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The discovery of Suppressor of Cytokine Signaling 1 (SOCS1) in 1997 marked a

significant milestone in understanding the regulation of Janus kinase/Signal

transducer and activator of transcription (JAK/STAT) signaling pathways.

Subsequent research deciphered its cellular functions, and recent insights into

SOCS1 deficiencies in humans underscored its critical role in immune regulation.

In humans, SOCS-haploinsufficiency (SOCS1-HI) presents a diverse clinical

spectrum, encompassing autoimmune diseases, infection susceptibility, and

cancer. Variability in disease manifestation, even within families sharing the

same genetic variant, raises questions about clinical penetrance and the need

for individualized treatments. Current therapeutic strategies include JAK

inhibition, with promising results in controlling inflammation in SOCS1-HI

patients. Hematopoietic stem cell transplantation and gene therapy emerge as

promising avenues for curative treatments. The evolving landscape of SOCS1

research, emphasizes the need for a nuanced understanding of genetic variants

and their functional consequences.
KEYWORDS

SOCS1, SOCS1-HI, JAKinhibitors, SOCS1-immunity, multisystem immune dysregulation,
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1 Introduction

The year 1997 marked the beginning of the SOCS1 story. Despite significant knowledge

about Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling

pathways, the regulation of these pathways remained rather unexplored. Excitingly, three

distinct research groups embarked on a journey that uncovered a novel protein capable of

regulating intracellular JAK/STAT signaling. Whereas knowledge of the cellular function of
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SOCS1 has been explored extensively since then, it is only recently

that the first patients with SOCS1 deficiencies have been described.

We now summarize our clinical perspective on SOCS1 in

this article.
2 SOCS1 perspectives

2.1 How it all began

The Australian research group led by Hilton and colleagues, set out

to identify cDNAs encoding proteins with the ability to suppress

cytokine signaling. Murine monocytic leukemic M1 cells, able to

differentiate into mature macrophages were infected with cDNAs

and explored for unresponsiveness to IL-6 stimulation. They isolated

a small cDNA-insert through PCR and named it SOCS1. High

expression of SOCS1 was detected, especially in thymic, spleen, and

lung tissues pointing towards a function in regulating immune

responses. Structural analyses revealed the presence of Src-homology

region 2 (SH2) and SOCSbox domains, shared features with other

proteins in what would later be termed the SOCS family. In vitro

experiments demonstrated a specific effect of SOCS1 on cytokine signal

transduction within the JAK/STAT-signaling pathway (1).

Simultaneously, the Tokyo-based research group led by

Yoshimura, who had previously discovered the CIS protein with

binding potential to the IL-3 receptor, utilized a yeast two-hybrid

cDNA library to screen for proteins binding to JAK. This led to the

identification of JAB (JAK-binding protein). In vitro experiments

confirmed binding of JAB to JAK2, resulting in reduced tyrosine

phosphorylation and negative regulation of JAK/STAT signaling.

They noted that the SH2 domain alone was insufficient for the

kinase inhibitory activity of JAB (2).

The third group, Kishimoto and colleagues from Osaka,

developed a monoclonal antibody targeting a sequence motif in

the SH2 domain of STAT3. Using this antibody, they screened a

murine thymus cDNA library and identified 20 unknown genes,

including a novel gene they named SSI-1 (STAT-induced STAT

inhibitor-1). SSI-1 expression was prominent in murine spleen,

lungs, and testis. Like the other groups, Kishimoto et al. observed an

inhibitory effect of SSI-1 on the JAK/STAT signaling pathway (3).

These groundbreaking discoveries culminated in back-to-back

publications in Nature (1–3).
2.2 Structure and activity of SOCS1

SOCS1, located on chromosome 16, is a relatively compact gene

composed of two exons, with one coding exon only. The gene

encodes the 211-amino acid (AA) SOCS1 protein (Figure 1A). A

distinctive feature of SOCS1 and SOCS3 within the SOCS family is,

in addition to the shared SH2- and the SOCSbox domains, the

presence of an N-terminal Kinase Inhibitory Region (KIR), which

acts as a pseudosubstrate disrupting JAK tyrosine kinase activity (4).

