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Mathematical modelling of
stem and progenitor cell
dynamics during ruxolitinib
treatment of patients with
myeloproliferative neoplasms
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Vibe Skov 2, Lasse Kjær2, Hans C. Hasselbalch2,
Morten Andersen 1†, Johnny T. Ottesen 1†

and Thomas Stiehl 1,3†

1Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science
and Environment, Roskilde University, Roskilde, Denmark, 2Department of Hematology, Zealand
University Hospital, Roskilde, Denmark, 3Institute for Computational Biomedicine and Disease
Modeling, RWTH Aachen University, Aachen, Germany
Introduction: The Philadelphia chromosome-negative myeloproliferative

neoplasms are a group of slowly progressing haematological malignancies

primarily characterised by an overproduction of myeloid blood cells. Patients

are treated with various drugs, including the JAK1/2 inhibitor ruxolitinib.

Mathematical modelling can help propose and test hypotheses of how the

treatment works.

Materials and methods: We present an extension of the Cancitis model, which

describes the development of myeloproliferative neoplasms and their

interactions with inflammation, that explicitly models progenitor cells and can

account for treatment with ruxolitinib through effects on the malignant stem cell

response to cytokine signalling and the death rate of malignant progenitor cells.

The model has been fitted to individual patients’ data for the JAK2 V617F variant

allele frequency from the COMFORT-II and RESPONSE studies for patients who

had substantial reductions (20 percentage points or 90% of the baseline value) in

their JAK2 V617F variant allele frequency (n = 24 in total).

Results: The model fits very well to the patient data with an average root mean

square error of 0.0249 (2.49%) when allowing ruxolitinib treatment to affect both

malignant stem and progenitor cells. This average root mean square error is

much lower than if allowing ruxolitinib treatment to affect only malignant stem or

only malignant progenitor cells (average root mean square errors of 0.138 (13.8%)

and 0.0874 (8.74%), respectively).

Discussion: Systematic simulation studies and fitting of the model to the patient

data suggest that an initial reduction of the malignant cell burden followed by a

monotonic increase can be recapitulated by the model assuming that ruxolitinib
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affects only the death rate of malignant progenitor cells. For patients exhibiting a

long-term reduction of the malignant cells, the model predicts that ruxolitinib

also affects stem cell parameters, such as the malignant stem cells’ response to

cytokine signalling.
KEYWORDS

mathematical modelling, ordinary differential equations, myeloproliferative neoplasms
(MPN), parameter estimation, JAK2 V617F, ruxolitinib, blood cancer, stem cells
1 Introduction

The Philadelphia chromosome-negative myeloproliferative

neoplasms (MPNs) are a group of slowly progressing

haematological malignancies primarily characterised by an

overproduction of myeloid blood cells (1). Without treatment,

they result in severe complications such as thrombosis, bleeding,

infections (1), bone marrow failure, and progression to acute

myelogenous leukaemia (2). The three most common MPN

subtypes, essential thrombocythaemia (ET), polycythaemia vera

(PV), and primary myelofibrosis (PMF), are diagnosed according

to World Health Organisation (WHO) and International

Consensus Classification (ICC) criteria (3), including mutational

status, elevation of different cell counts (red, white, and platelets),

and bone marrow morphology. A frequent common factor for the 3

subtypes of MPNs is the driver mutation JAK2 V617F (hereinafter

referred to as just JAK2) which is present in approximately 55% of

ET patients, 98% of PV patients and 60% of PMF patients (3). Other

known driver mutations in MPNs are found in the genes CALR and

MPL. A subset of patients with MPN carries none of these

mutations, and these patients are referred to as being triple-

negative (3). In the cases where a driver mutation is present, it

results in overactivation of the JAK-signal transducer and STAT-

signalling (4).

The hematopoietic system is responsible for the formation of

blood cells. It consists of cells of different maturity levels, starting

with the least mature haematopoietic stem cells (HSCs) in the bone

marrow (5), continuing with the more mature so-called progenitor

and precursor cells, and ending with the fully mature cells in the

peripheral blood. All haematopoietic cells are derived from the

HSCs. HSC proliferation needs to fulfil two roles: maintaining the

HSC pool and producing more mature committed cells that will

eventually become fully mature. The hematopoietic system is

subjected to a complex regulatory network which adapts the

production of mature cells to the current state of the organism. It

is believed that MPNs develop from a single mutated stem cell that

proliferates and slowly produces both mutated stem cells, mutated

progenitors, and consequently also mutated mature cells (3). If this
02
mutated stem cell and its offspring have a proliferative advantage

over the wild type cells, the mutated clone will expand and

potentially cause an MPN disease. It is estimated that the time

from the acquisition of the mutation to MPN diagnosis is multiple

decades (3, 4). Over even longer time scales, the mutated clone may

outcompete and completely eradicate the wild type cells if

not treated.

The most common treatments of patients with MPN are

hydroxyurea, a cytoreductive treatment that helps control the

number of blood cells (2), and interferon-a-2a, a cytokine which

is mainly depleting the bone marrow of mutated stem cells by

driving them to differentiate (6). In this work, we focus on

modelling the treatment with another drug: ruxolitinib (RUX), a

JAK1/2 inhibitor that works by targeting the JAK1 and JAK2

kinases (4, 7) (see section 2.1.3 for more details about modelling

the effects of treatment with RUX). RUX is indicated for the

treatment of disease related symptoms in myelofibrosis patients

and in PV patients who are resistant or intolerant to hydroxyurea,

but to our knowledge its effects on the abundance of mutated cells is

not yet fully understood. Studies show that RUX reduces symptom

burden, spleen size, and elevated blood cell counts, thereby

increasing the quality of life of the treated patients (2, 8–11), and

the drug also has anti-inflammatory effects (8, 9). Mouse studies

suggest that RUX primarily targets progenitors and precursor cells

(12). An in vitro study of another JAK inhibitor, AZD1480, shows

that stem cells may escape the effects of JAK inhibition (9, 13). If

stem cells also escape the effects of RUX, its effects alone are

insufficient to cure the disease. To cure the patients, the mutated

stem cells must be eradicated (9), or, given the slow growth of the

clone, reduced significantly in number. Making measurements of

stem cells is neither economically nor technically practical in a

routine clinical setting, and therefore it is challenging to quantify

the abundance of mutated cells in the stem cell population.

Clinically, the JAK2 variant allele frequency (VAF, also called the

allele burden) in the peripheral blood is used to monitor treatment

response and disease progression. In patients with MPN, both

heterozygous and homozygous clones are observed with ET being

characterised by heterozygosity and PV by homozygosity (14).
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Thus, a VAF measurement of 50% could in principle mean that

either 100% of cells carry a heterozygous mutation or that 50% of

cells carry a homozygous mutation. In practice, a mixture of wild-

type, homozygous, and heterozygous cells might be the most

probable scenario. In the COMFORT-II study, the median

reduction in JAK2 VAF for 69 myelofibrosis patients during

treatment with RUX was 7.0% (absolute), and 15 out of 69 had a

reduction equal to or above 20% (absolute) after 48 weeks (11). In

the RESPONSE study, among 104 JAK2-positive PV patients

treated with RUX, a gradual response was seen in the mean JAK2

VAF, and after 208 weeks the mean reduction was 40%

(relative) (15).

Mechanistic mathematical modelling is a versatile tool to gain

insight into complex biological processes based on limited data.

