent advances have led to development of targeted

immune checkpoint inhibitors such as durvalumab, targeting

programmed death ligand 1 (PD-L1), which has shown durable

clinical benefit to patients with locally advanced NSCLC (2). In this

case levels of PD-L1 expression, derived from evaluation of biopsy

tissue, have been shown to impact overall survival (OS) following

durvalumab treatment (3). Lung biopsies are invasive, often

challenging due to anatomical access, do not account for inter/

intra lesion heterogeneity, and are unable to provide evaluations for

all lesions. Radiological imaging e.g., computed tomography (CT),

provide non-invasive characterization of all lesions as well as the

surrounding anatomical region. This information is available at

baseline as well as longitudinal time-points, whereas longitudinal

biopsies are impractical. This has been a key motivation for our

exploration of non-invasive imaging based patient stratification

approaches in the mNSCLC setting.
Literature review

Given that OS is typically a primary endpoint for clinical trials

to demonstrate efficacy, we searched the PubMed database to

identify relevant prior work in the field of mNSCLC where

baseline CT images (radiomics) were used for OS prediction in

patients on immunotherapy (IO) treatment (4). The most relevant

publications as of December 1, 2022, are highlighted in Table 11.

While such prior work has demonstrated the benefit of CT

radiomics and clinical models, unlike our work, all the models

reported in literature have been trained on relatively small datasets

of <200 patients, which can limit the variability encountered and

thereby model generalization in unseen datasets. More importantly,

all prior work requires accurate delineation of the target tumor. This

typically requires a slice-by-slice annotation by an experienced

radiologist which is a time-intensive task. Such a primary-lesion

(and/or tumor macro-environment) focused approach does not

take into consideration the contribution of other lesions, anatomical

structures (e.g., lymph nodes), as well as the characteristics of

healthy lung tissue that may be relevant to the OS of the patients

(e.g., overall health status, tolerance to IO, etc).
Summary of contributions

In this study we aim to establish the value of non-invasive CT

radiomic features in patient selection for durvalumab monotherapy
1 For additional details regarding the selection of these specific references,

please refer to the exact search link4 and Supplementary Material -

Literature Review.
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or in combination in an mNSCLC setting. This is the largest study so

far looking at baseline CT radiomic features for IO survival

prediction in mNSCLC (N > 1000 including training, testing, and

independent cohort evaluation). Apart from the sample size, since

our data covers multiple sites and clinical trials, there is reasonable

diversity in the imaging data, as shown in Table 2, to ensure that

models developed are robust to such variations. Additionally,

compared to existing literature, we do not use any lesion

annotation for extraction of radiomic features while demonstrating

favorable performance compared to prior art for survival-based

patient risk prediction. The following sections will describe in

detail the data, methods, and results, followed by a brief discussion

towards next steps in our research.

Materials and methods

Data preparation

We performed a retrospective analysis using data from three

phase III clinical studies (ARCTIC [NCT02352948] (10, 11), MYSTIC

[NCT02125461] (3, 12), and NEPTUNE [NCT04571658] (13, 14))

investigating durvalumab alone or in combination (durvalumab with

tremelimumab) in patients with a diagnosis of mNSCLC. The analysis

presented in the manuscript uses data from patients that provided

informed consent including for secondary reuse. All studies were

conducted in compliance with the Declaration of Helsinki and the

United States (US) Food and Drug Administration (FDA) Guidelines

for Good Clinical Practice.

The dataset of 1320 patients was assessed for eligibility (see

Figure 1A). We manually reviewed the images as a quality check for

image resolution and motion artifacts and excluded patients with

in-plane resolution of over 1 mm or slice thickness (out-of-plane

resolution) over 10 mm (n = 107). Finally, patients with missing

clinical parameters were also excluded (n = 295) resulting in a total

of 918 patients as shown in Figure 1B and Supplementary Figure 1.

A complete list of the included clinical parameters can be found in

the Supplementary Material (see Supplementary Table 3).

Prior to splitting the analysis data into training and test cohorts,

Kaplan-Meier (KM) (15) survival curve of the treatment arms of the

three studies was generated (see Supplementary Figure 2A) and no

significant difference was observed in the survival times when

analyzed as a combined cohort (though it must be noted that

there are patient subpopulations where there are differences in

survival) (3, 16). Thus, data from the three clinical trials were

combined to create a large analysis cohort (referred to as the

primary study cohort) that comprised of 918 patients. PD-L1

status for each patient was determined at 25% cut-off2. Patients

with over 25% PD-L1 expression were labeled as PD-L1-positive

and PD-L1-negative otherwise. KM curve for PD-L1 status showed

a significant difference between PD-L1- positive and negative

patients (Supplementary Figure 2B). The patient cohorts were
The data for 25% cutoff is consistently available across all the studies used

r our analysis. KM curves for different sub-cohorts where we may have 50%

utoff information available are provided in Supplementary Figure 3.
2
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thus generated via stratifying based on PD-L1 and study, and were

split 80:20 into training and test datasets.

