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The complex pathogenesis of preeclampsia (PE), a significant contributor to

maternal and neonatal mortality globally, is poorly understood despite substantial

research. This review explores the involvement of exosomal microRNAs

(exomiRs) in PE, focusing on their impact on the protein kinase B (AKT)/

hypoxia-inducible factor 1-a (HIF1a)/vascular endothelial growth factor (VEGF)

signaling pathway as well as endothelial cell proliferation and migration.

Specifically, this article amalgamates existing evidence to reveal the pivotal role

of exomiRs in regulating mesenchymal stem cell and trophoblast function,

placental angiogenesis, the renin–angiotensin system, and nitric oxide

production, which may contribute to PE etiology. This review emphasizes the

limited knowledge regarding the role of exomiRs in PE while underscoring the

potential of exomiRs as non-invasive biomarkers for PE diagnosis, prediction, and

treatment. Further, it provides valuable insights into the mechanisms of PE,

highlighting exomiRs as key players with clinical implications, warranting

further exploration to enhance the current understanding and the

development of novel therapeutic interventions.
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1 Introduction

Preeclampsia (PE) is a syndrome characterized by hypertension and concurrent

multisystemic dysfunction during pregnancy (1). It affects approximately 2–8% of

pregnancies worldwide, and the incidence of PE varies among different countries and

regions, with estimates ranging from at least 16% in low-income and middle-income

countries to more than 25% in certain countries in Latin America (2). Globally,

preeclampsia causes the loss of 76,000 pregnant women and 500,000 fetuses every year,

seriously endangering the health of pregnant women and perinatal infants (3).

Furthermore, previous exposure to PE is projected to increase the risk of chronic health
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problems for around 300 million women and children worldwide

(4). This places a significant burden on families and society, making

it an important global public health issue (5). According to the

International Society for the Study of Hypertension in Pregnancy

(ISSHP), PE can be defined as a progressive disease of pregnancy

involving multiple organ systems. PE can be diagnosed after 20

weeks of gestation by new-onset hypertension (systolic blood

pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg;

average of two measurements) in a patient previously with

normotension plus one other pre-eclampsia-related symptom or

sign. These can include proteinuria (protein/creatinine ratio

≥30 mg/mmol in a spot urine sample or ≥300 mg/mmol in

>0.3 g/day), acute kidney injury (creatinine ≥90 µmol/l), liver

involvement (elevated transaminases), neurological symptoms

(eclampsia, altered mental status, blindness, stroke, clonus, severe

headaches, persistent visual scotomata), hematological abnormalities

(thrombocytopenia, disseminated intravascular coagulation,

hemolysis), cardiorespiratory complications (pulmonary edema,

myocardial ischemia or infarction, oxygen saturation <90%, ≥0%,

inspired oxygen for more than 1 hour, intubation other than for

cesarean), or uteroplacental dysfunction (placental abruption) (4).

The condition poses significant risks to maternal health, including

potentially fatal outcomes such as disseminated intravascular
Frontiers in Immunology 02
coagulation, eclampsia, cerebral hemorrhage, pulmonary edema,

acute renal damage, hepatic failure, and stroke, making PE the

second leading cause of maternal death in clinics (6). A strong

correlation has been reported between a history of PE and future

cardiovascular or cerebrovascular disease risk, emphasizing the long-

term implications of this condition in the mother (7). Moreover, PE

contributes to increased fetal morbidity and mortality through

iatrogenic preterm delivery, fetal growth restriction, and placental

abruption (8).

Similar to ISSHP guidelines, the American College of

Obstetricians and Gynecologists (ACOG) and the National

Institute for Health and Care Excellence (NICE) guidelines

recognize that high-risk factors include obstetric history and

maternal factors (4). Moreover, NICE and ACOG have released

risk assessment guidelines based on maternal characteristics and

medical history. The pathogenesis of PE is multifactorial, involving

two stages. The first is abnormal placentation in early pregnancy

due to insufficient extravillous trophoblast (EVT) invasion and

suboptimal spiral artery remodeling. The second stage comprises

placental ischemia/reperfusion injury leading to maternal

angiogenic imbalance, immune-mediated response, and

endothelial cell dysfunction (9) (Figure 1). Despite advancements,

the specific mechanisms underlying PE pathogenesis and etiology
FIGURE 1

The overview of PE. The upward blue arrow represents “increase”, and the downward blue arrow represents “decrease”.
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remain elusive. In particular, the accumulation of reactive oxygen

species (ROS) resulting from heightened oxidative stress (OS) plays

a significant role in the two stages, making it a key indicator of PE

(10). Additionally, impaired spiral artery remodeling, poor

placental implantation, and abnormal levels of angiogenic

proteins in maternal blood are also important indicators of PE

(11). The ISSHP guidelines recommend oral aspirin, low dietary

calcium intake, and exercise to reduce the likelihood of PE (12).

Once diagnosed, the management method involves delivering the

baby and placenta at full term gestation, or, if preterm PE is

detected, expectant management can be used until a more

advanced gestation is reached (11).