Although stem cells are difficult to quantify, we can make inference

about processes on the stem cell level using a mathematical model and

measurements from peripheral blood. Mathematical modelling has for

a long time been an important part of the study of cancers,

haematopoiesis, and haematopoietic malignancies and has been

employed to investigate questions such as stem cell and mature cell

dynamics (16–20) and their role during disease and therapy (21),

mutation acquisition and development (22, 23), clonal selection and

architecture (24, 25), the role of inflammation in haematological

malignancies (26–28), model-based prognostication (29, 30), therapy

modelling (31, 32), and optimisation of therapy (33, 34). In this work,

we extend a previous model of MPN disease dynamics and the role of

inflammation in MPN, the Cancitis model (26, 28). Specifically, we

extend the model by including the effects of RUX therapy in the model

and by adding a progenitor compartment in the hopes of more

accurately accounting for the effects of RUX on different cell types.

The original Cancitis model has been successfully applied to data from

patients with MPN and can capture key features of MPN progression

and treatment with interferon-a-2a (31). Here we extend this work to

model data from patients responding well to treatment with RUX.

The main objective of this work is to understand which effects of

RUX treatment can explain sustained reductions in the JAK2VAF. In

particular, we are interested in investigating whether such sustained

patient responses are possible if RUX does not affect the stem cells at

all, or if an effect on the stem cell level is the most straightforward

explanation for the reduction observed in some patients. Determining

whether or not RUX can affect and potentially eradicate the mutated

stem cells is necessary to determine whether or not RUX

monotherapy can potentially be a cure for MPN diseases and for

predicting the patient response in case of treatment discontinuation.

If the treatment does not affect the mutated stem cells, the effects of

RUX are most probably palliative, and we expect that a patient

discontinuing the treatment would show a disease progression.

Mathematical modelling can help identify the impact of RUX on

different cell types and predict patient responses to changes in the

treatment schedule. A clear picture of the RUX mode of action is also

important for understanding RUX’s role in combination therapy.

Currently, studies of combination therapy with interferon-a-2a and
RUX show promising results (35). To fully understand the effects of

such a combination treatment with possible synergies between the

drugs, a natural starting point is understanding each drug’s

effects separately.
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2 Materials and methods

The model is implemented in MATLAB version R2023b. A

script simulating the model with and without treatment can be

accessed on GitHub1.
2.1 Mechanistic mathematical model of
MPN disease progression and
RUX treatment

2.1.1 Mechanistic mathematical model of MPN
disease progression

We first describe the model of MPN cell dynamics in absence of

treatment. The new model is a compartmental differential equation

model with compartments for stem, progenitor, and mature blood

cells for both healthy wild type cells and malignant cells carrying the

JAK2 mutation. In addition, there is a compartment of cellular

debris from dead cells and a compartment of the cytokine signalling

affecting the stem cells in the bone marrow. The compartments and

their relations are depicted in Figure 1, an overview of the variables

used is given in Table 1, and the equations used in the model are

given in Equations (1) and (2).

In the model, stem cells are capable of self-renewing as well as

differentiating into progenitor cells, and progenitor cells are again

capable of self-renewing [although to a lesser degree than stem cells

(38)] and differentiating into mature cells. The fraction of cell

divisions resulting in daughter cells adopting the same fate as the

parent cell is referred to as the self-renewal fraction (38, 39). Since

in reality there are many stages of cell differentiation that we lump

together into “progenitors”, we include amplification factors from

each maturity stage to the next. This is a well-established approach

which has already been used in (16). Mature and progenitor cells

can die. We assume that the death rate of stem cells is small enough

as to be negligible, and therefore we exclude stem cell death from

the model. We assume that the JAK2mutation can affect the rates of

these processes, but not their kind. In other words, the wild type and

malignant cell lineages are governed by the same key mechanisms,

i.e. self-renewal, differentiation and death, and thus they obey

equations of the same form but possibly with different

parameter values.

Regulation of the haematopoietic system in our model occurs

via a crowding effect on the stem cells (described in the model by the

functions fx and fy) and feedback through cytokine signalling

(described in the model by the variable s). The crowding effect,

inspired by other modelling works (19, 20, 30, 40), models the

competition for space in the stem cell niche in the bone marrow. If

stem cells cannot reside in the stem cell niche, they lose stemness

due to death or differentiation. In this model, this effect is described

by the monotonically decreasing functions fx and fy in Equation (2)

which are identical to the ones in (28). The cytokine feedback is

modelled by saturating functions, in this case Michaelis-Menten
frontiersin.org
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expressions, that up-regulate the self-renewal fraction of stem cells

through the bone marrow microenvironment. The cytokine level is

up-regulated by the amount of cellular debris, as well as by an

external inflammatory load (representing, e.g., smoking or other

illnesses). Debris from dead cells accumulate and is cleared at a rate

proportional to the cytokine level. It is important to note that the

cytokine level, s, is a lumped parameter that represents different
Frontiers in Immunology 04
feedbacks in the body, including the immune system’s response to

cell death (both at equilibrium and as a response to externally

imposed cell death) and inflammation.

Using these assumptions, the differential equations describing

the system are given by
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FIGURE 1

Conceptual compartment diagram of the model. See the text for further
description of the model. The lightning symbol represents external
factors affecting the cytokines. HSC, Haematopoietic stem cells; HPC,
Haematopoietic progenitor cells; MBC, Mature blood cells; mHSC,
Malignant haematopoietic stem cells; mHPC, Malignant haematopoietic
progenitor cells; mMBC, Malignant mature blood cells.
TABLE 1 Overview of the variables used in the model.

Variable Description
Expected

maximal order
of magnitude

Source

x0

Number of
haematopoietic stem
cells (HSCs) 1.0 × 105 (36, 37)

x1 Number of
haematopoietic
progenitor cells (HPCs)

2.5 × 106 (36)

x2 Number of mature blood
cells (MBCs)

6.4 × 1011 (36)

y0 Number of malignant
haematopoietic stem
cells (mHSCs)

1.7 × 105 Chosen

y1 Number of malignant
haematopoietic
progenitor
cells (mHPCs)

7.6 × 106 Chosen

y2 Number of malignant
mature blood
cells (mMBCs)

2.7 × 1012 Chosen

a Cellular debris 1.7 × 103 Chosen
and (28)

s Cytokine signal 2.0 Chosen
fro
See Equations (1) and (2) for the corresponding differential equation for each variable.
All variables are considered to have unit 1, i.e. we provide total cell counts.
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influx from mHSCs
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− dy2 y2|ffl{zffl}
death
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, (1g)
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rate of change of cytokine signal
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production

− es s|{z}
degradation

+ I|{z}
external factors
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where fx and fy are given by

fx (x0,  y0)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
crowding function for HSCs

=
1

1 + cxx x0|ffl{zffl}
inhibition by HSCs

+ cxy y0|ffl{zffl}
inhibition by mHSCs

, (2a)

fy (x0,  y0)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
crowding function for mHSCs

=
1

1 + cyx x0|ffl{zffl}
inhibition by HSCs

+ cyy y0|ffl{zffl}
inhibition by mHSCs

, (2b)
An explanation of the sources, estimations, and choices of the

default parameter values used in the model is given in section S1 of

the supplementary. There, we also show a simple sensitivity analysis

of the system. This shows that the model is most sensitive to

changes in px0 and py0 followed by cxx, cyx, ay0 , and sx0 . These

parameters are the most sensitive because they, except ay0 ,

determine the self-renewal fraction of the healthy and the

malignant stem cells, the products px0fx(x0,  y0)
s

sx0 +s
and, py0fy(x0,

 y0)
s

sy0 +s
, respectively, and that the self-renewal fraction is the main

contributor to the overall fitness of each of the cell lines (25).