The SH2-domain of SOCS1 directly binds to the activation loop of

various JAKs, inhibiting JAK activation and subsequent STAT

phosphorylation (4). Both the SH2 and KIR domains are crucial
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for SOCS1’s cytokine suppressor function in vivo (5). The C-

terminal SOCS box domain interacts with elongin B/C, Cullins,

and the RING-finger domain-only protein RBX2, forming an E3

ubiquitin ligase. This complex mediates proteasomal degradation of

associated signaling intermediates (4). In 2008, Baetz and colleagues

identified a nuclear localization signal (NLS) in SOCS1 between the

SH2 and SOCS box domains (6). This intranuclear action allows

SOCS1 to regulate additional signaling pathways, such as NFkB, by
inducing proteasomal degradation (7).

Whereas SOCS1 expression in homeostasis is low in most cells,

a rapid induction can be observed upon stimulation by type I and II

cytokine receptors. SOCS1 thus acts as a classical temporal feedback

inhibitor. Induction and activity are promiscuous for different JAK/

STAT members: SOCS1 interacts directly with JAK1, JAK2, and

TYK2 primarily through the pseudosubstrate KIR. Additionally, it

can bind to phosphotyrosine residues on cytokine receptors such as

IL-2Rb via its SH2 domain. Consequently, SOCS1 predominantly

limits the actions of STAT1 but also affects STAT4, STAT5, and

STAT6 (8). Insights from knockouts argue for a peculiar

significance for IFN signaling, most importantly IFN-g.
2.3 SOCS1 functional activity: regulating
immunity and beyond

The importance of SOCS1 in immune cell differentiation and

regulation is most evident in T cells, influencing CD4/CD8 ratios,

thymic T-cell development, and T-helper cell polarization. In SOCS1

deficient mice, aberrant CD4/CD8-ratios have been observed further

indicating a role of SOCS1 in thymic T-cell development (4). SOCS1

deficiency results in a Th1-dominant phenotype with suppressed

Th17 cells, likely due to IFN-g hyperproduction or overstimulation

(4). Additionally, SOCS1 is crucial for regulatory T cell (Treg)

function, as SOCS1-deficient Tregs exhibit reduced Foxp3

expression (4). Furthermore, SOCS1 plays a role in dendritic cell

(DC) maturation and activation, with SOCS1-deficient DCs showing

hyperactivation in response to cytokine stimulation (9).

SOCS1’s influence extends beyond the hematopoietic system, as it

is highly expressed in various tissues (10, 11). This diverse expression

pattern might contribute to clinical phenotypes of SOCS1 insufficiency

and must be kept in mind when discussing curative treatment options

such as hematopoietic stem cell transplantation (HSCT). The

involvement of SOCS1 in different signaling pathways has distinct

effects on immune dysregulation and local immunity. For example, the

nuclear localization of SOCS1 seems to be crucial for local immunity in

the lung, as mice lacking the NLS of SOCS1 develop low-grade

pulmonary inflammation (12).
2.4 SOCS1 and cancer

2.4.1 SOCS1 in inflammation-associated
cancer development

SOCS1 ’s interaction with various intracytosolic and

intranuclear proteins also plays a role in cancer development,

with altered expression observed in various tumor entities.
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Moreover, SOCS1 plays a pivotal role in controlling inflammation, a

critical factor in cancer development. Different alterations of SOCS1

expression contribute to this mechanism, beginning with SOCS1

silencing through hypermethylation of its promoter region,

observed in diverse malignant diseases such as pancreatic

carcinoma, acute myeloid leukemia, and hepatocellular carcinoma

(HCC) (13). In human HCC cell cultures with SOCS1 inactivation

by hypermethylation of the promotor region, Yoshikawa and

colleagues observed reduced growth rates when SOCS1 function

was restored, indicating the importance of the constitutive

activation of the JAK/STAT pathway in the development of HCC

(14). In other malignancies, including breast cancer and multiple

myeloma, elevated expression of microRNAs targeting the SOCS1
Frontiers in Immunology 03
gene, emerges as a mechanism contributing to cancer

development (13).

