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Background: Acute myeloid leukemia (AML) is a highly aggressive and

pathogenic hematologic malignancy with consistently high mortality.

Lysosomes are organelles involved in cell growth and metabolism that fuse to

form specialized Auer rods in AML, and their role in AML has not been elucidated.

This study aimed to identify AML subtypes centered on lysosome-related genes

and to construct a prognostic model to guide individualized treatment of AML.

Methods: Gene expression data and clinical data from AML patients were

downloaded from two high-throughput sequencing platforms. The 191

lysosomal signature genes were obtained from the database MsigDB.

Lysosomal clusters were identified by unsupervised consensus clustering. The

differences in molecular expression, biological processes, and the immune

microenvironment among lysosomal clusters were subsequently analyzed.

Based on the molecular expression differences between lysosomal clusters,

lysosomal-related genes affecting AML prognosis were screened by univariate

cox regression and multivariate cox regression analyses. Algorithms for LASSO

regression analyses were employed to construct prognostic models. The risk

factor distribution, KM survival curve, was applied to evaluate the survival

distribution of the model. Time-dependent ROC curves, nomograms and

calibration curves were used to evaluate the predictive performance of the

prognostic models. TIDE scores and drug sensitivity analyses were used to

explore the implication of the model for AML treatment.

Results:Our study identified two lysosomal clusters, cluster1 has longer survival time

and stronger immune infiltration compared to cluster2. The differences in biological

processes between the two lysosomal clusters are mainly manifested in the

lysosomes, vesicles, immune cell function, and apoptosis. The prognostic model

consisting of six prognosis-related genes was constructed. The prognostic model

showed good predictive performance in all three data sets. Patients in the low-risk

group survived significantly longer than those in the high-risk group and had higher

immune infiltration and stronger response to immunotherapy. Patients in the high-

risk group showed greater sensitivity to cytarabine, imatinib, and bortezomib, but

lower sensitivity to ATRA compared to low -risk patients.
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Conclusion: Our prognostic model based on lysosome-related genes can

effectively predict the prognosis of AML patients and provide reference

evidence for individual ized immunotherapy and pharmacological

chemotherapy for AML.
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1 Introduction

Acute myeloid leukemia (AML) is a highly invasive and destructive

hematological malignancy and characterized by abnormal proliferation

of hematopoietic cells and early blockage of myeloid differentiation,

which impairs normal hematopoiesis with fatal consequences (1). For

the past 40 years, the treatment regimen for AML has remained the

standard induction chemotherapy regimen based on anthracyclines.

Although the majority of patients experience complete remission after

initial treatment, the presence of relapses and refractory events results

in a 5-year survival rate below 30% (2). Advances in sequencing

technology have helped us to gain insights into the pathogenesis of

AML and accordingly develop new drug targets and formulate risk

stratification, such as Fms-like tyrosine kinase 3 - internal tandem

duplication (FLT3-ITD), Isocitrate dehydrogenase(IDH) mutations

(3–5). The crosstalk between multiple genetic variants and the lack

of clarity on the specific mechanisms of AML development ultimately

leads to a mismatch between risk stratification and clinical outcomes,

which in turn affects the quality of survival of AML patients (6).

Therefore, it is urgent and necessary to further study the pathogenesis

of AML, develop appropriate risk assessment methods and improve

risk stratification.

Lysosomes are organelles produced by the Golgi apparatus that

contain a variety of hydrolytic enzymes and have a unique ph value

(7). Previous studies generally regarded lysosomes as organelles that

break down substances, but in recent years, studies have pointed out

that they not only break down substances and replenish nutrient

metabolism, but also influence cell growth, disease generation,

tumor progression, and other biological processes by mediating

cellular signaling and participating in autophagy (8, 9). During

tumor progression, lysosomal function undergoes a significant up-

regulation to meet the energy demands necessary for the excessive

proliferation and invasion of cancer cells (10). In contrast to normal

cells, cancer cells exhibit a greater abundance and larger size of

lysosomes, along with elevated lysosomal enzyme activities. Several

lysosomal enzymes, such as cathepsin B and cathepsin D, besides

their known role in mediating programmed cell death, are strongly

implicated in poor patient prognosis (11–15). Additionally, the

lysosomal fusion derivative known as Auer rods is predominantly

observed in hematologic tumors, with current research focusing on

their utility as diagnostic markers (16). However, the functional
02
significance of this lysosomal derivative in acute myeloid leukemia