Analogous results have been reported for other models (20, 24, 29,

30). An overview of the parameter values used in this work can be

found in Table 2. The model is designed to be generally applicable

to patients with MPN, but due to biological variation the parameter

values might vary from patient to patient. In this work, the

parameter values used give a typical course of the disease. For

future reference, we refer to sx0 and sy0 as the half-saturation

constants of the healthy and malignant, respectively, stem cell

response to cytokine signalling.

2.1.2 Steady states of the model
Next, we present the steady states of the model to illustrate the

range of behaviours that can be captured by it. The steady states of the

system in Equations (1) and (2) arise as solutions of complicated

rational equations which we solve numerically. We define a biologically

feasible steady state as a solution to the steady state problem in which

all variables are real and non-negative. For the standard parameter

values given in Table 2, there exist 12 possible steady states of which 5

are biologically feasible. The local stabilities of these steady states are
Frontiers in Immunology 05
calculated numerically using the eigenvalues of the corresponding

Jacobian matrices, see Table 3. We denote a steady state without any

cells as “trivial”, a steady state with only healthy cells as “healthy”, and a

steady state with only malignant cells as “malignant”.

From Table 3, we see that for the standard parameter values in

Table 2, there exists a locally stable trivial steady state, two locally

unstable healthy steady states, and both a locally stable and a locally

unstable malignant steady state. Thus, two locally stable steady states

exist: a trivial one and a malignant one. However, if one considers the

case with 0malignant cells, i.e. y0 = y1 = y2 = 0 and then disregards the

equations for these variables, only the trivial and the healthy steady

states remain, and in this case the healthy steady state with 9.9 × 104

stem cells, for which the model was calibrated (see section S1 of the

supplementary for more details), becomes locally stable. It may seem

a bit counter-intuitive that the trivial steady state is locally stable both

in the case with and without malignant cells present. However,

numerical experiments show that for the case of only healthy cells

being present, x0, x1, and x2 should all be below 3.24% of their locally

stable healthy steady state values for the system to approach the trivial

steady state, and for the case of only malignant cells being present, y0,

y1, and y2 should all be below 0.10% of their locally stable malignant

steady state values for the system to approach the trivial steady state.

If this is not the case, the system approaches the locally stable healthy

steady state and the locally stable malignant steady state, respectively.

Thus, in conclusion, with the standard choice of parameters in

Table 2, the system approaches the locally stable malignant steady

state unless extremely few cells are present. In the case of only healthy

cells being present, the system instead approaches the (in that case)

locally stable healthy steady state.
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TABLE 3 Biologically feasible steady states for the model in Equations (1) and (2) with the standard choice of parameters in Table 2.

x0 x1 x2 y0 y1 y2 a s Type Stability

0 0 0 0 0 0 0 2.8×10−2 Trivial Locally stable

3.2×103 8.0×104 2.1×1010 0 0 0 1.4×102 1.9×10−1 Healthy Locally unstable

9.9×104 2.5×106 6.3×1011 0 0 0 8.1×102 9.9×10−1 Healthy Locally unstable

0 0 0 1.6×102 6.8×103 2.4×109 4.0×101 7.6×10−2 Malignant Locally unstable

0 0 0 1.7×105 7.6×106 2.7×1012 1.7×103 2.0 Malignant Locally stable
F
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TABLE 2 Parameter values for the model in Equations (1) and (2).

Parameter Description Value Unit Source

ax0 Proliferation rate of HSCs 3.6 × 10−3 day−1 (37, 41)

ay0 Proliferation rate of mHSCs 5.4 × 10−3 day−1 Estimated

px0 Self-renewal fraction for HSCs 0.89 1 Estimated

py0 Self-renewal fraction for mHSCs 0.97 1 Chosen

cxx Constant for HSCs inhibiting HSC self-renewal 5.6 × 10−6 1 Estimated

cyx Constant for HSCs inhibiting mHSC self-renewal 5.2 × 10−6 1 Estimated

cxy Constant for mHSCs inhibiting HSC self-renewal 5.4 × 10−6 1 Estimated

cyy Constant for mHSCs inhibiting mHSC self-renewal 5.0 × 10−6 1 Estimated

sx0 Half-saturation constant for cytokine signal for HSCs 1.4 × 10−1 1 Chosen

sy0 Half-saturation constant for cytokine signal for mHSCs 7.1 × 10−2 1 Chosen

Ax0 Amplification factor from HSCs to HPCs 3.4 × 101 1 Estimated

Ay0 Amplification factor from mHSCs to mHPCs 3.4 × 101 1 Estimated

ax1 Proliferation rate of HPCs 1.1 × 10−2 day−1 Chosen

ay1 Proliferation rate of mHPCs 1.7 × 10−2 day−1 Chosen

px1 Self-renewal fraction for HPCs 0.445 1 Chosen

py1 Self-renewal fraction for mHPCs 0.485 1 Chosen

dx1 Death rate of HPCs 3.7 × 10−3 day−1 Chosen

dy1 Death rate of mHPCs 3.7 × 10−3 day−1 Chosen

Ax1 Amplification factor from HPCs to MBCs 3.2 × 106 1 Estimated

Ay1 Amplification factor from mHPCs to mMBCs 3.2 × 106 1 Estimated

dx2 Death rate of MBCs 1.5 × 10−1 day−1 (36)

dy2 Death rate of mMBCs 1.5 × 10−1 day−1 (36)

ea Degradation rate for a 1.2 × 108 day−1 Estimated

rs Production rate for s 8.6 × 10−2 day−1 (28)

es Degradation rate for s 7.2 × 101 day−1 Estimated

I External up-regulation of s 2 day−1 (28)
fro
A unit of 1 means that the given parameter is dimensionless.
2.1.3 Modelling patient responses to treatment
with ruxolitinib

Now, we discuss how the effects of RUX can be accounted for in

the model. RUX is a non-specific JAK1/2 inhibitor that targets the

JAK1 and JAK2 kinases (7), and it has multiple effects on patients
with MPN. In the following, we investigate potential effects of RUX

on mutated cells. As a readout for therapy effects, we use the JAK2

VAF. Studies have shown that RUX treatment reduces blood cell

counts both in mice (12) and in humans (2, 8, 11). In mice, RUX is

unable to target the mutated disease-initiating stem cells, but it
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depletes erythroid progenitors and precursors (12). As mentioned

in the introduction, an in vitro study of another JAK inhibitor,

AZD1480, shows that stem cells may escape the effects of JAK

inhibition (13). Additionally, RUX gives mild reductions in the

JAK2 VAF in mice and minimal to moderate reductions in humans

with high variability between patients (2, 9), and the reductions are

sustained on therapy (2, 9, 11, 15).