Current consensus suggests that PE arises from a combination

of factors, including aberrant placental function, immune-system

modifications, inflammatory activity, imbalanced angiogenic and

anti-angiogenic factors, and metabolic abnormalities (11).

Additionally, genetic variation, trace elements, changes in lipid

metabolism, and OS in pregnant women have been implicated in

PE pathophysiology (13). Emerging evidence points to the role of

epigenetics, particularly microRNAs (miRNAs), in PE

pathogenesis (14). For example, certain miRNAs (e.g., miR-182

and miR-210) are dysregulated in individuals with PE compared

to normal pregnancy (15). Notably, exosomal microRNAs

(exomiRs) have also been implicated in PE, including miR-153-

3p and miR-517a (8). Tkachenko et al. assumed that the altered

level of miR-210 could influence the expression of specific

miRNAs in the development of PE, including miR-1, miR-27a,

miR-29a, miR-130a, miR-152, miR-193b, and miR-519b (16).

Escudero et al. proposed that the synthesis of exosomes

containing miRNAs is influenced by various factors such as

hypoxia and the balance between pro-oxidative and anti-

oxidative mechanisms, and they may contribute to the

significant changes in endothelial protein expression observed in

PE, resulting in endothelial dysfunction in both maternal and

maternal-fetal circulation and subsequent impairment of

angiogenesis, which is the key feature of PE (1).

Owing to gaps in knowledge and limitations in early detection

methods, effective preventive and treatment options for PE remain

lacking (17). Current approaches for predicting PE occurrence lack

sufficient sensitivity. Meanwhile, exosomes, known to transport

miRNAs to distant organs, may play a crucial role in the systemic

organ damage associated with PE and may serve as significant

predictors of the condition (18). However, despite some studies

reporting the potential endothelial regulatory role of exomiRs, they

have not proven to be reliable predictors for PE, and their

application poses a significant challenge (1). This review provides

a comprehensive overview of the current evidence on exomiR

function in PE and explores the potential utility of exomiRs in

diagnosis, prediction, and treatment. By combining existing

knowledge, this review enhances the understanding of PE

pathogenesis and may contribute to the development of novel

management strategies. We hope that this review will encourage

more researchers to pay attention to the role of exomiRs as

biomarkers, thereby contributing to the diagnosis and treatment

of PE.
Frontiers in Immunology 03
2 PE epigenetics

Waddington first used the term “epigenetics” in the 1940s to

describe how an organism’s environment and genes might interact

to cause non-Mendelian inheritance of phenotypes (19). This

definition has evolved to “molecular factors and processes around

DNA that regulate genome activity, independent of DNA sequence,

and are mitotically stable” (20). Epigenetic modifications result

from environmental changes that affect biological processes within

an organism, affecting heritable variations in gene expression (21).

The epigenetic disruption of gene expression patterns can lead to

autoimmune disorders, cancers, and other diseases (22). DNA

methylation, histone modifications, and non-coding RNAs

(ncRNAs) are three basic epigenetic codes that have received

considerable attention (23). Histone and DNA modifications play

intermediate roles in controlling gene activity (24). Moreover,

altering functional ncRNA regulation can modify gene activity,

affecting chromatin structure, epigenetic memory, selective RNA

splicing, and protein translation (24). Notably, gestational hypoxia

permits adaptive reactions to modifications in the placental

environment in preterm infants through epigenetics (25). In

addition, PE and other pregnancy-related complications may be

influenced by miRNAs belonging to ncRNAs (26). The overview of

the epigenetic process in PE is shown in Figure 2.
2.1 DNA methylation during PE

DNA methylation, the most common epigenetic mechanism,

involves the addition of a methyl group to cytosine-phospho-guanine

(CpG) dinucleotide sites, catalyzed by DNA methyltransferases

(DNMTs) (27). CpG sites are frequently located in genomic

regions known as CpG islands, comprising nearly half of the

human genome, and are frequently targeted by transcription

factors (28). DNMT1 is responsible for maintaining genome-wide

methylation, whereas DNMT3A and DNMT3B initiate de novoDNA

methylation, establishing new methylation patterns (29). DNA

methylation, serving as heritable epigenetic markers, is crucial to

embryonic development, transcription, chromatin structure, and X-

chromosome inactivation and can repress transcription or post-

transcriptional RNA degradation to silence downstream target

genes (25). Alterations in gene expression in the placentas of

women with PE have been potentially attributed to epigenetic

modifications induced by the abnormal placental environment (30).