remains poorly understood. Based on the aforementioned evidence,

we hypothesize that the expression levels of lysosome-related genes

could be utilized to categorize AML patients into distinct molecular

subtypes, thereby guiding AML risk stratification and prognosis.

In our research, we collected lysosomal genes, constructed a

prognostic model based on lysosome-related genes through

systematic analysis, and conducted a preliminary validation of the

model’s accuracy and usefulness. The aim is to improve the

prognosis of AML and provide new reference evidence for

individualized treatment of AML.
2 Methods

2.1 Data download and pre-processing

All data used in this studywere obtained from two high-throughput

sequencing platforms, TCGA(https://portal.gdc.cancer.gov/) and GEO

(https://www.ncbi.nlm.nih.gov/geo/), which contained 984 samples

from GSE37642 (17), 151 samples from TCGA-LAML, and 304

samples from GSE10358 (18). We then adopted the following criteria

to further screen the samples: 1, The tumor primary site of all samples

should be bonemarrow or peripheral blood. 2, All samples should have

complete RNA-seq data and clinical information. 3, All samples shall

have complete survival information. After screening, we included 367

samples from GSE37642-GPL96 as our training set, 132 TCGA-LAML

samples and 91 GSE10358-GPL570 samples as test set, totaling 590

samples. In addition, theGSE114868 (19) andGSE149237 datasets were

downloaded from the GEO database for screening genes that were

statisticallydifferent (|logFC>1| andp<0.05)betweenhealthydonorsand

AML patients for subsequent screening. Preprocessing of the data is

shown in Supplementary Figure S1A.
2.2 Lysosome-related gene sets

A total of 191 lysosome-associated genes from five gene sets

were obtained by searching the MsigDB database(https://www.gsea-

msigdb.org/gsea/msigdb) with the keyword lysosome, 169 genes

were extracted from the expression matrix of the training set
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GSE37642-GPL96 for subsequent analysis, and the specific gene sets

and genes are provided in Supplementary Table 1.
2.3 Consensus unsupervised clustering

We extracted the expression of 169 lysosome genes from the

training set GSE37642-GPL96, and obtained the sample clustering

information by repeating the calculation 1000 times using the R

package “ConsensusClusterPlus”. The differences were initially

evaluated by principal component analysis (PCA) and Kaplan-Meier

(KM) survival curves, and the expression of genes in different clusters

was represented by heatmaps. For secondary clustering, we obtained 87

genes that differed between the two lysosomal clusters and between

healthy donors and AML patients by taking the intersection of DEGs

from between the two clusters and differential genes from GSE114868

and GSE149237 respectively, and subsequently obtained the results of

the secondary clustering of the samples using the same method.
2.4 Differential analysis of gene expression,
PPI and enrichment analysis

According to the unsupervised consensus clustering, we divided

the test set into different clusters, and analyzed the differential genes

between the two clusters using the R package “limma” (|logFC>0|

p<0.05) (20), and represented them as volcano plot. We obtained

646 differential genes, exported the network through the string

(https://cn.string-db.org/), imported it into Cytoscape_v3.8.0, and

selected the top30 nodes to obtain the protein-protein interaction

(PPI) network after calculating the degree by cytohubba. Gene

Ontology (GO) enrichment analysis and Kyoto Encyclopedia of

Genes and Genomes functional enrichment analysis of differentially

expressed genes using the R package “clusterProfiler” (21).
2.5 Immunoinfiltration analysis