Systematic numerical analysis of the model specified in

Equations (1) and (2) reveals that a sustained reduction in JAK2

VAF can only be achieved if treatment with RUX affects the mHSC

dynamics described by Equation (1d) (see section S3 of the

supplementary for more details). Biologically, this can be

interpreted as a direct effect on the mHSCs or an effect on the

mHSC response to the cytokine signal for these cells. Here, we

choose to interpret one effect of RUX as a reduction of the cytokine-

induced up-regulation of mHSC self-renewal. This is achieved by

letting RUX increase sy
0
. To model the reduction of cell counts and

the targeting of progenitor cells, we also let RUX affect the death

rate of malignant progenitor cells, i.e. we let it increase dy1 . The

numerical experiments with the model also reveal that this effect

alone can give rapid reductions in the blood cell counts, and it can

also reduce the JAK2 VAF in the short term. In the long term,

however, the JAK2 VAF typically increases again when only this

parameter is increased.
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Let esy0 andfdy1 denote the values of sy0 and dy1 , respectively, for a
given patient during treatment with RUX, let rsy0 and rdy1 denote

patient specific parameters describing the strength of a given

patient’s response to RUX treatment in terms of sy0 and dy
1
, and

let cR(t) denote the dose of RUX that the given patient is receiving

measured in mg/day. Then, we assume that the effects of RUX

treatment are dose-dependent in the following way:

esy0 (t) = (1 + cR(t)rsy0 )sy0 , (3a)

fdy1 (t) = (1 + cR(t)rdy1 )dy1 : (3b)

In this work, we consider only the case of rsy0 ≥  0 and rdy1 ≥  0,

i.e. that RUX can increase the values of sy0 and dy
1
. It is worth

pointing out that only relative changes in cR(t) matter, as a scaling of

cR(t) can be compensated for by using the inverse scaling for rsy0
and rdy1 . Using these updated parameter values due to RUX

treatment and collecting some terms from Equation (1) for

brevity, the model takes the following form during treatment:

_x0 = ax0 2px0fx(x0,  y0)
s

sx0 + s
− 1

� �
x0, (4a)
_x1 = ax1 (2px1 − 1)x1 + 2Ax0ax0 1 − px0fx(x0,  y0)
s

sx0 + s

� �
x0 − dx1x1, (4b)

_x2 = 2Ax1ax1 (1 − px1 )x1 − dx2x2, (4c)

_y0 = ay0 2py0fy(y0,  y0)
s

(1+cR(t)rsy0 )sy0+s
− 1

 !
y0, (4d)

_y1 = ay1 (2py1 − 1)y1 + 2Ay0ay0 1 − py0fy(x0,  y0)
s

(1 + cR(t)rsy0 )sy0+s

 !
y0 − (1 + cR(t)rdy1 )dy1y1, (4e)

_y2 = 2Ay1ay1 (1 − py1 )y1 − dy2y2, (4f)

_a = dx1x1 + dy1y1 + dx2x2 + dy2y2 − eaas, (4g)

_s = rsa − ess + I, (4h)

where the f-functions are once again given in Equation (2), and the assumed effects of RUX are highlighted in blue and cyan.
2.2 Data

The largest part of the data used in this work is taken from the

COMFORT-II study (11). The COMFORT-II study was an open-

label phase 3 randomised controlled study that investigated the

safety and efficacy of ruxolitinib vs. best available therapy (BAT) in

219 patients with myelofibrosis (MF). The primary end point of the
study was the percentage of patients with at least a 35% reduction in

spleen volume after 48 weeks, but an exploratory response

assessment included monitoring the JAK2 VAF (42). More

information about the study can be found in (11, 42)2. In the

supplementary of (11), trajectories of the evolution of the JAK2

VAF are presented for 18 individual patients who achieved a

reduction in JAK2 VAF of at least 20% (absolute) after 48 or 72
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weeks of RUX treatment. This is approximately 16.5% of the

patients from the study who were treated with RUX and were

carrying the JAK2 V617F mutation. We include these 18 patients in

our study.

Additional data were obtained from the RESPONSE study (15).

The RESPONSE study was an open-label phase 3 randomised

controlled study that investigated the safety and efficacy of

ruxolitinib vs. BAT in 222 patients with polycythaemia vera (PV).

The primary end point of the study was haematocrit control

through week 32 and at least a 35% reduction in spleen volume

after 32 weeks (43). The study also monitored the JAK2 VAF (15,

43)3. In (15), trajectories of the evolution of the JAK2 VAF are

presented for a number of patients who crossed over from

interferon-a-2a to RUX and for patients who achieved a 90%

(relative) reduction in JAK2 VAF. From the latter category, 6

patients received only RUX, and we include data from these 6

patients in the data used in this work. We assign the numbers 19

through 24 to the patients from the RESPONSE study. These 6

patients correspond to approximately 6% of the patients from the

study who were treated with RUX and were carrying the JAK2

V617F mutation.

It is important to note that we do not have access to the full data

sets from the COMFORT-II and RESPONSE studies but only to the

data shown in the respective publications, which is precisely the

data for patients achieving substantial (defined as above for the

respective studies) reductions in their JAK2 VAF. This is a limited

subset of the patients in the respective studies, and the rest of the

patients in the studies have not responded as well to the treatment.

However, if the model developed here can fit to the patients

experiencing the largest reductions in JAK2 VAF, it seems

reasonable to assume that the model may also fit to patients

achieving a more modest response in their JAK2 VAF as this

requires less drastic changes to the parameters of the model as a

result of the treatment. While it would be optimal to have data for

all levels of response to the treatment, we can still learn about the

most important mechanisms of RUX by considering patients

responding well to the treatment.

We do not have access to changes to the dosing of RUX for the

individual patients. In the COMFORT-II study, the median daily

dose was 40 mg/day for patients with platelet counts above 200 ×

109 L−1 and 30 mg/day for patients with platelet counts between

100×109 L−1 and 200×109 L−1 (11). Both median daily doses were

slightly decreasing over time during the study. Here, we

compromise and assume that the dose for the available

COMFORT-II patients was constant at 35 mg/day, i.e. cR(t) = 35

for these patients. In the RESPONSE study, the initial dose was 20

mg/day (15), and therefore we assume that cR(t) = 20 for these

patients. We once again emphasise that the absolute value of cR(t) is

irrelevant for each patient, and only relative changes matter. The
2 https://clinicaltrials.gov/study/NCT00934544.

3 https://clinicaltrials.gov/study/NCT01243944.
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absolute value is only used to compare the resulting values offsy
0
(t)

and fdy1 (t) between patients. Since we assume a constant daily dose

of RUX for all patients, the time-dependence of fsy
0
(t) and fdy1 (t)

vanishes, and hereinafter we do not write it explicitly.

All patient data used in this work were extracted from plots in

the publications mentioned above using WebPlotDigitizer4.
2.3 Fitting the model to clinical data

We fit the model to the JAK2 VAF of the patients using the

patient-specific parameters rsy0 and rdy1 . For each patient, we

compute the values of rsy0 and rdy1 that give model predictions

the closest to their JAK2 VAF data in a nonlinear least squares

framework as described in section S4 of the supplementary. In all

calculations, the JAK2 VAF is used as a decimal number, but it is

plotted as a percentage as this is what is most commonly done in the

clinic. The quality of the fits is quantified using the root mean

squared error (RMSE). For data points yif gmi=1 and model

predictions ŷ i(ti;  rsy0 ,  rdy1
n om

i=1
, the RMSE is given by

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mo

m

i=1
yi − ŷ (ti;  rsy0 ,  rdy1 )
� �2

:

s

The RMSE is easier to interpret than the sum of squared errors

since, due to the square root, it has the same unit as the data

themselves, and it gives a measure of the typical (but not the mean)

error between the model and the data. For example, an RMSE-value

of 0.05 (5%) means that the typical difference between the JAK2

VAF data and the model predictions is 0.05 (5%).

We use the JAK2 VAF as a proxy for the fraction of mutated

(malignant) cells, and we make the simplifying assumption that all

mutated cells are homozygous. This assumption is motivated by the

observation that the average JAK2 VAF of the 24 patients used in this

work was approximately 76% at the initiation of the respective studies

(see section 2.2 for further description of the data used). If we assume

that all cells in a given patient are mutated and let a denote the fraction

of mutated cells that are homozygous, the JAK2 VAF is given by V =
1
2 (1 − a) + a = 1

2 (1 + a). From this expression, we can calculate that in

the “worst” case where all cells are mutated, if the JAK2 VAF is 0.76

(76%), at least the fraction 0.52 (52%) of the cells must be homozygous.