Further, most studies showing alterations in DNA methylation

related to placental development gene expression in PE have

reported direct correlations (31). Mayne et al. discovered 62 sites of

abnormal DNAmethylation in early PE linked to increased placental

aging (32). Furthermore, Zadora et al. observed upregulation of the

homeobox gene family, exhibiting diverse methylation patterns,

including TLX1 and DLX5, which correlated with decreased

trophoblast proliferation and PE (33). Additionally, Wang et al.

reported elevated expression of vascular endothelial growth factor

A (VEGFA), VEGFC, hypoxia-inducible factor 1-a (HIF1a), and
RELA proto-oncogene associated with attenuation of the CpG island
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methylator phenotype (34). These findings suggest associations

between PE and dysregulated angiogenic/anti-angiogenic factors,

hypoxia, and placental insufficiency. Huang et al. postulated that

adenosine, a crucial signaling molecule dysregulated in response to

hypoxia, contributes to aberrant trophoblast invasion through

epigenetic mechanisms involving DNA methylation modifications

in specific tissues critical to PE pathophysiology (35). Simultaneously,

increased placental DNA methylation of Wnt family member 2 and

the metalloproteinase (MMP) promoter region, along with reduced

methylation of placental tissue inhibitors of metalloproteinase 3

(TIMP3)—an MMP inhibitor—have been identified in PE. This

may account for the loss of normal trophoblast invasion and spiral

artery remodeling (36). Moreover, Anderson et al. demonstrated an

association between DNA methylation and vitamin D metabolism,

suggesting that vitamin D deficiency increases the risk of PE (37).
2.2 Histone modification during PE

Histone modifications, including posttranslational modifications

such as histone methylation, acetylation, phosphorylation, and

ubiquitination, are catalyzed by specific enzymes (38). Acetylation

of histones H3 and H4 at specific lysine (K) and arginine (A) residues

can modulate gene expression (39). Histone lysine methylation can

cause either activation or inhibition, depending on its location (25).

Eddy et al. observed a decrease in histone H3 acetylation in response

to hypoxia in PE (40). Additionally, regulation of the histone

demethylase Jumonji domain-containing 1A and histone
Frontiers in Immunology 04
deacetylation 2 (HDAC 2) is controlled in response to hypoxia

(41). HIF1a is essential for controlling these hypoxia-regulated

HDACs, which can exacerbate the PE phenotype by epigenetically

altering the DNA packaging protein histone H3 and transactivating

target genes (42). Moreover, normal trophoblast development

requires interactions between HIF1a and HDAC (43). According

toWang et al., HDAC inhibition correlates with increased expression

of chymase, a non-ACE angiotensin-converting enzyme. Chymase

has been implicated in inflammation and vascular dysfunction and is

upregulated in PE, implying that changes in HDAC expression may

contribute to placental dysfunction in PE (44). Syncytin, a key

regulator of syncytiotrophoblast (STB) formation, is regulated by

the placenta-specific transcription factor and glial cells missing

homolog 1 (GCMa). GCMa acetylation is modulated by the cAMP

response element-binding protein to activate the cAMP/PKA

pathway and induce trophoblast fusion (45). Furthermore, MMP

and TIMP expression is regulated by histone H3 Lysine 9/

29me3 (46).
2.3 ncRNAs

Accounting for 98% of the human genome, ncRNAs do not

translate proteins (47) and can be divided into regulatory and

housekeeping ncRNAs (48). The former includes miRNAs, long

non-coding RNAs (lncRNAs), circular RNAs (circRNAs), piwi-

interacting RNAs (piRNAs), small interfering RNAs (siRNAs),

transfer RNAs, ribosomal RNAs, and small nuclear RNAs (49).
FIGURE 2

The epigenetic modifications in PE.
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Specifically, regulatory ncRNAs can modulate cellular activity

through direct interactions (50). Meanwhile, myriad roles for

miRNAs in placental growth have been reported, with their

overexpression associated with pregnancy-related illnesses such as

PE (51). Notably, differential lncRNA expression has been reported

in the placenta and peripheral blood of healthy pregnant women

compared to those with PE (52). Despite their implication in

various disorders, circRNAs, piRNAs, and siRNAs have been

relatively understudied in the context of PE pathophysiology (53).

Gene expression regulation in developing and differentiated

tissues is facilitated by several epigenetic mechanisms, including

DNA methylation, histone modification, and miRNA activity (21).

These mechanisms influence gene expression during placental

development and function (54) and may play critical roles in

various pregnancy complications such as PE, gestational diabetes

mellitus, fetal growth restriction, and preterm birth (55).
3 miRNAs and PE

Among ncRNAs, miRNAs—endogenous, short, single-stranded

20–24 nucleotide molecules—were discovered in the early 1990s (56).

To date, miRNAs have been detected in nearly all plant and animal

species, with more than 2000 identified in the human genome (57).

Despite the absence of direct experimental evidence, computational

studies have shown that nearly 60% of human genes are possible

miRNA targets, suggesting a potential influence on all biological

pathways (58). They primarily bind to the 3′ end of messenger RNA

(mRNA) molecules and repress target mRNAs through transcript

degradation, translation blockage, and gene expression suppression.

This implies that miRNAs control target protein gene translation and

mRNA degradation at the post-transcriptional level. Consequently,

aberrant miRNA expression has been implicated in various

malignancies, including ovarian, lung, and breast cancers, by

modulating key cellular activities such as cell proliferation,

differentiation, apoptosis, angiogenesis, and metabolism (59),.

Aberrant miRNAs can target downstream genes, leading to

decreased trophoblast migration and invasion or enhanced cell

death, contributing to PE (24). Certain abnormally expressed

miRNAs aggregate in specific chromosomal areas to form closely

linked clusters, including the chromosome 14 miRNA cluster

(C14MC) and chromosome 19 miRNA cluster (C19MC) (60).