Additionally, SOCS1 restricts the capacity of interferons (IFNs)

to enhance tumor immunity (13). For instance, SOCS1 deficiency

enhances the antitumor effects of IFN-a in vivo, as demonstrated in

a malignant melanoma mouse model. SOCS1-/-, IFN-g-/- mice

showed a more significant response to IFN-a treatments, leading

to better cure rates compared to SOCS1 wildtypes (15). SOCS1 can

further limit anti-proliferative and pro-apoptotic effects of IFNs:

when downregulating SOCS1 gene expression in colon- and

melanoma- cancer cell lines, IFN-g treatment led to reduced

proliferation and induced interferon-sensitive response element

(ISRE)-mediated transcriptional activity (16).
A

B

FIGURE 1

Genetic and clinical spectrum of SOCS1-haploinsufficiency (A) The SOCS1 gene is located on chromosome 16. It consists of two exons while only
one is coding. The protein comprises different sub-domains: KIR, kinase inhibitory region; ESS, extended SH2-subdomain; SH2, Src-homology 2
domain; NLS, nuclear localization sequence. In the lower part, all the so far reported SOCS1 variants leading to SOCS1-HI are listed according to
their location. Red letters indicate two reported in cis variants, in combination leading to a disease phenotype. (B) So far reported clinical spectrum
of SOCS1-HI in humans distinguished between infection susceptibility, autoimmunity, autoinflammation and cancer. The figures were created using
biorender.com.
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2.4.2 SOCS1 as direct tumor suppressor
and oncogene

Beyond its interactions with key proteins in cytokine signaling

pathways, SOCS1 engages directly with tumor suppressors and

oncogenes, intricately regulating their expression.

In the nucleus, the SOCS1-SH2 domain interacts with the N-

terminal transactivation domain of p53, enhancing p53-

phosphorylation and subsequent DNA-binding, thereby

amplifying transcriptional activity. Simultaneously, the SOCSbox

domain interacts with ATM/ATR, further modulating p53 function.

SOCS1 facilitates proteasomal degradation of p21, which acts as

oncogene when retained in the cytosolic compartment. SOCS1-

mediated proteasomal degradation also limits various signaling

pathways involving the growth factor receptor tyrosine kinase

(RTK), a critical mechanism in tumor growth, e.g. in HCC (13).

However, SOCS1 has a dichotomous role in cancer

development: It can also function as an oncogene, as evidenced

by its overexpression at protein or mRNA levels in solid tumors like

melanoma, directly correlating with heightened tumor invasion and

growth (13, 17). When SOCS1 was silenced in Mel526 melanoma

cells, proliferation was reduced (18). SOCS1 has recently been

identified as direct transcriptional target of Hedgehog (Hh/GLI)

signaling in human medulloblastoma cell lines, whereas silencing of

SOCS1 promoted reduced medulloblastoma growth in vitro (19).

The question arises, why SOCS1 can display both tumor

suppressing and promoting activity within different and sometimes

the same cell type (13). As SOCS1 itself is not very prone to

mutations, different SOCS1 expression levels may help explain

these opposed actions. SOCS1 availability may be regulated by

phosphorylation in different AA positions influencing its

contribution to JAK/STAT and proteasomal degradation pathways,

as well as its interaction with other oncogenes such as BCR-ABL (13).