If not all cells are mutated, an even higher percentage of the cells must

be homozygous. Therefore, we will use the fraction

g(x2,  y2) =
y2

x2 + y2
,

with the output from the model in Equations (1) or (4) as our

best estimate of the JAK2 VAF and thus compare this quantity to

the available measurements.
4 https://automeris.io/WebPlotDigitizer/.

frontiersin.org

https://automeris.io/WebPlotDigitizer/
https://clinicaltrials.gov/study/NCT00934544
https://clinicaltrials.gov/study/NCT01243944
https://doi.org/10.3389/fimmu.2024.1384509
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Boklund et al. 10.3389/fimmu.2024.1384509
3 Results

3.1 Model simulations suggest that RUX
must affect both stem cells and progenitor
cells to achieve sustained reductions in the
JAK2 VAF

As described in section 2, our model consists of 8 ordinary

differential equations [see Equations (1) and (2)] describing the

time evolution of the number of healthy and malignant stem cells,

healthy and malignant progenitor cells, healthy and malignant

mature cells, the cellular debris, and a cytokine signal. In this

model, we have interpreted the effects of RUX as affecting the

half-saturation constant of the malignant stem cell response to the

cytokine signal, sy0 , and the death rate of malignant progenitor cells,

dy
1
[see Equations (1) and (3)]. As motivated in section 2.1.3, the

effect on sy0 is needed for the model to achieve sustained reductions

in the JAK2 VAF on therapy (2, 9, 11, 15), and the effect on dy
1

models the reduction in blood cell counts (2, 8, 11) through

targeting of the mutated progenitor cells (12). To show how these

effects synergise, we simulate the population dynamics of healthy

and malignant cells for a typical in silico patient with different

adjustments to the default values of sy0 and dy
1
. Specifically, we are

investigating how to achieve the (relatively) quick and monotonic

reduction in JAK2 VAF that some patients experience.

We initialise the simulations with the initial conditions x0(0)=

1.0 × 105, x1(0)=2.5 × 106, x2(0)=6.4 × 1011, y0(0)=1, y1(0)=0, y2(0)

=0, a(0)=8.1 × 102, and s(0)=1. These initial conditions

approximately correspond to the second healthy steady state in

Table 3, for which the model was calibrated (see section S1 of the

supplementary) with one malignant stem cell added. After 30 years,

the JAK2 VAF has reached approximately 50%, and we initiate

treatment with RUX. Since the effects of RUX on cell kinetics are

not well understood, we consider four scenarios of how the

treatment may affect the parameters of the model: a) RUX has no

effect on the patient. b) RUX affects only the half-saturation

constant for the malignant stem cells, sy0 . c) RUX affects only the

death rate of malignant progenitor cells, dy
1
d) RUX affects both sy0

and dy
1
. These scenarios are based on the hypothesised mechanisms

of RUX interpreted in terms of the model (see section 2.1.3).

Scenario a) illustrates the scenario of a patient not responding to

the treatment. This could for example be a patient who is resistant

to RUX. It also illustrates the behaviour of the model in absence of

treatment. Scenarios b) and c) illustrate the model behaviour when

RUX causes only one of the two hypothesised treatment effects from

section 2.1.3. This illustrates the individual effect of each of the two

hypothesised treatment effects in the model and could illustrate the

scenarios of patients in whom the treatment affects only one of the

two parameters. Finally, scenario d) illustrates the model behaviour

when RUX causes both of the hypothesised treatment effects. The

results of the simulations of all four scenarios are shown in Figure 2.

In all subfigures of Figure 2, we see that the number of

malignant cells and the JAK2 VAF rise from close to 0 and until

treatment initiation at time 30 years. From Figure 2A, we see that if

a) RUX has no effect on the patient, the number of malignant cells

continues to increase before saturating while all the healthy cells are
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outcompeted, and the JAK2 VAF increases to 100%. From

Figure 2B, we see that if b) the treatment with RUX affects only

the half-saturation constant of the mHSCs, sy0 , the mHSCs are

outcompeted, and the patient is cured, but only after a considerable

period of several decades. However, more mHPC and mMBC are

produced initially due to increased differentiation of the mHSCs,

and both the number of mHPC, the number of mMBC, and the

JAK2 VAF grow during approximately the first year of treatment

before declining. In this simulation, it takes approximately 2 years

before the number of mMBCs returns to its level just before

treatment initiation and approximately 4 years before the JAK2

VAF returns to its level just before treatment initiation. Thus, this

type of effect might actually be harmful to the patient in the first

couple of years. Furthermore, this temporary increase of the JAK2

VAF is not observed, and thus, this effect alone cannot explain the

available data. However, without affecting the stem cells directly, i.e.

their proliferation rate, their maximal self-renewal fraction, their

interactions with each other (the crowding effects), or introducing a

death rate for them (see section S3 of supplementary for plots

showing some of these effects), adjusting the half-saturation

constant of the mHSC, sy0 , is the only possibility for observing a

sustained reduction in the cell counts and the JAK2 VAF. From

Figure 2C, we see that if c) the treatment with RUX changes only the

death rate of the mHPCs, dy
1
, the number of mHPCs, the number of

mMBCs, and the JAK2 VAF will decrease for approximately half a

year and adjust to a new quasi-steady state, but since the mHSCs are

completely unaffected, the number of these continues to grow. After

the initial decline due to the increased death rate of mHPCs, the

number of mHPCs and the number of mMBCs grow slowly with

the mHSCs, and eventually all the healthy cells are outcompeted.

Thus, affecting dy
1
alone is not curative and cannot explain the

monotonically decreasing JAK2 VAF observed in some patients.

Summing up, letting RUX affect only sy0 or dy1 alone is not sufficient

to explain the quick and monotonic reduction in JAK2 VAF that

some patients experience during treatment. However, in Figure 2D

we see that if d) the treatment with RUX affects both sy0 and dy1 , and

the respective parameters are sufficiently increased compared to the

scenario without treatment, both the number of mHSCs, mHPCs,

mMBCs, and the JAK2 VAF may all monotonically decrease during

treatment, and thus the patient will experience remission in both

the long and the short run. Thus, changing both sy0 and dy
1

simultaneously is one mechanism in the model that can explain

the effect of RUX treatment.
3.2 The proposed model can recapitulate
the response dynamics during RUX therapy

To further investigate and quantify the effects of RUX treatment

on the half-saturation constant for the mHSCs’ response to the

cytokine signal, sy0 , and the death rate of the mHPCs, dy
1
, we fit the

model in Equation (4) to individual patients’ data. More precisely,

we adapt the parameters rsy0 and rdy1 describing the size of each

patient’s change in sy0 and dy
1
, respectively, due to the treatment

with RUX to obtain the optimal fits. The results for the individual

patients can be seen in detail in section S6 of the supplementary,
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some representative examples of fits are shown in Figure 3, and all

fits are presented in Figures 4, 5. In these figures, time t = 0 is

defined as the time of the first available JAK2 VAF measurement.

Using the fits, we are able to quantify how much the affected

parameters change for each patient (see Table 4) and to make

predictions of the time dynamics of the JAK2 VAF for each patient

if the treatment is continued (see section S6 of the supplementary).

We also compare the model fits with RUX affecting both sy0 and dy
1

(Figures 3–5) to the cases of RUX affecting only sy0 or dy1 (effectively

setting rdy1 = 0 and rsy0 = 0, respectively, see the figures in section

S7 of the supplementary). It should be noted that the reported

approximate 95% confidence intervals (CIs) are calculated by

sampling 1000 pairs of the parameters from their estimated

approximate joint distribution, simulating the model with the

sampled parameters, and finally taking the middle 95% predicted

JAK2 VAF values of these simulations. The sampling procedure can

produce negative values of the parameters, in which case we choose

to resample the corresponding samples. More details are given in

section S4 of the supplementary.