C14MC comprises 52 miRNAs that regulate essential physiological

processes, including immunological suppression, anti-inflammatory

responses, and hypoxia-induced responses (61). Meanwhile, C19MC

includes 46 miRNA genes detectable as early as 5 weeks of gestation

(62). Overexpression of C19MC is associated with reduced migration

in the EVT cell line HTR8/Svneo, suggesting that this cluster mediates

decreased trophoblast migration, spiral artery remodeling, and

placental ischemia in PE. Conversely, C14MC expression declines as

pregnancy progresses (63). Pineles et al. first identified the

overexpression of miR-210 and miR-182 in the placenta of patients

with PE, representing new targets for PE pathogenesis (15). The first

global transcriptome analysis of miRNAs conducted in 2009 using

microarray technology revealed that 11 miRNAs were upregulated
Frontiers in Immunology 05
and 23 were downregulated in women with severe PE compared with

controls (64). Differential miRNA expression in PE has also been

associated with metabolic changes, transcriptional regulation, immune

function, cardiovascular and reproductive development, cell cycle, cell

adhesion, and relational signaling pathways, such as transforming

growth factor b (TGF-b), Hippo, and mitogen-activated protein

kinase signaling pathways, according to biological information

analysis (13, 65). However, the roles of miRNAs in the

pathophysiology of PE remain to be fully characterized. The

investigation of miRNA functions and processes in PE is

summarized in Figure 3.
3.1 Regulation of mesenchymal stem
cell function

MSCs in the maternal decidua are central to controlling the pro-

angiogenic, immunomodulatory, and anti-inflammatory milieu of

the maternal–fetal interface during placentation (66). Alterations in

decidual MSC cytokine production and miRNA expression have

been observed in PE, with impaired survival, proliferation, and

migration of MSCs isolated from women with PE (67, 68).

Enhanced miR-181a expression in the umbilical cord and decidual-

derived MSCs of patients with PE inhibits proliferation and reduces

immunosuppressive qualities without affecting apoptosis (69).

Furthermore, increased miR-494 levels in PE decidual MSCs

inhibit the G1/S transition, influence proliferation by targeting

cyclin D1 and cyclin-dependent kinase 6, and hinder M2

polarization of macrophages. Collectively, this causes an immune

imbalance at the maternal–fetal interface mediated by decreased

prostaglandin E2 secretion (70, 71). Conversely, overexpression of

miR-495 accelerates MSC apoptosis and induces cellular

senescence (72).

MSCs that show relative low immunogenicity can regenerate

damaged tissue through both direct differentiation into tissue cells

and indirect support by secreting cytokines to promote the

proliferation of tissue cells (73). Furthermore, they can also be

induced to adopt immunosuppressive phenotypes to inhibit

inflammation and immune activation (74). What’s more, MSCs

can facilitate angiogenesis to reconstruct the vascular network and

restore blood supply in the placenta (75). MSCs can improve

maternal-fetal outcomes in different animal models of PE by

enhancing cell metabolism, combating OS, promoting a balance in

angiogenesis, and anti-inflammation (66). Studies have demonstrated

promising results in the application of MSCs to treat PE, indicating

that MSCs could be considered a potential novel treatment option

(76). Recent studies indicate that the pleiotropic effects of MSCs arise

from the synthesis of soluble paracrine factors, rather than their

ability to differentiate (77). Particularly, exosomes alone have been

established in studies to be responsible for the therapeutic capabilities

of MSCs in PE therapy (78). Mesenchymal stem cell-derived

exosomes have the potential to delay the progression of PE and

enhance outcomes by improving trophoblast function and placental

angiogenesis, regulating immune responses, and reducing

inflammation and OS (79).
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3.2 Regulation of trophoblast function

Abnormally expressed miRNAs primarily regulate trophoblast

invasion. Overexpression of miR-20a in PE placentas inhibits

proliferation, migration, and invasion of the trophoblast cell line

JEG-3 by suppressing forkhead box protein A1 mRNA and protein

expression (80). Additionally, up-regulated miR-29b directly binds

to the 3′ untranslated regions (UTRs) of myeloid cell leukemia

sequence 1, MMP2, VEGFA, and integrin b1 (ITGb1), inducing
Frontiers in Immunology 06
trophoblast apoptosis and inhibiting trophoblast invasion and

angiogenesis in HTR-8/SVneo and BeWo cells (81). Meanwhile,

miR-30a overexpression in JEG-3 cells reduces cell invasion,

downregulates insulin-like growth factor 1 (IGF1) mRNA and

protein expression, and promotes trophoblast apoptosis in PE

(82). Notably, miR-29b and miR-30a are highly expressed in

patients with PE (83). Additionally, miR-134, miR-181a, miR-299,

and miR-675 inhibit trophoblast invasion and migration by

targeting HDAC2, insulin-like growth factor 2, and ITGb1, with
increased circulating and placental levels in PE (84, 85). Conversely,

miR-195, miR-376c, or miR-378a-5p promote the proliferation and

invasion of HTR8/SVneo cells by targeting the TGF-b pathway

components, including activin type II receptor, activin receptor-like

kinase 5, and Nodal, with confirmed downregulation in circulating

and placental levels in women with PE (84, 86). Gao et al. reported

that miR-4421 overexpression in PE downregulates the aldosterone

synthase gene (CYP11B2), inhibiting trophoblast proliferation and

blocking cell cycle progression (83).
3.3 Regulation of placental angiogenesis

Several miRNAs may regulate the expression of angiogenesis-

related factors in PE (87). Specifically, placental-specific miRNAs

may be expressed by human villi trophoblasts, become encapsulated

in exosomes, and subsequently released into the maternal circulation.