In order to use a completely blinded cohort (previously unseen

by the model) for validation, a matching cohort (with respect to

drug regimen and indication) was selected from a drug-escalation

study CP-1108 (NCT01693562) (17) (n = 224). Patients with

disease stage III and below at the time of entry to the clinical trial

were excluded from the analysis. Patients were further excluded

based on the criteria used in the primary cohort. The final

independent validation cohort consisted of 144 patients. Number

of patients in each study and the PD-L1 distribution is shown

in Figure 1A.

Table 2 shows the stratification of patients in the different

cohorts. The patient demographics along with the baseline tumor

size are included in Table 2 for each cohort. With a median survival

of 332 days (see Figure 1C) in the primary cohort, 1-year survival

was selected as the outcome for modeling.
TABLE 1 Overview of Relevant Prior Work Towards OS Prediction Using Baseline CT Images in Patients on IO, in a mNSCLC Setting.

Reference Total no.
of
Patients

Accuracy (%) in Test
Cohort
(mutually exclusive
training and test sets
sampled from
same cohort)

AUC in Test Cohort
(mutually exclusive
training and test sets
sampled from
same cohort)

Concordance Index
(robustness to training/
test splits)

Generalization
Accuracy (%)
(independent
cohort)

Jazieh
et al. (5)

133 N/A (Ntest = 69) N/A 0.69 (N/A) N/A

Gong et al. (6) 224 50.79 (Ntest = 63) 0.52 (0.39–0.65) 0.51 (0.43–0.6) 52.94 (Ntest = 68)

He et al. (7) 236 83.3 (Ntest = 48) N/A 0.75 (0.59–0.90) N/A

Liu et al. (8) 46 N/A (Ntest = 1) 0.64 (0.48–0.79) 0.86 (0.74–0.97) N/A

Trebeschi
et al. (9)

123 N/A (Ntest = 42) 0.76 (N/A) N/A N/A

Work
Presented*

917 66.8 (Ntest = 199) 0.71 (0.65–0.78) 0.66 (0.65–0.67) 73.5 (Ntest = 144)
Values not reported are indicated with N/A. Ntest indicates the number of “held-out” samples used to test a model (these samples are not seen by the model during the training phase).
*Results reported are for Model-C+R. Evaluation metrics can be found in Supplementary Table 5.
AUC, area under the curve; CT, computed tomography; IO, immunotherapy; OS, overall survival; mNSCLC, metastatic non-small cell lung cancer; NA, not applicable.
TABLE 2 Patient Cohorts and Demographics.

Patient Cohorts

Study Name Training Set Test Set Independent
Study

PD-L1 Status PD-L1 Status PD-L1 Status

Neg. Pos. Neg. Pos. Neg. Pos.

ARCTIC 97 26 29 7 – –

MYSTIC 191 158 51 43 – –

NEPTUNE 147 99 42 28 – –

CP1108 – – – – 66 78

All data by PD-
L1 status

435 283 122 78 66 78

All data combined 718 200 144

Patient Demographics and Imaging Characteristics

Covariate Training
Cohort

Test Cohort Independent
Study

Sex = Female 31% 27% 43%

Age (years): Mean
(± SD)

62.99 (± 9.71) 62.9 (± 9.99) 64.03 (± 11.57)

Overall survival:
Median (IQR)

317 (126–699) 385 (149–836) 282 (107–856)

Baseline tumor size:
Median (IQR)

82 (49–117) 83 (50–121) 77 (54–114)

In-plane resolution
(mm): Mean (± SD)

0.78 (± 0.10) 0.78 (± 0.10) 0.80 (± 0.10)

Slice thickness (mm):
Mean (± SD)

4.3 (± 1.27) 4.4 (± 1.24) 4.1 (± 1.13)

(Continued)
TABLE 2 Continued

Patient Demographics and Imaging Characteristics

Covariate Training
Cohort

Test Cohort Independent
Study

CT scanner
manufacturers
(Top 4)

SIEMENS
(33%)
GE (32%)
TOSHIBA
(16%)
PHILIPS (16%)

GE (33%)
SIEMENS
(31%)
PHILIPS (20%)
TOSHIBA
(15%)