Figure 3A shows that for patient 1, the model fits very well to

the JAK2 VAF with an RMSE-value of 0.0170 (1.70%) for the JAK2

VAF data and approximate 95% CIs of mean width 0.0978 (9.78%)

for the time shown in the plot. Figure 3B shows another example of

a good fit for patient 2 with an RMSE-value of 0.0253 (2.53%) for

the JAK2 VAF data and approximate 95% CIs of mean width 0.141
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(14.1%) for the time shown in the plot. Compared to patient 1, the

model predicts that for this patient, RUX treatment affects only dy
1

(since rsy0 = 0), and therefore the reduction in JAK2 VAF is

temporary, and the patient is not cured in the long run. In fact,

this turns out to be the case for 5 out of the 24 patients, namely

patients 2, 3, 13, 15, and 17. This shows that our model is able to

classify patients in terms of their response to RUX, which has the

potential to be of key clinical significance. For these 5 patients, their

JAK2 VAF is initially decreasing and then increasing at later time

points. The fits for these patients are shown in Figures 4, 5 and in

more detail in section S6 of the supplementary. Figure 3C shows the

worst fit of the model to the available data. This happens for patient

3 with an RMSE-value of 0.0739 (7.39%) for the JAK2 VAF data and

approximate 95% CIs of mean width 0.483 (48.3%) for the time

shown in the plot. For this patient, we are therefore very uncertain

about the future development of the JAK2 VAF. Figure 3D shows

another example of a good fit to the data for a patient from the

RESPONSE study with an RMSE-value of 0.0147 (1.47%) for the

JAK2 VAF data and approximate 95% CIs of mean width 0.0853

(8.53%) for the time shown in the plot. This shows that the model

and the data fitting are robust with respect to the medical studies

and the diagnoses of the patients (myelofibrosis in COMFORT-II,

PV in RESPONSE).

Plots showing the convergence of the fitting procedure to the

final fits using all data are shown in section S6 of the supplementary.
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FIGURE 2

A simulation of the stem, progenitor and mature cell counts and the JAK2 VAF based on Equations (1) and (2) with the standard parameters from
Table 2. As initial conditions, we choose x0(0) = 1.0 × 105, x1(0) = 2.5×106, x2(0) = 6.4×1011, y0(0) = 1, y1(0) = 0, y2(0) = 0, a(0) = 8.1×102, and s
(0) = 1. For the plots of cell counts, the green curves represent the number of healthy cells, the solid red curves represent the number of malignant
cells, and the dashed black curves represent the sum of healthy and malignant cells. Treatment is initiated after 30 years in the simulation. (A) No
effect of treatment. (B). sy0 increased to 6 times its standard value during treatment. (C) dy1 to 6 times its standard value during treatment. (D) sy0 and

dy1 to 6 times their standard values during treatment.
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Boxplots of the RMSE-values for all data points as function of the

number of data points used in the fit is shown in Supplementary

Figure S15. Overall, the quality of the fits improves significantly

when more data points are added. The mean RMSE of the fits is 0.25

(25%) when only 2 data points are used in the calculation of the

optimal fit, and 0.09 (9%), 0.05 (5%), and 0.03 (3%) when 3, 4, and 5

data points are used, respectively.

Figure 6 shows histograms of the RMSE-values from fitting the

model to all 24 patients and allowing RUX treatment to affect the

half-saturation constant for the mHSCs’ response to the cytokine

signal, sy0 , and the death rate of the mHPCs, dy
1
, at the same time

and either effect separately. Here, we see that the RMSE-values are

much smaller when allowing RUX treatment to affect both sy0 and

dy
1
than when allowing it to affect only one of them. We obtain a

mean RMSE-value of 0.0249 (2.49%) when both sy0 and dy
1
can be

affected at the same timed compared to 0.138 (13.8%) and 0.0874

(8.74%) when only sy0 or dy
1
can be affected, respectively.

Additionally, when RUX is allowed to affect both sy0 and dy
1
, the

model fits achieve an RMSE-value equal to or below 0.02 (2%) for

14 out of 24 patients (approximately 58.3% of patients) and equal to

or below 0.04 (4%) for 19 out of 24 patients (approximately 79.2%
Frontiers in Immunology 11
of patients). The corresponding numbers are 0 (0%) and 0 (0%)

when allowing RUX treatment to affect only sy0 , and 1

(approximately 4.17% of patients) and 6 (25.0% of patients) when

allowing RUX treatment to affect only dy
1
. Thus, the model fits

much better to the available data in the scenario where RUX

treatment affects both sy0 and dy
1
compared to the scenarios

where it affects only one of the parameters, supporting the

hypothesis that RUX treatment affects parameters in both the

equations for the number of malignant stem cells and the number

of malignant progenitor cells. Plots of the optimal model fits to the

data for the individual patients when allowing RUX treatment to

affect only sy0 or dy1 are shown in section S7 of the supplementary.

Finally, in Table 4 we compare the fitted half-saturation

constant for the mHSCs’ response to the cytokine signal, sy0 , and

the fitted death rate of the mHPCs, dy
1
, before and during RUX

treatment. A graphical illustration with histograms of esy0 and fdy1 is
shown in Supplementary Figure S17. We consider the scenario

where both parameters can change in the presence of RUX. On

average during treatment, sy0 is increased to 21.7 times its pre-

treatment value (an increase from 7.1 × 10−2 to 1.6) with a standard

deviation of 20.9 times, and dy1 is increased to 5.35 times its pre-
A B

C D

FIGURE 3

Model fit to selected individual patients as described in sections 2.2-2.3. rsy0 and rdy1
are the fitted parameters that quantify the strength of the given

patient’s response to RUX treatment in terms of the effect on sy0 and dy
1
, respectively. The solid yellow curves show the optimal fit of the model to

the JAK2 VAF data. In the fit, it is assumed that both parameters rsy0 (response of mHSCs to cytokine signal) and rdy1
(malignant progenitor cell

death) are affected by RUX at the same time. To visualise the impact of each of the two effects (changed response to cytokines and increased
progenitor death) on the JAK2 VAF dynamics, the dashed lines show the time evolution of JAK2 VAF if either rdy1

(blue) or rsy0 (cyan) is set to 0 and

the respective other parameter remains unchanged. The red dots are the data. (A) Patient 1, one of the patients for whom the model fits very well,
and for whom the model predicts that RUX affects both sy0 and dy

1
. (B) Patient 2, a patient for whom the model fits quite well, and the model

predicts that RUX affects only dy
1
( rsy0 = 0). (C) Patient 3, the patient for whom the model fits worst. (D) Patient 20, a patient from the RESPONSE

study for whom the model fits very well, and for whom the model predicts that RUX affects both sy0 and dy1 .
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treatment value (an increase from 3.7 × 10−3 day−1 to 2.0 × 10−2

day−1) with a standard deviation of 2.21 times. Thus, the treatment

seems to have a substantial effect on the cell parameters of the

responding patients. In the summary statistics for the changes in sy0
just mentioned, we have disregarded patients 4, 22, 23, and 24 who

are considered outliers due to them having sy0 increased to 3.19 ×

106, 8.55 × 106, 1.48 × 108, and 229 times their pre-treatment values,

respectively. Similarly, in the summary statistics for dy1 just

mentioned, we have disregarded patients 15 and 17 who are

considered to be outliers due to them having dy1 increased to 29.5

and 37.9 times their pre-treatment values, respectively. See Table 4

for the full details. For the cases where the lower limit of the

approximate 95% CIs of the fitted parameters rsy0 and rdy1 is less

than 0, this should be interpreted as a lower limit of 0 as the optimal

fit is calculated under the conditions rsy0 ≥ 0 and rdy1 ≥ 0.
4 Discussion

In this work, we have proposed a mechanistic model of RUX

treatment in MPN patients. The model is able to capture

quantitative JAK2 VAF dynamics in patients showing significant

VAF reductions in response to RUX. In the model, RUX affects the

malignant HSCs’ response to the cytokine signal and the malignant

progenitor cell death rate. The former is quantified by the half-
Frontiers in Immunology 12
saturation constant, sy0 , and the latter is denoted by dy1 . The mean

RMSE-value of the fits is 0.0249 (2.49%) when allowing RUX

treatment to affect both sy0 and dy1 . The model suggests that a

RUX-dependent increase of malignant progenitor cell death and a

RUX-dependent down-regulation of the response of malignant

HSCs to the feedback signal are sufficient to reproduce clinical

data. The results should be interpreted as model-generated

hypotheses which require further experimental validation.