The ESTIMATE and CIBERSORT scores were computed using

the R package “IOBR” (22). The marker genes of immune cells were

sourced from the TISIDB database(http://cis.hku.hk/TISIDB/), and

the immune cell enrichment scores were obtained by single-sample

gene enrichment score estimation (ssGSEA) analysis with the R

package “GSVA” before comparing immune cell infiltration

between clusters (23). Immune checkpoint gene set from ref (24).
2.6 Construction and validation of a
prognostic model

For the 87 DEGs screened, 26 genes were obtained by univariate

cox regression (p<0.05), 6 genes were screened by stepwise

multivariable cox regression (p<0.05), lasso regression was performed

to prevent overfitting, and finally, lysosome-related gene scoring

models were constructed according to the following formulae,
Frontiers in Immunology 03
 Risk   Score = o
n

x=1
(Genex � coefx)

Genex is the gene expression, coefx is the coefficient of this gene.

In accordance with the median value, the dataset is stratified into

High-risk and Low-risk groups. The receiver operating

characteristic (ROC) curve for the first, third, and fifth year

between the High-risk and Low-risk groups were analyzed using

the R package “timeROC”. The R packages “regplot” and “rms”

were used to produce nomogram and calibration curves. TCGA-

LAML, GSE10358-GPL570 were used as test sets and the same

calculations were performed.
2.7 Prognostic modeling and
immunotherapy response

Tumor Immune Dysfunction and Exclusion(TIDE) score was

calculated from the website (http://tide.dfci.harvard.edu/), then

group comparisons are made by R. The immune infiltration score

and the abundance of immune cells were calculated using the R

package “IOBR” before group comparisons were made.
2.8 Drug sensitivity

The drug sensitivity of the expression matrix of the training set

was calculated using the R package “pRRophetic” (25), compared in

R according to the grouping information, and finally presented in a

box plot.
2.9 Cell culture

Cell lines HS-5, KG-1a, HL-60, NB4, U937, and PBMC were

obtained from American Type Culture Collection (ATCC), and OCI-

AML2 was obtained from the German Collection of Microorganisms

and Cell Cultures. KG-1a, HL-60, NB4, and U937 cells were cultured in

RPMI-1640 medium (Gibco, USA), while HS-5 was cultured in

DMEM (Gibco, USA). OCI-AML2 was cultured in MEM-a medium

(Gibco, USA). The media used above contained 10% fetal bovine

serum (FBS, USA) and 1% penicillin-streptomycin (Beyotime,

Shanghai, China). The PBMC was not cultured after obtaining but

was used directly for RNA extraction.
2.10 Real-time quantitative reverse
transcription PCR

Total cellular RNA was extracted with TRIzol reagent (Takara,

Japan) and then reverse transcribed into cDNAusing PrimeScript™RT

Master Mix (Takara, Japan). RT-qPCR was performed in a CFX

Connect™ RT-qPCR System (Bio-Rad, USA) using Hieff® qPCR

SYBR Green Master Mix (Yeasen, Shanghai, China). Pre-denaturation

was conducted for 5min at 95°C, followed by cycling with denaturation

at 95°C for 10 s, annealing at 58°C for 30 s, and extension at 72°C for 30 s,
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repeated for a total of 40 cycles. Up to 40 cycles without results were

counted as the maximum of 50 cycles. The relative expression values of

six genes in different cell lines were calculated using the method of

2^-DDCt, with GAPDH and PBMC used as reference, respectively. The

experiments were repeated three times to obtain the data. All primer

sequences, synthesized by SangonBiotech (Shanghai, China), are shown

in Supplementary Table 2.
2.11 Research flowchart

The flow chart for this research is placed in Supplementary

Figure S1B.
2.12 Statistical analysis

Statistical analysis of all data was performed through R (R-

4.3.1).t test and Kruskal-Wallis test were used for comparison of

two and more groups, respectively. log-rank test was used to

evaluate the significance of statistical differences. Where p< 0.05
Frontiers in Immunology 04
was considered statistically significant. * p< 0.05; ** p< 0.01;

*** p< 0.001.
3 Results

3.1 Lysosomal subcluster

To investigate whether lysosomal genes exhibit specific

expression patterns in AML, we employed unsupervised

consensus clustering to categorize 367 AML samples. The most

obvious expression variations were detected when k=2, resulting in

the split of the training set AML samples into two subclusters.