SIEMENS
(46%)
GE (43%)
PHILIPS (4%)
TOSHIBA (4%)
Based on data available from all the studies, we used a cutoff of 25% to indicate PD-L1 positive
or negative to ensure a consistent cutoff across studies.
IQR, interquartile range; Neg., negative; PD-L1, programmed death ligand 1; Pos., positive;
SD, standard deviation.
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Feature extraction

Pretreatment clinical-radiological information collected include

patient demographics, routine blood work, and high-resolution CT

imaging. The process of extracting features from both these

modalities has been described below.
Frontiers in Immunology 04
Clinical features
The clinical features available included demographic and blood

work values. Categorical demographic information such as gender,

smoking history, Eastern Cooperative Oncology Group (ECOG)

performance status and treatment combination were encoded into

binary variables. Other numerical features collected were body mass
B

C D

E

A

FIGURE 1

Overview of the modeling for the generation of whole-lung radiomics for survival risk prediction. (A) Bar chart showing the number of patients in
each of the clinical trials. PD-L1 status was determined at 25% cutoff. (B) Overview of the training and testing procedure using XGBoost model. The
MYSTIC, ARCTIC, and NEPTUNE datasets were stratified into training (80%) and test (20%). The model was tuned by further dividing the training set
into training (80%) and validation (20%). The resulting trained model was evaluated on the test set. Robustness is evaluated by testing on an
independent study cohort. (C) Distribution of survival times in the study cohort. (D) Top-10 features from Model-C as computed by SHAP.
(E) Annotation-free radiomics feature extraction pipeline. Dashed boxes indicate currently implemented methods in the pipeline where other options
exist (e.g., sampling from pre-specified sites from an anatomical atlas as shown). ALP, alkaline phosphatase; BLTUMSZ, baseline tumor size; CL,
chlorine; GGT, gamma glutamyl transferase; HCT, hematocrit; LDH, lactate dehydrogenase; MG, magnesium; NEUT, neutrophils; PD-L1,
programmed death ligand 1; SHAP, SHapley Additive exPlanations; TSH, thyroid stimulating hormone.
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index (BMI), blood work values such count of neutrophils, count of

lymphocytes, amount of albumin, gamma-glutamyl transferase

(GGT), alkaline phosphatase (ALP), and other available baseline

models. Features that were highly correlated with each other were

dropped from the analysis. The complete list of included clinical

parameters and their units can be found in Supplementary Material

(see Supplementary Table 3). Figure 1D shows the top features

selected in the clinical model (Model-C).
Whole-lung radiomic features
CT images of the lung region were captured for each patient at

baseline using whole-body, thoracic, or chest and abdominal CT

imaging. Our in-house annotation tool was used to delineate the

lung extents along the coronal and axial views in the abdominal and

whole-body CT images, and the images were cropped to include

only this lung region. Since the images were captured from multiple

sites using several different scanners, intensity harmonization was

performed by clipping CT gray values in the range of [-120–300]

Hounsfield Units to focus on lung tissues (18). This was then

followed by sampling patches from the image. Different sampling

strategies can be employed such as anatomically informed sampling

(based on lobes, nodes, etc.), uniform sampling, etc. We uniformly

sampled the entire lung region and extracted n=80 3D patches of

size 5cm3, as illustrated in Figure 1E. Finally, radiomic features such

as statistical radiomic features and texture features including gray-

level cooccurrence matrix (GLCM), gray-level run length matrix

(GLRLM), gray-level difference matrix (GLDM), gray-level size

zone (GLSZM), and neighborhood gray tone difference matrix

(NGTDM) were extracted using PyRadiomics (19) with the 3D

patches serving as the region of interest. The above proposed

pipeline is novel and is shown in Figure 1E.
3 Further details on the training of the XGBoost model can be found in

Supplementary Material – Analysis Pipeline.
Machine learning modeling

The proposed whole-lung radiomics approach yielded radiomic

features from a fixed number of patches in a given CT image. These

features were then aggregated using simple summary statistics

across the patches, namely mean, median, minimum, maximum,

sum, mean absolute deviation, skew, and kurtosis, to provide a

holistic view of the lung as well as to reduce the dimensionality

problem that would otherwise arise. Feature selection was

performed on the aggregated features on the training set using

correlation and mutual information approaches with bootstrapping

to further reduce the feature dimension. Specifically, from each pair

of features with absolute Spearman’s correlation >0.9 a single

feature is retained. Features with the highest mutual information

with the target (OS) were selected. The process was repeated five

times on separate bootstraps of the training set and only features

selected at least twice made the final feature set. This was performed

independently for the clinical and radiomic features. The selected

features were then used as input to train an XGBoost (20) model.