In sum, the experimental observations above illustrate the

complex interplay between pro- and anti-oncogenic pathways at

the molecular and cellular levels, and how tumor immunology is

intertwined with dysregulated inflammatory pathways.
2.5 SOCS1 and virus infections

Known for its role in suppressing intracellular JAK/STAT

signaling, SOCS1 emerged as a key player in regulating viral

immune evasion. The intriguing twist comes as viruses exploit

SOCS proteins, turning them into virulence factors to subvert

antiviral immune responses. Evidence has shown that the

overexpression of SOCS1 enhances virus replication in HCV

infections by negating the antiviral effects of Type I IFNs (20).

Similarly, for SARS-CoV-2, the accessory viral protein ORF3a

induces intracellular SOCS1 expression and proteasomal

degradation of signaling intermediates in the JAK/STAT pathway,

such as JAK2 (21). This process results in a reduction of antiviral

immune responses, highlighting SOCS1 as a potential therapeutic

target for virus infections.

SOCS1/3 antagonists have shown promise in treating viral

infections, including HSV-1, Influenza A, and vaccinia virus

infections, both in vitro and in mice (22, 23). These antagonists
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are also under discussion as potential therapeutic targets for severe

SARS-CoV-2 infections (23).
2.6 SOCS1 in animal models

Altered SOCS1 function has significant implications for immune

function in vivo. Mice with total SOCS1 deficiency (SOCS1-/-) have a

normal phenotype at birth compared to SOCS1+/+ wildtype and

SOCS1+/- heterozygous littermates, but soon deteriorate and decease

around their third week of life. Histology revealed monocytic organ

infiltration and fatty liver degeneration as a result of generalized

hyperinflammation (24, 25). Additionally, smaller thymi and a

progressive loss of B-lymphocyte maturation in bone marrow,

spleen, and peripheral blood were observed (24). Within the T-cell

compartment, a rapid reduction in thymocytes, expansion of CD4+

and CD8+ T cells in the bone marrow and an increased proliferative

response to stimulation with IL-2 were measured in (SOCS1-/-)

compared to healthy mice (26). Strikingly, early lethality in

(SOCS1-/-) mice could be rescued in additional double RAG2 (or

IFN-g receptor) knockouts (25, 26).
Whereas heterozygous (SOCS1+/-) mice do not present with

neonatal onset hyperinflammatory phenotypes, they accumulate

autoimmune manifestations including development of anti-ssDNA

and anti-dsDNA antibodies, as well as inflammatory changes in

lungs, salivatory glands and kidneys. These changes predominate in

female mice which is in parallel with the female gender-biased

incidence in human SLE (27). These observations in murine models

led to the hypothesis that SOCS1 deficiency expedites autoimmune

phenotypes, and that total SOCS1 deficiency might be fatal in humans.
2.7 Human SOCS1-haploinsufficiency

The first reported cases of SOCS-HI date back to 2020 (28). In

line with the above insights from nonprimates, one of the initially

reported SOCS1-deficient patients presented with severe

Multisystem Inflammatory Syndrome in children (MIS-C) after

SARS-CoV-2 infection, resulting in increased type I and type II

interferon signaling (29, 30). Since then, over 10 families with

SOCS1-HI have been reported, presenting a broad phenotypic

spectrum from autoimmune diseases, autoinflammatory

manifestations to infection susceptibility and cancer (Figure 1B).

The most “common” phenotype is SLE-like with cutaneous, renal,

and articular involvement (31–33). Other organ autoimmunity includes

hepatitis, pancreatitis, thyroiditis, coeliac disease and alopecia (11, 31).

Additionally, autoimmune cytopenias such as immune

thrombocytopenia (ITP) or autoimmune hemolytic anemia (AIHA)

are quite common (11, 29, 31, 32, 34). Another group of patients

present with autoinflammatory phenotypes, as for instance, allergic

diseases like asthma or rhinoconjunctivitis, and with granulomatous

organ involvement such as granulomatous lymphocytic interstitial lung

disease (GLILD), organizing pneumonia, and granulomatous uveitis

(11, 34). Skin involvement is relatively common and may present as

atopic skin disease (11) or psoriasis-like lesions (31, 35). Less frequent

gastrointestinal signs include coeliac disease, oral ulcers, Crohn’s-like
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diseases or chronic intestinal pseudo-obstruction (CIPO) (11, 31, 36).