This may partially explain how placental implantation defects

contribute to systemic vascular dysfunction (88). Additionally,

dysregulated miRNA expression in PE may affect the capillary

formation capacity of umbilical vein endothelial cells (70). For

example, the expression of miR-16, miR-29a, miR-144, miR-195-

5p, miR-346, and miR-582-3p, which target VEGFA—a pro-

angiogenic factor promoting vascular endothelial cell proliferation,

blood vessel formation, and vascular permeability—is upregulated in

PE (89, 90). Moreover, Wang et al. observed decreased viability and

proliferative activity of decidua-derived mesenchymal stem cells

upon miR-16 overexpression and increased viability in cells

transfected with an anti-miR-16 antibody (91). Meanwhile, miR-17,

miR-20a, and miR-20b are reportedly overexpressed in PE,

potentially cooperating in the suppression of various angiogenesis-

related genes, including Ephrin B2 (EFNB2), Ephrin type B receptor 4

(EPHB4), HIF1A, VEGFA, MMP2, TIMP2, TGFB, and interleukin-8

(IL8) (92, 93). In addition, EFNB2 and EPHB4 interact to regulate the

internalization and signaling of VEGF receptor 2 (VEGFR2) and

VEGFR3, mediating vascular cell adhesion, repulsion, and migration

(94, 95). HIF1a, a transcription factor activated in response to

hypoxia, regulates the expression of VEGFA, emphasizing its

importance in placental remodeling during normal pregnancy and

its potential role in PE pathogenesis. Additionally, MMP2 and

TIMP2 are crucial in spiral artery remodeling during early

gestation and in modulating the extracellular matrix during the

initial angiogenic response (96, 97). Furthermore, Dicer silencing

inhibits lef-7f and miR-27b expression, as well as capillary

germination and endothelial cell tubule formation (98). In contrast,
FIGURE 3

The functions of miRNAs in PE.
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the downregulation of miR-126 is associated with pro-angiogenic

traits in PE (99, 100). In summary, miR-126 regulates the VEGF

pathway at various levels and is inversely related to the angiogenic

characteristics of PE (101).
3.4 Regulation of placental renin–
angiotensin system

Upregulation of anti-angiogenic factors in the placenta, such as

soluble fms-like tyrosine-1 (sFlt-1) and soluble endoglin (sEng),

contributes to aberrant placental vascularization (102, 103).

Increased synthesis of sFlt-1 and endothelin is associated with

enhanced development of an agonistic autoantibody against the

angiotensin (ANG II) type 1 (AT1) receptor (AT1-AA) in PE (104,

105). Upregulation of AT1-AA correlates with higher blood

pressure, elevated endothelin levels, and reduced levels of

vasodilators, such as nitric oxide (NO) (106). Pregnant women

become insensitive to ANG II-mediated vasoconstriction,

maintaining normotension despite elevated renin, aldosterone,

and ANG II levels (107). However, sensitivity to ANG II is

reportedly enhanced in patients with PE (108). Particularly, the

angiotensin II type 1 receptor (AT1R)-specific antibody, AT1-AA,

plays a crucial role in PE pathophysiology (109). Notably, elevated

levels of AT1-AAs in women with PE are associated with increased

production of sFlt-1, sEng, IL-6, and endothelin, increased

trophoblast apoptosis, and decreased VEGF expression (110, 111).

Specific miRNAs also regulate AT1-AA biosynthesis (25). For

instance, miR-155 downregulation correlates with increased

AT1R expression (112). Moreover, upregulation of placental

miRNA-181a and downregulation of miR-1301 in PE are

associated with increased IL-6 production, leading to elevated

AT1-AA levels (113, 114).
3.5 Regulation of placental NO production

NO, synthesized from L-arginine by nitric oxide synthase

(NOS), is a key regulator of vascular resistance and hemodynamic

changes during pregnancy (115). Choi et al. reported decreased NO

and NOS levels are related to PE (116). In women with PE, the

increased expression of miR-155, miR-221, and miR-222 has been

linked to decreased NO production (15, 117). Moreover,

overexpression of miR-155 in HUVECs is associated with

decreased endothelial NOS (eNOS) expression by targeting the 3′
UTR of eNOS (118, 119).