Cluster1 (n=185) and Cluster2 (n=182) (Figures 1A, B,

Supplementary Figure S2A). The results of PCA indicated a

significant differentiation in gene expression between the two

subclusters (Supplementary Figure S2B). Based on this, the KM

curve suggested a noteworthy survival difference between the

distinct subclusters, with the overall survival (OS) time of patients

in Cluster1 significantly prolonged compared to Cluster2

(Figure 1C). Moreover, patients with the runx1-mutation had a
B

C D

A

FIGURE 1

Lysosomal genes clustered for AML patients (A) Matrix heatmap at k=2. (B) Cumulative distribution function (CDF) for different k values. (C) KM
survival analysis curves between two clusters at K=2. (D) Heat map distribution of lysosomal genes in the training set.
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significantly higher representation in Cluster 2, and most lysosomal

genes exhibited lower expression in Cluster2 (Figure 1D).
3.2 Molecular expression and biological
processes among lysosomal subclusters

To delve further into the distinctions between these two

subclusters, We utilized the R package “limma” to analyze the

genes responsible for these differences, resulting in the identification

of 672 differentially expressed genes (DEGs) (|logFC| > 0.5 and p<

0.05), with 166 up-regulated and 480 down-regulated (Figure 2A).

To identify the core genes among these DEGs, we computed the top

30-degree core genes by Cytoscape, revealing two modules centered

on spleen tyrosine kinase (SYK) and toll-like receptor 4 (TLR4),

both tightly linked to the regulation of immune function

(Figure 2B). These DEGs were enriched into lysosomes, cellular

vesicles, immune cell functions, apoptosis, and some signaling

pathways analyzed by KEGG enrichment (Figure 2C). GO

enrichment analysis demonstrated the involvement of DEGs in

cytoskeletal regulation, vesicle membrane composition, and

other aspects (Figure 2D). Similar results were obtained by

enrichment analysis of up- and down-regulated genes separately
Frontiers in Immunology 05
(Supplementary Figures S3A–D). These findings tentatively

corroborated the subcluster results of our study.
3.3 Immune infiltration between
lysosomal subclusters

The results from the previous PPI core gene and enrichment

analyses revealed significant differences in immunomodulatory

pathways between the two lysosomal subclusters. To gain a

deeper understanding of the immune microenvironmental

distinctions between the subclusters, we computed ESTIMATE

scores for both subclusters using the R package “IOBR”. The

ESTIMATE scores indicated that in cluster1, there was greater

immune cell infiltration and lower tumor purity compared to

cluster2 (Figure 3A). The infiltration of these immune cells may

play an anti-tumor role. The relative abundance of selected immune

cells was further estimated for all training set samples using

CIBERSORT and ssGSEA (Figures 3B, C). The results

demonstrated predominant enrichment of monocytes,

macrophages, and neutrophils in cluster1, while T cell subsets

such as CD8 and CD4+ T cells were enriched in cluster2. The

tumor immune response is influenced by the crosstalk between
B

C D

A

FIGURE 2

Molecular and biological processes differences between lysosomal clusters (A) Volcano diagram showing molecular differences between clusters.
(B) PPI network was constructed to uncover core genes in DEGs. (C) KEGG enrichment analysis and (D) GO enrichment analysis to explain the
biological processes involved in DEGs between clusters.
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tumor cells, immune cells, and immune molecules. According to the

expression of immune checkpoint genes (Supplementary Figure

S4), partial immune checkpoint genes were significantly different

between the two groups.CD86, whose expression was significantly

lower in cluster2 than in cluster1, exerts anti-tumor effects by

binding to CD28, inducing T cells to continue proliferating and

differentiating into effector T cells (26). The above results indicate

significant differences in the immune microenvironment of the two

lysosomal subclusters, with cluster1 exhibiting stronger immune

cell infiltration and a more robust immune response than cluster2.