To achieve lasting reductions in JAK2 VAF in the model

simulations, as is seen for at least some patients, any kind of

treatment must affect parameters which are linked to the stem

cell population dynamics, i.e. the stem cell proliferation rates and/or

their self-renewal fraction. If a treatment does not affect these

quantities, the model predicts that the treatment will only cause

temporary reductions in JAK2 VAF before it starts increasing again.

This is in contrast to some sources stating that RUX is not able to

target the disease-initiating malignant stem cells in mice (12) and in

humans (9). As 18 of the 24 patients considered in this work have

not had an increase in JAK2 VAF from one measurement to

another, our model predicts that RUX could affect the mHSCs by

inhibiting their response to the cytokine signalling in the bone

marrow, i.e. by increasing the half-saturation constant for the

mHSCs’ response to the cytokine signal, sy0 . However, as seen

from the fitting to individual patients’ JAK2 VAF data, the best fits

for the 5 patients numbered 2, 3, 13, 15, and 17 are obtained by the
FIGURE 4

Model fit to individual patients’ data for patients 1-12 as described in sections 2.2-2.3. The solid yellow curves show the optimal fits of the model to
the JAK2 VAF data. In the fit it is assumed that both parameters rsy0 (response of mHSCs to cytokine signal) and rdy1

(malignant progenitor cell

death) are affected by RUX at the same time. To visualise the impact of each of the two effects (changed response to cytokines and increased
progenitor death) on the VAF dynamics, the dashed lines show the time evolution of JAK2 VAF if either rdy1

(blue) or rsy0 (cyan) is set to 0 and the

respective other parameter remains unchanged. The red dots are the data. Patients 1-12 are from the COMFORT-II study.
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RUX treatment not affecting sy0 but instead affecting only the death

rate of the malignant progenitor cells, dy1 . Thus, it is possible that

RUX treatment does not affect the stem cell parameters in some

patients, but that it does so in others. The 5 patients in this data set

for whom the best fits are obtained by having RUX not affecting

stem cell parameters are precisely the ones experiencing an initial

reduction in JAK2 VAF followed by a monotonic increase at the

later time points. The final patient experiencing an increase in JAK2

VAF from one measurement to another is patient 16. For this

patient, the JAK2 VAF increases from measurement 3 to

measurement 4, but then decreases again from measurement 4 to

measurement 5. Therefore, the model predicts that RUX treatment

also affects sy0 for this patient. Thus, our hypothesis from this data

fitting is that if a patient experiences an initial reduction in JAK2

VAF followed by monotonic growth, RUX affects only progenitor

cell parameters for this patient. If this is not the case, most typically

due to monotonic reductions in the JAK2 VAF in this data set, the

model predicts that RUX affects some stem cell parameter for the

given patient, for example sy0 . This hypothesis can theoretically be

tested by making measurements of cell lines and in animal models.

The model predicts that the sustained reductions in JAK2 VAF are

due to a reduction in the number of malignant stem cells. Thus, the

model predicts that for the patients experiencing sustained

reductions in JAK2 VAF, continued treatment with RUX may

ultimately result in a complete eradication of malignant cells.

It is important to point out that the model here is fitted to data

from patients who achieved a reduction in JAK2VAF of at least 20%

(absolute) after 48 or 72 weeks of treatment in the COMFORT-II
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study and at least 90% (relative) in the RESPONSE study, and these

constitute only a subset of the cohorts (approximately 16.5% and

6% of JAK2 positive patients treated with RUX, respectively). Since

we do not have access to the data of the rest of the patients in these

studies, it is impossible to fit the model to their data. However, since

these patients have experienced only modest reductions in their

JAK2 VAF (or maybe even increases), it seems reasonable to assume

that the model could possibly fit to these patients without changing

sy0 in response to RUX treatment. Thus, it is possible that for the

majority of patients, RUX treatment does not affect the stem cell

parameters, but for a minority of patients it does so in addition to

affecting the progenitor parameters. In the latter case we observe

monotonically decreasing JAK2 VAF dynamics.

For patients 4, 22, 23, and 24, the model predicts that sy0 should

be increased to 3.19 × 106, 8.55 × 106, 1.48 × 108, and 229 times its

pre-treatment value, respectively, to obtain the optimal fits. This

seems excessive, but due to the Michaelis-Menten functional form

in which sy0 appears,
s

sy0 +s
, these increases all effectively reduce the

self-renewal fraction of the mHSCs, py0fy(y0,  y0)
s

sy0 +s
, to 0. If sy0 is

sufficiently high, the self-renewal fraction becomes insensitive to

changes of this parameter.

Processes not considered in the model can lead to

disagreements between data and simulations. Some major

potential sources of model error are the following:
• Biological variation between patients: To avoid overfitting

and to keep the model as simple and interpretable as

possible, we have fitted the model to the data by letting
FIGURE 5

Continuation of Figure 4 for patients 13-24. Patients 13-18 are from the COMFORT-II study, and patients 19-24 are from the RESPONSE study.
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RUX affect only two parameters and letting all other

parameters be equal for all patients. In reality, RUX may

affect more than the two parameters investigated.

Furthermore, the remaining parameters most probably

differ between patients and may even vary over time for

each specific individual, e.g. due to differences in age, sex,

BMI, etc. However, changing some parameters, for example

ea, rs, es, and I, results in only minor effects on the cell

counts and the JAK2 VAF (see sections S2 (sensitivity

analysis) and S3 (numerical experiments) of the

supplementary for more details). Therefore, we believe
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that we have captured the most important effects of RUX

in this model.

• Assuming constant daily doses of RUX: In the model, we

assume that the patients have received constant daily doses

of RUX. However, in reality, each patient has most likely

received a varying daily dose of RUX dependent on their

response to the drug, including side effects, their doctors’

recommendations, etc. A varying dosing of RUX will most

likely have an impact on the fitted parameter values.

• Comorbidities and other conditions: The patients might have

been affected by comorbidities and other conditions during the
TABLE 4 Overview of the fitted parameters, rsy0 and rdy1 , and the parameter values fsy0 and fdy1 from Equation (3) during RUX treatment for all patients.