In addition, Yang et al. discovered that miR-148a and miR-152

increase the expression of fatty acid-binding protein 4 in

trophoblasts and increase lipid accumulation by regulating DNA

methyltransferase 1, which is involved in abnormal lipid

metabolism and inflammatory responses in PE pathogenesis

(120). Furthermore, miR-1301 is downregulated in PE and may

be involved in leptin control throughout pregnancy; however, it is

inversely associated with maternal systolic and diastolic blood

pressure before delivery (114).
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4 Roles of exosomes in PE

Extracellular vesicles (EVs)—small semipermeable membrane

vesicles—facilitate communication and interaction within or between

tissues (121, 122). EVs that exist in myriad bodily fluids are categorized

as exosomes, microvesicles, and apoptotic bodies according to the

modes of biogenesis and release (123). They are excellent paracrine

regulators of cellular crosstalk based on lipid bilayer membranes,

DNAs, RNAs, proteins, and lipids (124). In the maternal-placental-

fetal unit, microvesicles can be regarded as syncytiotrophoblast

membrane microparticles (STBMs). Exosomes (30-150 nm) are

microscopic particles formed by the inward folding of the plasma

membrane and the creation of intracellular multivesicular bodies

(125). STBMs are small vesicles (50-2000 nm) shed from the plasma

membrane (126). Apoptotic bodies (500-4000 nm) are produced by

apoptotic cells and are characterized by the presence of organelles

within the vesicles (127). Exosomes, STBMs, and apoptotic bodies have

a similar lipid bilayer membrane and carry genetic and protein cargo

associated with the inflammatory reaction in PE (128). However, there

are some subtle differences in their roles in PE. Exosomes are believed

to have immunosuppressive functions because they can inhibit NK

cytotoxicity, suppress T cell activity, and express immunomodulatory

proteins such as HLA-G5 (129). Additionally, some studies suggest

that exosomes containing miRNAs may have a pro-inflammatory

effect by activating various inflammatory pathways in PE (88).

Moreover, in vitro studies have shown that STBMs can adhere to T

cells, B cells, and other immune cells, inducing an inflammatory

response in PE (130). Unlike exosomes and STBMs, the target cells

of apoptotic bodies are less variable, mainly including macrophages,

dendritic cells, and other neighboring cells in PE. Typically in PE,

macrophages tend to polarize towards the anti-inflammatory M2

phenotype after phagocytosing apoptotic bodies, and genetic

information can be transferred during this process (131).

Particularly, exosomes are released through an endosome-

dependent pathway, participate in cell-to-cell communication and

are implicated in immune responses, viral pathogenesis, nervous

system illness, cancer progression, and pregnancy (132, 133).

Exosomes also act as mediators of fetal–maternal communication

during implantation and placentation while modulating maternal

responses, maintaining cellular metabolic homeostasis, promoting

fetal vasculogenesis, and maternal uterine vascular adaptation (134,

135). The total number of circulating exosomes increases

throughout gestation, along with pregnancy complications such as

gestational diabetes (GDM) and PE (132, 136). The International

Society for EVs recommends identifying specific exosome markers,

such as CD81, CD9, and CD63 tetraspanins, through techniques

like immunoelectron microscopy, flow cytometry, or Western

blotting to confirm the exosomal origin of the retrieved vesicles in

maternal circulation (137). Pregnancy-associated exosomes have

been isolated from the blood of pregnant women at various

gestational ages (138). Furthermore, the concentration and

content of circulating exosomes may indicate changes in

condition, metabolism, fetal growth, and maturation (139).

Although the specific origin, payload, and roles of these exosomes

in maternal circulation remain unclear, the primary source is the
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placenta, which releases exosomes into maternal circulation as early

as 6 weeks into pregnancy (17). Placental disruption is proposed as

a fundamental factor in PE development; therefore, an increased

release of exosomes into maternal circulation by placental

trophoblasts may be characteristic of this disorder (140).

Numerous humoral factors are involved in PE pathogenesis,

characterized by chronic inflammation, leukocyte activation, and

elevated blood cytokine levels (141). Increased tumor necrosis

factor-a (TNF-a) levels in early pregnancy may induce the

expression of intercellular adhesion molecule-1 (ICAM-1) on

vascular endothelial cells (ECs) and trophoblasts, activating them

within the context of chronic inflammation (142). Notably, soluble

ICAM-1 can be released by leukocytes adhering to the vascular

endothelium due to OS (143). Additionally, chronic inflammation

activates lymphocyte function-associated antigen-1 in leukocytes,

disrupting spiral artery remodeling with EC and trophoblast

activation (144). These two EC activation pathways cause vascular

dysfunction, contributing to PE. In these patients, immune

tolerance to trophoblasts is maintained by the impaired

interaction between human leukocyte antigen-G and decidual

natural killer (NK) cells, dendritic cells, regulatory T (Treg) cells,

and cytokines secreted by uterine NK cells in the decidua, resulting

in EC and trophoblast dysfunction (145, 146). Subsequently, EVTs

fail to adequately invade the uterine decidua and myometrium,

resulting in impaired spiral artery remodeling. Type-1 T helper

(Th1) cells and Th17 cells, which secrete proinflammatory

cytokines including TNF-a, interferon-g, IL-6, and IL-17, are also

prominent in PE (140). Disruption of angiogenesis causes vascular

dysfunction, contributing to poor placentation and PE pathogenesis

(147). Increased levels of antivascular growth factors, including

sFlt-1 and sEng, can decrease placental growth factor (PlGF) levels

and reduce angiogenesis in the placenta (148). Exosomes reportedly

transport various humoral factors, including miRNAs, to distant

organs and may have important roles in PE (Figure 4).
Frontiers in Immunology 08
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Exosomes that contain miRNAs, known as exomiRs, can be