The parameters of the model were tuned using the training data and

the threshold for prediction was determined using the receiver

operating characteristics curve on the validation data. The final
Frontiers in Immunology 05
model was then generated by finetuning on the validation data3.

This final model was used to evaluate the performance on the test

set as well as the generalizability to an independent study cohort.

SHapley Additive exPlanations (SHAP) (21) were used to identify

important features contributing to the model performance as shown

in Figure 1D. The overall analysis pipeline is shown in

Supplementary Figure 4. Python (22) programming language was

used for the feature extraction and selection pipelines. PyRadiomics

(19) was used for feature extraction. The modeling and evaluation

were implemented in R programming language (23). The final

model parameters are shown in Supplementary Table 4. Cox

Proportional Hazards (24) (Cox PH) was used to compute the

hazard ratios in the evaluation and the KM method was used for

survival analysis.
Results

We evaluated individual models using clinical features (Model-C),

radiomic features (Model-R), and the combined clinical-radiomic

model (Model-C+R). The following sections describe the survival

risk stratification experiments and robustness experiments.
Survival-based risk stratification

Following the approach detailed in the Machine Learning

modeling, tuned XGBoost models were evaluated on the test set.

First Model-C, trained using the selected clinical parameters was

evaluated on the held-out test set and an accuracy of 63% was

achieved. Survival curves were generated using KM analysis and the

patient stratification was quantified via the p-value. The clinical

model achieved a significant p-value (0.00011) suggesting that it is

capable of stratifying high- and low-risk patients on IO.

Next, the radiomics features only model (Model-R) was

evaluated on the held-out test set and an accuracy of 54% was

achieved which was much lower than that of the clinical model. The

KM analysis similarly shows a non-significant separation with a p-

value of 0.091. However, the separation in median survival times

between low-risk and high-risk patients is 243 days, similar to that

found in the PD-L1 status KM curves as shown in Figure 2B.

We then evaluated the potential complementary nature of the

clinical and radiomic features using Model-C+R. The combined

model yielded an accuracy of 68% on the held-out test set, a 5% gain

over Model-C. The SHAP feature importance plot for the model

was generated and the importance and contribution of radiomic

features alongside clinical ones was noted in Supplementary

Figure 6 (top panel). The KM analysis yielded a p-value <0.0001

suggesting a significant separation of high- and low-risk patients.

Furthermore, separation in median survival times was largest using

Model-C+R, at 486 days.
frontiersin.org
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The large separation in median survival times suggests the

benefit of combining radiomic and clinical models. The KM

curves for the models are shown in Figure 2B.
Model robustness

Sensitivity to data splits
Machine learning algorithms are often affected by potential

unseen biases in the selection of the training/test splits. To test the

sensitivity of the selected features to the selection of training/test

splits, 10 random training/test splits were tested on the OS

prediction task. The results, shown in Figure 2A, validate the
Frontiers in Immunology 06
stability of the selected features to training/test splits with

consistent concordance indices and a tight 95% confidence

interval across all models.

Generalization to independent study cohort
The independent study cohort was used to validate the models

trained on the training set. The survival distribution of the independent

study cohort, shown in Figure 3A, had a median survival of 282 days,

35 days lower than that of the training set (primary study cohort).

Previously selected features were extracted from the independent study

cohort and tested using the three models: Model-C, Model-R, and

Model C+R trained on the primary study cohort training data. Similar

to the performance observed on the test set (primary study cohort),
B

A

FIGURE 2

Model performance on the primary study cohort. Model+ve indicates model prediction of OS ≥365 and Model-ve indicates model prediction of OS
<365. (A) Sensitivity analysis using 10 random train/test splits and (B) Kaplan-Meier curves of the model performance on the held-out test set. +ve,
positive; -ve, negative; HR, hazard ratio; PD-L1, programmed death ligand 1.
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Model-C outperformed Model-R, and Model-C+R outperformed both

the clinical and radiomic models, further confirming the

complementary nature of the clinical and radiomic features. The

model achieved an accuracy of ~72% and stratified the patients into

high- and low-risk groups with a difference in median survival of 423

days as shown in Figure 3B. The comparison of the performance of the

different models across both test cohort and independent study cohorts

in terms of sensitivity, specificity, precision and accuracy are reported

in Supplementary Table 6. SHAP feature importance plot of Model-C

+R on the independent study cohort revealed similar top features with

the same radiomic features contributing to the prediction

(Supplementary Figure 6, bottom panel). Further details on the

SHAP analyses as well as the building of more traditional Cox
Frontiers in Immunology 07
models using the top predictors of overall survival are included in