While infections are usually localized and non-invasive (29, 35), some

severe, life-threatening bacterial infections have occurred (11, 34).

Additionally, lymphadenopathy, mimicking ALPS-like diseases (31,

34), and Hodgkin’s lymphoma (31) have been reported in the

literature (see Figure 1B). While SOCS1 alterations are commonly

observed in human malignant diseases, only one SOCS1-

haploinsufficient (HI) patient has been reported to develop a

malignancy. This may be attributed to the dichotomous effects of

SOCS1 on tumorigenesis, suggesting a loss of its oncogenic effects in

SOCS1-HI individuals. Larger cohort studies, i.e. of the presently

increasing number of SOCS1-HI patients may shed light on this

matter and unveil specific cancer occurrences. According to the

International Union of Immunological Societies (IUIS), SOCS1

deficiency falls under diseases of immune dysregulation (Group IV)

(37). In contrast to murine SOCS1 deficiency, so far described SOCS1-

haploinsufficient (HI) patients generally do not exhibit lymphopenia or

specific impairments in lymphocyte differentiation (11, 24, 29, 31).

SOCS1-HI patients often demonstrate a skewing towards Th1-

phenotypes and elevated levels of various pro-inflammatory cytokines

in their serum (11, 29, 31). Similar to observations in humans, elevated

baseline levels of IFN-g have been particularly noted in SOCS1-deficient
mice (11, 25, 26, 29, 31). Interestingly, while deficiency of T cells

isolated from the thymus (thymocytes) has been observed in SOCS1-

deficient mice (25), as well as dysfunction of Tregs in both homozygous

(SOCS1-/-) and heterozygous (SOCS1+/-) mice (27) SOCS1-HI patients

tend to have reduced levels of Tregs (11, 31).

Dysregulated innate viral defense mechanisms induce

hyperactive JAK/STAT-signaling and Type-I-mediated gene

expression reminiscent of type-I-interferonopathies, presenting with

usually severe autoinflammatory diseases such as SLE-type or

Aicardi-Goutières-syndrome (38, 39). Despite the overactivation of

JAK/STAT-signaling in SOCS1-HI, we do not see upregulated Type-I

Interferon mediated gene expression in all affected individuals (11).

We hypothesize that infectious or other triggers may destabilize this

equilibrium leading to a hyperinflammatory state.

SOCS1-HI manifests as a genetically heterogeneous disease with

no straightforward structure-function relations: The location of the

different variants meanwhile identified does not predict clinical

manifestations or disease severity. Complete heterozygous deletions

of SOCS1 (32) may exhibit less severe phenotypes than heterozygous

C-terminal variants (34). As in other inborn errors of immunity with

autosomal dominant inheritance, family members with SOCS1-HI

may show an incomplete clinical penetrance (31). The majority of

reported variants are frameshift or missense variants. A recent report

highlights two “benign” variants which - while not disrupting SOCS1

function in vitro - contribute to an immune dysregulatory phenotype

when in cis (33). The genetic spectrum of SOCS1-HI is diverse and

underscores the complexity of this condition, as depicted in

Figures 1A, B and in Supplementary Table S1.
2.8 Treating SOCS1-haploinsufficiency

Knowledge about molecular mechanisms of SOCS1 in

intracellular cytokine signaling and discovery of SOCS1-deficiency
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most promising and clinically accessible avenues involves the

JAKinhibition (JAKi) with approved drugs like ruxolitinib,

baricitinib, or tofacitinib. These molecules selectively block different

JAKs thereby reducing the activity of one or more JAK-isoforms, and

decreasing intracellular inflammation (40). Indications with

treatment approval include hematologic disorders such as

myelofibrosis, acute and chronic graft-versus-host disease (GvHD),

rheumatological disorders such as rheumatoid arthritis and SLE,

dermatological disorders such as atopic dermatitis, psoriasis, vitiligo

and alopecia, and inflammatory bowel diseases (41).