Patient Dose/ mg/day rsy0 / (mg/day)−1

(approx. 95% CI)

fsy0/1 fsy0
sy0

rdy1 / (mg/day)−1

(approx. 95% CI)
fdy1

/ day−1
fdy1
dy1

1 35 0.959 (-1.55, 3.46) 2.47 34.6 0.248 (0.166, 0.329) 0.0358 9.66

2 35 0 (-0.226, 0.226) 0.0714 1 0.122 (0.0805, 0.164) 0.0195 5.27

3 35 0 (-6.47, 6.47) 0.0714 1 0.11 (-1.37, 1.59) 0.018 4.86

4 35 9.13e+04 (-1.45e+10,
1.45e+10)

2.28e+05 3.19e+06 0.0994 (-0.0156, 0.214) 0.0166 4.48

5 35 0.861 (0.342, 1.38) 2.22 31.1 0.108 (0.0914, 0.125) 0.0177 4.79

6 35 0.397 (0.394, 0.399) 1.06 14.9 0.118 (0.118, 0.118) 0.019 5.12

7 35 1.43 (-1.04, 3.91) 3.66 51.2 0.155 (0.0971, 0.213) 0.0238 6.43

8 35 0.443 (-0.196, 1.08) 1.18 16.5 0.102 (0.0845, 0.119) 0.0169 4.57

9 35 0.367 (0.0253, 0.708) 0.988 13.8 0.109 (0.0859, 0.133) 0.0178 4.82

10 35 0.245 (-0.000628, 0.492) 0.685 9.59 0.112 (0.0897, 0.134) 0.0182 4.92

11 35 0.221 (-0.632, 1.07) 0.623 8.72 0.12 (0.0812, 0.159) 0.0193 5.2

12 35 1.93 (-0.735, 4.59) 4.89 68.4 0.131 (0.0956, 0.166) 0.0206 5.58

13 35 0 (-0.0839, 0.0839) 0.0714 1 0.161 (0.131, 0.192) 0.0246 6.64

14 35 0.635 (0.0722, 1.2) 1.66 23.2 0.116 (0.087, 0.144) 0.0187 5.05

15 35 0 (-0.527, 0.527) 0.0714 1 0.813 (-0.632, 2.26) 0.109 29.5

16 35 0.125 (-0.199, 0.449) 0.383 5.37 0.143 (0.0923, 0.194) 0.0223 6.01

17 35 0 (-0.173, 0.173) 0.0714 1 1.05 (0.57, 1.54) 0.14 37.9

18 35 0.765 (0.763, 0.767) 1.16 16.3 0.0882 (0.0881, 0.0883) 0.0102 2.76

19 20 1.74 (0.361, 3.12) 2.55 35.8 0.379 (0.305, 0.452) 0.0317 8.58

20 20 3.1 (-0.874, 7.07) 4.5 63 0.198 (0.148, 0.249) 0.0184 4.96

21 20 1.78 (0.784, 2.78) 2.62 36.7 0.176 (0.142, 0.21) 0.0167 4.52

22 20 4.28e+05 (-1.29e+11,
1.29e+11)

6.11e+05 8.55e+06 0.00826 (-0.0264, 0.043) 0.00431 1.17

23 20 7.38e+06 (-2.6e+13,
2.6e+13)

1.05e+07 1.48e+08 0.483 (0.274, 0.693) 0.0395 10.7

24 20 11.4 (-96.5, 119) 16.3 229 0.0268 (-0.0374, 0.0911) 0.00568 1.54
Note that patients from the COMFORT-II trial (numbered 1-18) received a different daily dose of RUX than patients from the RESPONSE study (numbered 19-24).

The fractions
esy0
sy0

and
edy1
dy1

are the ratios between the respective parameters during and before treatment. For the cases where the lower limit of the approximate 95% CIs of the fitting parameters

rsy0 and rdy1 is less than 0, this should be interpreted as a lower limit of 0 as the optimal fit is calculated under the conditions rsy0 ≥ 0 and rdy1 ≥ 0.
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studies. For example, since it is believed that inflammation

affects the development of MPNs (44, 45), inflammatory

processes might impact on the treatment response.

• Modelling precisely one malignant clone: MPNs are known

to be one of the cancers with the lowest number of

mutations (14), making these diseases well suited for this

type of model with only one malignant clone. However,

some patients may have multiple competing malignant

clones. To account for different mutations, the model has

to be extended accordingly.

• Resistance to RUX: The model only implicitly accounts for

potential resistance to RUX. One study has shown that 16 out

of 39 MF patients were considered to be resistant to RUX, of

which 4 were considered to be primary resistant (46). In other

studies, the percentage of patients being primary resistant to

RUX was estimated to be 2-5% (47). In the COMFORT-II

study, approximately 15% of patients discontinued treatment

with RUX due to disease progression (11), signifying either

primary or secondary resistance. Resistance to RUX will be

reflected by low values of rsy0 and rdy1 in the optimal fit.

However, this neglects that resistance can develop over time.

Letting rsy0 and rdy1 be time-dependent would result in a much

more complicated model and in a higher risk for overfitting.
Another source of error are the measurement errors, the size of

which is unknown to us, but which depends on the equipment and

techniques used in the laboratory. In both the COMFORT-II and

the RESPONSE studies, the JAK2 VAF was measured using qPCR

methods (11, 15). Though we do not know the exact size of the

measurement errors, one study of qPCR methods has shown that

for one particular set of equipment and techniques, the standard

deviations of the measurements were 0.012 (1.2%) in a reference

sample with a JAK2 VAF of 0.045 (4.5%) and 0.035 (3.5%) in a

reference sample with a JAK2 of 0.13 (13%) (48). These standard
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deviations are close to the mean RMSE of the model fitted to the

available data (0.0249), and thus the deviations between the model

and the data are of a reasonable order of magnitude. In the data

fitting, we have assumed that the overall errors, i.e. the sum of the

model errors and the measurements errors, are normally distributed

with 0 mean and some variance, s2. This convenient assumption

makes the statistical analysis of the results simple (compared to the

alternatives, see section S4 of the supplementary for more details),

but it is hard to either verify or refute this assumption based on 3-8

data points per patient. The previously mentioned study of different

qPCR methods suggests that the size of the measurement errors

might depend on the true value of the of the JAK2 VAF (48).

However, simple experiments using weighted least squares fitting

gave almost identical results for all patients except patient 15, and

therefore we have chosen to use the simpler ordinary least squares

approach here. Furthermore, least square fitting approaches can be

susceptible to outliers. However, by inspecting the data visually, we

have no reason to believe that any one point is an obvious outlier.

In the results presented, we have chosen to fit the data from

each patient individually, and thus every patient is completely

independent of the other patients. This assumption reduces the

computational costs of the fitting procedure. Fitting parameters

using the framework of mixed effect models is theoretically possible,

however, it increases the computational complexity.

Besides merely testing whether or not specific hypotheses about

RUX effects are compatible with clinical data, the model provides a

quantitative estimate of the size of a given patient’s response to RUX

treatment, uncertainty quantification on these estimates, and

predictions of the future development of the JAK2 VAF. The patient-

specific parameters, rsy0 and rdy1 , can potentially be used to predict

how a given patient will respond to changes in the doses of RUX. For

example, it can be used to predict the future development of the JAK2

VAF if the patient continues or discontinues a specific treatment

protocol (for example due to side effects), and it can be used to calculate

a critical dose that must be given to the patient to achieve eventual

remission. However, such an estimate has to be carefully validated on

real world data, and further refinement of the model, e.g., with respect

to resistance development, might be required.
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FIGURE 6

Histogram of RMSE-values for the model fitted to the individual
patient JAK2 VAF data as described in sections 2.2-2.3 for all
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S7 of the supplementary. Yellow: Optimal fits allowing RUX
treatment to affect both sy0 and dy

1
. Blue: Optimal fits allowing only

changes in sy0 . Cyan: Optimal fits allowing only changes in dy
1
.

There are no observations with RMSE-values outside the range
shown in the plots.
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