the Supplementary Material – SHAP Analysis.
Discussion

The emergence of PD-L1 inhibitors as first line treatment for

non-resectable advanced NSCLC2 has provided improved quality of

life and an increased survival time. In this paper we have presented

a novel approach to the prediction of patients’ survival that

integrates clinical and radiomic features and requires no previous

tumor annotation. Our approach is competitive in terms of

concordance index (when predicting overall survival) and
B

A

FIGURE 3

Generalization to an independent study cohort. Model+ve indicates model prediction of OS ≥365 and Model-ve indicates model prediction of OS
<365. (A) Survival distribution in the independent study cohort and (B) Kaplan-Meier curves of the model performance on the independent study
cohort. +ve, positive; -ve, negative; HR, hazard ratio; PD-L1, programmed death ligand 1.
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accuracy (when predicting risk of less than median survival).

Finally, our approach compares very favorably with predictions

based on PD-L1 status and has been validated against a multi-trial

test set as well as an independent additional trial.

The potential for such an approach as a diagnostic tool is explored

by including the standard of care (SoC) arms from the clinical trials of

MYSTIC and NEPTUNE4. The KM curves from the model

predictions are illustrated in Figure 4. Model-C+R offers the

potential to select patients who would benefit from IO therapy. As

shown in Figure 4A, Model-C+R identifies patients who would not

benefit from IO and have similar survival curves to the SoC arms. It

also identifies patients who would benefit from IO therapy and when

combined with PD-L1 expression helps identify patients with the

highest odds of survival (Figure 4B). The Model-C+R identified

patients that also satisfy a higher (50%) cutoff for PD-L1 show the

best improvement in median OS as shown in Figure 4D. Thus, the

proposed non-invasive approach opens new avenues for patient

selection that are complementary to PD-L1 in the mNSCLC setting.
4 Patient Demographics from the SoC arms can be found in Supplementary

Material – Data Preparation.

Frontiers in Immunology 08
Challenges and limitations

In order to build clinician confidence around using such

diagnostic tools, it is important to build an intuitive

understanding of the interpretability of these features. The

radiomics features identified by our models to be most

informative are shown in the Supplementary Material – SHAP

Analysis. Our models suggest that low texture heterogeneity

corresponds to better OS. This is similar to results reported in

literature where texture features representing tumor heterogeneity

correlated with OS and PFS (5). However, with the exploration of

the whole lung, these features need to be further investigated in

terms of interpretability and consistency with the biology of cancer.

When the clinical trials were originally designed, the optimal cutoff

for PD-L1 expression in first line mNSCLC was not well known;

consequently, while valid based on data at the time, we have only 25%

cutoff available consistently for PD-L1 in the studies explored herein. It

is now more broadly known that 50% cutoff is more clinically relevant

for IO monotherapy. The performance of Model-C+R on the patient

subset with 50% PD-L1 cutoff is shown in Supplementary Figure 5 and

further analysis with additional datasets will be performed to establish

clinical relevance and clinician confidence.
B

C D

A

FIGURE 4

Evaluating the potential of Model-C+R as a diagnostic tool for survival-based patient risk stratification. Model+ve indicates model prediction of OS
≥365 and Model-ve indicates model prediction of OS <365. (A) Comparing model risk stratification on Tx arm against SoC. (B) Survival risk
stratification on PD-L1 status and model prediction intersection in the test set (primary study cohort) and SoC. Patients identified as low-risk on Tx
have median survival 944 days, 692 days more than high-risk patients on Tx. (C) Comparing model risk stratification on Tx arm against SoC for sub-
cohort with PD-L1 expression 50% cutoff available. (D) Survival risk stratification on PD-L1 status at 50% cutoff and model prediction intersection in
the test set (primary study cohort) and SoC. Patients identified as low-risk on Tx have median survival of 944 days. +ve, positive; -ve, negative; PD-
L1, programmed death ligand 1; SoC, standard of care; Tx, treatment.
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The ML models presented in this work were developed using only

data from IO treatment arms. This makes it challenging to tease out the

predictive/prognostic nature of the features used by themodel.We plan

to address this limitation as a key next step in our future research.

Though we have shown generalizability of our model to a

completely independent study cohort, prospective validation of

such models will be the key towards the development of

diagnostic tools that can be used in the clinic.
Future work

An important next step is to identify the predictive and prognostic

natureof themodel features toassist indevelopmentoffurtherdiagnostic

tools.Additionally,wealsoplantoexplorethepossibilityofusingimaging

data from follow-ups (delta-radiomics) to further improve our models.

Results in these directions will be reported elsewhere.
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