In the initial large-cohort study of SOCS1-haploinsufficient

patients, Hadjadj et al. presented compelling in vitro and in vivo

data for effective inflammation control through JAKi treatment

(31). In their experiments, EBV-transformed patient B cells

stimulated with IFN-g in the presence of ruxolitinib, showed

reduced phosphorylation of STAT1 and STAT5, as well as

decreased mRNA expression of STAT-1 regulated genes.

Moreover, STAT-1 phosphorylation was reduced in patients’

monocytes treated with varying baricitinib dosages (31).

Encouraged by these findings, clinicians embraced in-label use

of JAK inhibitors in SOCS1-HIi patients with manifestations of

autoinflammatory diseases. In 2022, a patient with heterozygous

SOCS1-deletion and severe enthesitis-related arthritis showed

significant improvement upon tofacitinib treatment, even

stabilizing immunocytopenia (ITP) that was poorly controlled

with conventional immunosuppression (32).

Recent discoveries by Rodari et al. unveiled two novel SOCS1

variants in patients with severe gastrointestinal manifestation (36).

In vitro data demonstrated normalized STAT1 phosphorylation,

and in vivo treatment with ruxolitinib resulted in both clinical and

laboratory improvements, showcasing reduced pro-inflammatory

cytokines in the patient’s plasma.

While JAK inhibitors are shown to be clinically effective,

cytokine profiles of treated patients revealed that the massive

IFNg upregulation in SOCS1-HI patients was only marginally

affected by JAKi treatment (36). This raises the prospect of

targeted IFNg treatment as a potential therapeutic option for

controlling SOCS1 hyperinflammation and immune dysregulation

for selected patients. Emapalumab, a monoclonal antibody against

IFNg, has been approved for treating refractory, recurrent, or

progressive primary HLH since 2018 (42). Exploring IFNg as a

therapeutic target for SOCS1-HI in future in vitro studies is a

promising option especially in highly dysregulated immune

conditions such as MIS-C. Prior administration of Emapalumab,

it is imperative to exclude mycobacterial and viral infections

particularly in hemophagocytic syndrome (HPS) patients (43).

The careful consideration of benefits and potential side effects is

paramount in maximizing the utility of this approach.

Whilst investigating potent anti-inflammatory drugs to regulate

hyperactive JAK/STAT signaling, attention has turned towards

studying SOCS-mimetic peptides. These molecules are small

peptide sequences that are to mimic the protein function. They

are coupled to a delivery sequence to penetrate cells (44, 45). The

identification of fatal consequences stemming from the lack of

SOCS1 across a spectrum of autoimmune, autoinflammatory, and
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malignant diseases has prompted the exploration of SOCS1 mimetic

peptides in various animal experiments especially in the condition

of recurrent uveitis (44). SOCS1-mimetic peptides may also be

produced in such a way that only distinct parts of the protein such

as the KIR are mimicked, which could be helpful in SOCS1-HI

variants with residual protein activity. The use of SOCS1 mimetic

peptides offers a potential avenue for controlling inflammation. In

future pharmacological studies, challenges like high costs, low

permeability, difficulties of intracellular delivery, proteolytic

instability, lack of targeted delivery and poor oral bioavailability

need to be addressed (44). SOCS1 mimetic peptides have also been

suggested in the context of SARS-CoV-2 and other viral infections

(46). To date, only experimental therapeutic approaches have been

tested, the successful application in humans is still to be

investigated (47).