absorbed by nearby or distant cells and are modified by receivers

(149). In addition to their complex with argonaute (AGO) proteins,

miRNAs are actively released by bundling in exosomes to avoid

destruction by RNases (150, 151). Compared to AGO-bound

miRNAs, a small portion of the total miRNA plasma population

is made up of exomiRs, which are required for donor–receiver cell

interactions and impact functional outcomes by modifying host

gene expression in recipient cells (152, 153). As exomiRs are

specifically packaged into exosomes and released by the cell to

initiate cellular reprogramming, they have recently become

important biomarkers for several illnesses (154, 155).

Placenta-derived exosomes contain abundant miRNAs that are

regulated by various factors such as hypoxia, environmental factors,

and epigenetic alterations (156). There are more than 600 exomiRs

expressed in the placenta, which play critical roles in placental

development and function by regulating the expression of genes

involved in trophoblast proliferation, differentiation, invasion,

migration, apoptosis, and angiogenesis (157). ExomiRs expression

patterns in the placenta shift during gestation, for example, a

comparison of placentas isolated from the first and third

trimesters revealed a total of 208 miRNA transcripts that were

differently expressed (158). In particular, exomiRs that regulate

trophoblast proliferation and angiogenesis are significantly

expressed in the first trimester, while exomiRs that promote

trophoblast differentiation and reduce trophoblast proliferation

are strongly expressed in the third trimester (158). Considering

the upregulation of miRNAs in hypoxic cells and their long half-life

and high stability, the relationships between miRNAs, including

exomiRs, and PE have been extensively studied (159, 160). Different

concentrations of exomiRs may be associated with the pathological

state of PE (Table 1). Devor et al. demonstrated that women with PE
FIGURE 4

The roles of exosomes in PE.
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and those with normal pregnancies exhibit different exomiR

patterns during the first trimester, which may be exploited for

early PE diagnosis (140). Moreover, exosomes secreted by

cytotrophoblasts, which express placenta-specific miRNAs,

participate in embryo implantation by promoting Treg cell

differentiation and suppressing the nuclear factor-B signaling

pathway, influencing the immune reaction and inflammatory

response at the fetal–maternal interface and remodeling the spiral

artery (122). ExomiRs, such as miR-517a, released from

trophoblasts into the maternal circulation also have an important

role in regulating the Th1/Th2 balance, leading to immune response

activation, and their imbalance may contribute to PE pathogenesis

(18). Notably, enrichment of specific exomiRs causes aberrant cell

proliferation, adhesion, migration, and invasion in women with PE

(177). Placental-specific miRNAs released into the maternal

circulation by placental trophoblasts in exosomes may also

impact TNF signaling regulation, which can induce vascular

activation and dysfunction in placental trophoblasts by activating

leukocytes and inducing vascular endothelial adhesion molecules

(88). Moreover, the implanted embryo releases exomiRs to control

blood flow (178).

Lower expression of miR23a-3p, miR-125b-2-3p, miR-144-3p,

miR-192-5p, miR-205-5p, miR-208a-3p, miR-335-5p, miR-451a,

miR-518a-3p, and miR-542-3p has been reported in exosomes

isolated from patients with PE compared to normal controls,

whereas the expression of let-7a-5p, miR-17-5p, miR-26a-5p,

miR-30c-5p, miR-141-3p, miR-199a-3p, miR-210, miR-221-3p,

miR-325-3p, miR-516-5p, miR-517, miR-520a, miR-525, miR-

526a, miR-584-5p, miR-7445p, and miR-6724-5p is higher in

patients with PE (121, 179). In addition to these exomiRs, miR-

150 is a significant regulator of angiogenesis in utero that increases

the expression of VEGF and Notch1. miR-150 expression is

upregulated in umbilical cord mesenchymal stem cell-derived

exosomes from a healthy pregnancy in piglets (165). Meanwhile,

miR-153-3p is upregulated two-fold in exosomes from patients with

PE. Its overexpression decreases cell proliferation and invasion

while promoting apoptosis (8). Furthermore, miR-153-3p can

bind the 3′ UTRs of HIF1A mRNA and inhibit its expression,

which is associated with decreased tube formation by primary

human umbilical vein ECs, decreased VEGFA production, and

reduced angiogenesis (166, 169). Overexpression of exomiR-215-

5p in PE reduces trophoblast proliferation and migration by

decreasing cell division cycle 6 expression via the epigenetic

downregulation of E-cadherin, which is required for DNA

replication (167). Placental miR-342-3p, isolated from PE

exosomes, has been implicated in EC dysfunction (180). ExomiRs,

such as miR-486-1-5p and miR486-2-5p, participate in

angiogenesis, migration, and placental development by targeting

IGF1 (181). In contrast, hsa-miR-525-5p, hsa-miR-526b-5p, and

hsa-miR-1269b are expressed exclusively under diseased conditions

(182). Notably, hsa-miR-525-5p can decrease the expression of the

anti-inflammatory factor vasoactive intestinal peptide (173).