These differences offer potential therapeutic targets for achieving

individualized treatment.
Frontiers in Immunology 06
3.4 Secondary clustering

To enhance integration with clinical diagnosis, we initially

identified genes exhibiting expression disparities (|logFC| > 1 and

p< 0.05) between AML patients and healthy donors from datasets

GSE114868 and GSE149237, respectively. We then intersected this

selection with genes from the training set GSE37642-gpl96, which

had expression differences (|logFC| > 0.5 and p< 0.05) between the

two molecular subtypes, to obtain 84 DEGs (Figure 4A). We

employed these 87 differentially expressed genes for unsupervised

consensus clustering. The clustering results indicated optimal

typing at K=2 (Figure 4B, Supplementary Figures S5A–C), and
B

C

A

FIGURE 3

Tumor microenvironmental analysis of lysosomal clusters Estimate analysis comparing (A) estimate score, (B) CIBERSORT calculated the relative
compositional abundance of 22 immune cells. (C) ssGSEA calculated the relative abundance of immune cells in 28. ns, non-significant; * p< 0.05;
*** p< 0.001.
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KM curve revealed that Gene_cluster1 had significantly higher

overall survival time than Gene_cluster2 (Figure 4C).The

heatmap illustrates the expression patterns of the 87 DEGs

between the two gene subtypes and their correlation with clinical

features (Figure 4D).
3.5 Construction of a prognostic model for
lysosome-related genes

To identify genes influencing prognosis between the two

lysosomal subclusters, we conducted univariate cox regression

(p< 0.05) on the 87 DEGs obtained from the intersection

(Supplementary Figure S6). We identified 26 DEGs significantly

impacting prognosis. Further screening was performed using

multivariate cox regression (p< 0.05) (Figure 5A). To prevent

overfitting, we employed lasso regression and constructed a

prognostic model comprising 6 genes (Figures 5B, C). The

sample’s risk score was computed based on the formula:
Frontiers in Immunology 07
Risk   Score =     expression(PILRA)� coef ( − 0:370) + expression(LILRA2)

� coef (0:221)

 + expression(MYO1F)� coef (0:214) + expression(NCF1)

� coef (0:110)

 + expression(HPGDS)� coef ( − 0:137) + expression(MPO)

� coef ( − 0:095)

The samples from the dataset GSE37642-GPL96 were divided into

two groups based on the median values of the risk scores. The sankey

diagram illustrates the association between several subtypes and

patient survival outcomes(Figure 5D). Cluster2 and Gene_cluster2,

associated with worse prognosis, exhibited significantly higher risk

scores than Cluster1 and Gene_cluster1(Figures 5E, F).
3.6 Validation of the lysosome related-
genes prognostic model

To test the predictive effect of lysosomal related-genes

prognostic model on the prognosis of AML patients, we first
B

C D

A

FIGURE 4

Secondary clustering (A) DEGs that vary among lysosomal isoforms and also exhibit differences in expression between AML patients and healthy
individuals. (B) Heat map of the consensus matrix of the sample at k=2. (C) KM survival analysis curves between two gene subtypes at K=2.
(D) Heatmap of the expression of 87 differential genes between the two gene subtypes.
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examined the distribution of risk scores of patients in the training

set by ggrisk (Figure 6A), and the patients with greater risk scores

had higher risk of death. The results of the KM curves hinted to the

fact that patients in the high-risk group had a much lower OS than

those in the low-risk group (Figure 6B), and the 1-, 3-,and 5-year

AUC of ROC were 0.659,0.706,0.709 respectively (Figure 6C). These

results demonstrated the good performance of the lysosomal risk

score model in predicting the survival of AML patients. Further, we

observed similar results in the test set data TCGA-LAML

(Figures 6D–F) and GSE10358-GPL570 (Figures 6G–I). As the

risk score increases, the risk of patient death increases, which

provides an important basis for identifying high-risk patients.