While SOCS1’s role extends beyond JAK/STAT signaling, with

involvement in ubiquitin ligase formation, future studies may

explore its potential as a target for disease control by regulating

proteasomal degradation.

As IEI with severe immune dysregulation and potentially life-

threatening infections and malignant diseases, severely affected

SOCS1 patients might be eligible for HSCT. As in other (adult) IEI

patients, optimal donor selection and clinical state before HSCT are

important criteria accompanying this decision (48). Furthermore, it

remains unclear if the correction of the hematopoietic compartment
Frontiers in Immunology 06
will result in complete cure as SOCS1 is also expressed in other tissues

(11). To date, there are no SOCS1-HI patients reported that

underwent HSCT as curative treatment (summarized in Figure 2).
3 Discussion and concluding remarks

The recent discovery of SOCS1-HI as a human inborn error of

immunity (IEI) has profoundly transformed the landscape of SOCS1

research. Initially believed to be incompatible with human life, the

discovery of SOCS1-HI has challenged the research community. Over

the past three years, an increasing number of reported SOCS1

variants and clinical case studies suggest that SOCS1-HI might be

an underdiagnosed IEI. This trend is further underscored by the

establishment of various SOCS1 study groups worldwide (European

SOCS1 study group from the European soc ie ty for

Immunodeficiencies (ESID) registry and ESID-registry associated

SOCS1 sub registry (49), US SOCS1 study group (34) that aim to

review patient data scientifically, signifying the global interest and

collaborative efforts in unraveling the complexities of this condition.

To appreciate the disease spectrum, it is crucial to evaluate

novel genetic SOCS1 variants for their functional consequences in

vitro as well as ex vivo using patients’ primary cells. This approach

allows for a nuanced understanding of the clinical phenotypes.

Currently it remains unclear why SOCS-HI occurs with very
FIGURE 2

Potential treatment options for SOCS1-haploinsufficiency JAK/STAT-intracellular signaling and proteasomal degradation as well as potential
therapeutic options for SOCS1-HI patients. The green rectangle lists potential curative treatment options for SOCS1-HI which have not been applied
in humans so far. The turquoise rectangle shows JAKi treatment which has been used successfully in human SOCS1-HI. The blue rectangle lists
SOCS1-mimetic peptides which are only used in experimental settings and not in human studies. Violet rectangles name potential therapeutics
administered in other human diseases with different mechanisms of action the might potentially beneficial in treatment of SOCS1-HI on a
mechanistical basis. The green rectangle in the lower left part of the illustration offers further perspective curative treatments which have not been
performed in humans so far. The figure was created using biorender.com.
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different disease severities requiring individualized therapeutic

approaches, as is known for other rare IEIs (50). At present, a

review of the published data on clinical, immunological and genetic

data on SOCS1-HI suggests a lack of a straightforward structure-

function relationship: intriguingly, complete SOCS1 deletions may

be associated with milder phenotypes compared to C-terminal

variants. Furthermore, within SOCS1-HI families, members who

carry one variant exhibit no clinical symptoms, while relatives with

the exact same SOCS1-variant manifest a severe phenotype.

Unraveling the mechanisms responsible the clinical penetrance of

this disease will be a focal point of future studies. In order to assure

the pathogenicity of a given SOCS1 variant, studying pathways in

which SOCS1 is involved, is perspectively key to guide clinicians

and patients in deciding whom to treat and when to start which

treatment. The future of managing SOCS1-HI is to involve

individualized treatment approaches, incorporating in vitro

functional drug evaluation as part of point-of-care interventions.

Focusing on curative treatments, the evaluation of

hematopoietic stem cell transplantation may be a potential option

for patients with SOCS1-HI. Additionally, gene therapy emerges as

a promising therapeutic approach that warrants further exploration

as a curative treatment option. As research progresses, these efforts

promise to unveil novel insights into SOCS1-HI and pave the way

for more effective, personalized treatments.
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