These results suggest that our lysosomal prognostic model can be
Frontiers in Immunology 08
used as a reliable survival predictor, which can help to more

accurately stratify patients and assess prognosis.
3.7 Nomogram

We plotted the nomogram in conjunction with other clinical

characteristics such as age, FAB typing for the purpose of further

evaluating the model, patients with lower risk scores and younger

age had better prognosis (Supplementary Figure S7A). The

calibration curve showed the agreement between our prognostic

model and real events (Supplementary Figure S7B). Similar results

were observed in the test set data TCGA-LAML (Supplementary
B C

D E

F

A

FIGURE 5

Construction of lysosome-related gene prognostic model (A) Multivariate regression results screened 6 DEGs, (B, C) lasso regression screened 6
DEGs for construction of prognostic model. (D) Sankey diagrams clearly show the distribution of patients among different subgroups and the
outcome of (E) molecular subtypes and (F) risk scores for genetic subtypes. * p< 0.05; ** p< 0.01; *** p< 0.001.
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Figures S7C, D) and GSE10358-GPL570 (Supplementary Figures

S7E, F). In addition, expanding the sample size and wider data

validation are more helpful to strengthen the predictive power and

clinical application value of risk lysosomal risk score in

different populations.
3.8 Lysosomal scores predict
immunotherapy effects

TIDE scores were calculated for the purpose of evaluating the

role of risk scores in immunotherapy, and the TIDE scores of the

high-risk group were significantly higher than those of the low-risk
Frontiers in Immunology 09
group (Figures 7A–D), suggesting that the high-risk group may be

more susceptible to immune escape. Some immune checkpoints

associated with MHC-II molecules were significantly less expressed

in the high-risk group compared to the low-risk group(Figure 7E).

The results of the ESTIMATE scores showed that immune

infiltration was significantly stronger in the low-risk group than

in the high-risk group (Supplementary Figures S8A–D), and the

infiltration abundance of most immune cells was significantly with

the high-risk group (Supplementary Figure S8E). These results

suggest that there is a significant difference between the high-risk

and low-risk groups in terms of response to immunotherapy in the

training set data, and that the scoring model can effectively

guide immunotherapy.
B C

D E F

G H I

A

FIGURE 6

Model evaluation and validation (A) Risk factor distribution plots and (B) KM survival curves and (C) timeROC curves assessing the predictive accuracy
of the risk model in the test set GSE37642-GPL96. (D–F) The same was performed in test set TCGA-LAML and (G–I) test set GSE10358-GPL570.
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3.9 Drug sensitivity

We analyzed the sensitivity of the training set samples to several

drugs by using the R package “pRRophetic”. As compared with the

low-risk group, the high-risk group was more sensitive to cytarabine

(Figure 8A), ATRA (Figure 8C), imatinib (Figure 8E), and

bortezomib (Figure 8F). There was no significant difference

between the two groups in sensitivity to doxorubicin (Figure 8B)

and midostaurin (Figure 8D). The above results provide important

reference evidence for clinical treatment.
3.10 Validation of gene expression

To validate the expression of the six genes utilized in model

construction, we initially selected dataset GSE114868 to compare

gene expression between healthy donors and AML patients. The

results revealed significant downregulation of PILRA, LILRA2,
Frontiers in Immunology 10
MYO1F, and NCF1 in AML, while HPGDS and MPO exhibited

heightened expression levels (Supplementary Figure S9).

Subsequently, we corroborated these findings using cell lines.

Consistent with dataset GSE114868, we observed notable

reductions in PILRA, LILRA2, MYO1F, and NCF1 expression,

alongside significant elevations in HPGDS and MPO expression

in AML cell lines compared to normal cells (Figures 9A–D).

Notably, HPGDS was predominantly overexpressed in KG-1a

cells, with relatively low expression in other AML cell lines

(Figure 9E), while MPO expression in NB4 and U937 cells

surpassed that of normal cells by more than 50-fold (Figure 9F).
4 Discussion

The current risk assessment for AML relies predominantly on

the identification of genetic traits through gene sequencing and

other methods for risk classification. However, this approach is
B

C D

E

A

FIGURE 7

Immunotherapy response differences between high and low-risk groups (A) TIDE score, (B) Dysfunction score (C) Exclusion score and (D)
Microsatellite instability score was used to compare differences in response to immunotherapy between high and low risk groups. (E) Top10 immune
checkpoint molecules differentially expressed in high and low risk groups. ns, non-significant; * p< 0.05; ** p< 0.01; *** p< 0.001.
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hindered by issues such as prolonged duration, reliance on a single

method, and low accuracy (27, 28). In contemporary cancer

research, molecular classification and prognostic modeling are

increasingly turning their focus toward the intricate roles played

by subcellular entities, or organelles. While existing risk models

have predominantly centered on mitochondria, particularly in the

context of cancer cells undergoing metabolic reprogramming, the

lysosome, despite its equally pivotal role in cancer cell metabolism,

has been relatively neglected (29–32).

Our study has developed molecular subtype and prognosis-related

risk models in AML centered on lysosomal-related genes. This is the

first model constructed based on lysosomal genes in AML. In this

study, disparities in lysosomal gene expression were instrumental in

classifying AML patients into distinct molecular subtypes, which
Frontiers in Immunology 11
differed significantly in terms of patient prognosis, molecular

expression, and immune infiltration. However, unlike other similar

studies (33), we refrained from conducting prognostic screening of the

gene set prior to molecular subtyping. While this approach may

diminish the model’s prognostic predictive capacity, it facilitates the

identification of other essential biological features beyond prognosis.

Our PPI results reveal that the pivotal differential genes

distinguishing between the two lysosomal isoforms are SYK and

TLR4. SYK, a non-receptor tyrosine kinase, has garnered significant

attention in numerous studies as a promising target for hematologic

malignancies and inflammation-related diseases (34). In prior

research, SYK’s pro-carcinogenic mechanism has been proposed

to regulate the activation of associated pathways through signal

transduction, thereby promoting AML cell survival and drug
B

C D

E F

A

FIGURE 8

Prognostic model to guide drug therapy Sensitivity of high and low risk groups to different drugs in the training set GSE37642-GPL96 samples with
(A) cytarabine, (B) doxorubicin, (C) ATRA, (D) midostaurin, (E) bortezomib, and (F) imatinib. ns, non-significant; ** p< 0.01; *** p< 0.001.
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resistance (34, 35). Our study suggests, for the first time, a

connection between SYK and lysosomes in AML, a proposition

supported by several studies in non-tumor cells (36, 37). Exploring

this connection may bring new insights into SYK inhibitor

resistance. Toll-like receptor 4 (TLR4) belongs to the Toll-like

receptor (TLR) family, plays a pivotal role in pathogen

recognition and innate immune activation (38). TLR4 responds to

stimulation to activate signaling pathways, such as AMPK, and also

regulates the tumor microenvironment, thereby influencing tumor
Frontiers in Immunology 12
progression (39, 40). A connection between lysosomes and TLR4

has been unveiled, with lysosomes serving as a site for TLR4

degradation (41). However, whether TLR4 modulates lysosomal

function remains elusive, and our findings offer additional reference

evidence for this avenue of investigation, more extensive studies are

warranted to delve into the TLR4-lysosomal connection and its

precise mechanism.

We constructed prognostic model comprising 6 genes (PILRA,

LILRA2, MYO1F, NCF1, HPGDS, MPO) and categorized patients
B

C D

E F

A

FIGURE 9

Expression of the six genes modeled Expression values of the six genes used to construct the model in normal and AML cell lines are depicted,
including (A) LILRA2, (B) PILRA, (C) MYO1F, (D) NCF1, (E) HPGDS, and (F) MPO. ns, non-significant; * p< 0.05; *** p< 0.001.
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into high- and low-risk groups. The distribution of risk scores

between clusters and Gene_clusters provided a preliminary

indication of the accuracy of the scoring model. The results from

risk factor distribution plots, KM curves, and TimeROC

demonstrated that the high-risk group had worse prognostic

outcomes. Nomograms and calibration curves further illustrated

the reliability of our model, and these results were validated in two

other distinct datasets. Among these genes, MPO, HPGDS, and

PILRA were considered favorable prognostic factors .

Myeloperoxidase (MPO) regulates inflammatory responses and

participates in the regulation of oxidative stress homeostasis (42).

It is a common diagnostic marker in hematological neoplasms and

aids in differentiating between myeloid and lymphoid lineages in

acute leukemias (43). High expression of MPO is correlated with a

favorable prognosis in AML patients (44). Hematopoietic

prostaglandin d synthase (HPGDS) is an enzyme that catalyzes

the isomerization of prostaglandin h2 (PGH2) to prostaglandin d2

(PGD2) (45). It exerts antitumor effects by catalyzing the

production of PGD2 (46). Paired immunoglobulin-like type 2

receptor alpha (PILRA) is predominantly expressed on monocytes

and macrophages (47) and is involved in the regulation of

neutrophil infiltration (48). High expression of PILRA enhances

the effect of antitumor immunotherapy (49), but its effects vary in

different cancers (50).On the other hand, MYOIF, ILRA2, and

NCF1 are considered prognostically unfavorable factors. Studies

have demonstrated that MYOIF enhances the adhesion and

migration of immune cells (51), promotes M1 polarization of

macrophages (52), and in some tumor patients, MYO1F is

mutated to form fusion proteins (53, 54), promoting

tumorigenesis and progression (55). Activation of LILRA2

inhibits monocyte function and antigen presentation by dendritic

cells (56, 57), and high expression of LILRA2 has been associated

with a poor tumor prognosis (58). NCF1 encodes a protein that is

one of the subunits of NADPH oxidase, and inhibition of NCF1

induces differentiation of APL cells as well as inhibits melanoma cell

growth (59, 60). These pieces of evidence strongly support the

reliability of our model. However, with the exception of MPO, the

above genes have been rarely reported in AML, and follow-up

studies are needed to delve deeper into their functions and

mechanisms in AML.

Immunotherapy serves as a pivotal therapeutic approach in

which lysosomes assume a significant role. Lysosomes facilitate

immune evasion by cancer cells through the degradation of crucial

proteins, including PD-L1 and MHC- I (61, 62). Only a minute

fraction of current AML studies have delved into the influence of

lysosomes on immunotherapy (63). Our findings reveal distinct

immune responses and variations in the expression of immune

checkpoint molecules between high and low-risk groups.

Remarkably, multiple immune checkpoint molecules exhibited

significant downregulation in the high-risk group, potentially

contributing to the observed differences in immunotherapeutic

responses (64). Notably, heightened expression of MHC-II class

molecules has been consistently linked to favorable prognoses

across various tumor types. This link has been confirmed by some

studies in AML (65–68). While considerable attention has been

devoted to exploring the impact of MHC-II molecules on
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antitumor immunotherapy, there appears to be a dearth of research

investigating the relationship between MHC-II molecules and

lysosomes in AML, despite such associations being reported in

other disease models (69, 70). Our study might shed light on

subsequent lysosome-mediated immunotherapy for AML.

Furthermore, our study uncovered lysosome-associated differences

in drug sensitivity between high- and low-risk groups, Consistent

with this finding, lysosomes have been implicated in conferring drug

resistance in cancer cells through mechanisms involving the

segregation of drugs within the lysosomal compartment (71).

In conclusion, we have constructed a prognostic model centered

on lysosome-related genes for the first time in AML. Our model can

effectively assess the prognosis of patients and guide their clinical

treatment, which provides new reference evidence for individualized

treatment of AML. However, our study also has many limitations.

One limitation is that, the study only focused on the association

between lysosome-associated mRNAs and AML prognosis, lacking

research on non-coding RNAs such as lncRNAs, circRNAs, and

tRNAs. Second, external validation of clinical samples is required to

ensure the accuracy of the scoring model.
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