Meanwhile, hsa-miR-526b-5p modulates MMP1 and HIF1a
expression (174), and hsa-miR-1269b regulates the expression of

the forkhead box O1 gene (FOXO1), which is important for

endometrial stromal decidualization and implantation (176).
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TABLE 1 A summary of exomiRs related to PE.

ExomiRs Mechanism Reference

ExomiR-16 In PE patients, overexpressed exomiR-16 is
negatively correlated with the levels of
VEGFA that influences proliferation and
migration of trophoblasts and angiogenesis
processes, moreover, overexpressed exomiR-
16 induces cell-cycle arrest by targeting
cyclin E1.

(91, 161)

ExomiR-
17-5P

ExomiR-17-5p could target PTEN to activate
AKT/HIF1a/VEGF signaling pathway related
to angiogenesis such as migration and tube
formation of ECs in PE.

(161, 162)

ExomiR-
122-5p

Upregulated exomiR-122-5p of PE patients
negatively regulates ECs migration.

(163)

ExomiR-
126-5P

ExomiR-126–5p mediates pro-angiogenic
effects through inhibition of THBS1
expression, and enhanced proliferation and
migration of ECs.

(161, 164)

ExomiR-150 ExomiR-150 stimulates the proliferation and
migration of ECs, and expresses higher VEGF
and Notch1, indicating a pro-
angiogenic impact.

(122, 165)

ExomiR-
151a-5p

Upregulation of exomiR-151a-5p is associated
with poor proliferation and migration of ECs
in PE.

(163)

ExomiR-
153-3p

ExomiR-153-3p overexpression reduces cell
proliferation and invasion while increasing
apoptosis. Furthermore, it can bind the
3’UTRs of HIF1a mRNA and limit its
expression, which has been linked to
decreased tube formation in primary human
umbilical vein ECs, decreased VEGFA
production and angiogenesis.

(8, 166)

ExomiR-
210-3p

Downregulation of exomiR-210-3p markedly
decreased the tube formation, migration and
proliferative capacities of ECs in PE.

(163)

ExomiR-
215-5p

ExomiR-215-5p overexpression in pregnant
women reduces trophoblast proliferation and
migration during PE via reducing CDC6, a
necessary gene code for DNA replication.
Furthermore, it also inhibits the EMT via
reducing CDC6 expression through epigenetic
downregulation of E-cadherin.

(167)

ExomiR-
296-5p

Overexpression of exomiR-296-5p in PE
results in downregulation of PTEN and
upregulation of PTEN/PI3K/AKT signaling
pathway related to angiogenesis such as
migration and tube formation of ECs.

(163, 168)

ExomiR-
342-3p

ExomiR-342-3p inhibits the proliferation and
migration of ECs and results
their dysfunction.

(169, 170)

ExomiR-
376c-3p

Upregulated exomiR-376c-3p negatively
regulates ECs migration in PE.

(163)

ExomiR-
486-1-5p

ExomiR-486-1-5p participates in angiogenesis,
migration and placental development by
targeting IGF1.

(132)

ExomiR-
486-2-5p

ExomiR-486-2-5p participates in angiogenesis,
migration and placental development by
targeting IGF1.

(132)

(Continued)
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4.2 Other functions of exosomes in PE

STB microvilli produced in the placenta may impede the

proliferation and growth of ECs and serve as pathophysiological

markers of PE (183). High levels of exosomes are released into the

maternal circulation by STBs, causing endothelial dysfunction and

leading to vascular constriction in PE (184). Exosomes may supply

proteins to trophoblasts, generating a supportive environment that

interferes with the operation of distant organs (18). Neprilysin

(NEP), which may participate in PE pathogenesis by activating

signaling peptides, such as endothelin and atrial natriuretic peptide,

is widely expressed in placental trophoblasts and may directly

promote impaired uteroplacental circulation (185, 186). Active

NEP is reportedly secreted into the maternal circulation and

coupled to STB-derived exosomes. Its expression is enhanced in

PE, indicating that STB-derived exosomes could act as a bridge

between placental dysfunction and subsequent clinical maternal

disorders associated with PE (187). Additionally, various tissue

factors are expressed on the surface of STB-derived exosomes,

and its overexpression is related to PE (188). Moreover, exosomal

syncytin-2 levels are significantly lower in the blood of patients with
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PE, which may be associated with STB production by villous

trophoblasts (189). Furthermore, PE-derived exosomes participate

in vascular dysfunction via their overexpression of sFlt-1 and sEng,

which inhibit EC proliferation, migration, and differentiation,

resulting in endothelial dysfunction (190). Notably, exosomes

from PE may contribute to the spread of endothelial injury by

sequestering free VEGF in maternal circulation (191).
5 Biomarker functions of exomiRs

Remarkably, the transfer of miRNAs by exosomes may result in

the transmission of genetic information and generation of diverse

proteins. ExomiRs are responsible for various physiological and

pathological conditions in target cells and have been extensively

investigated as biomarkers for the diagnosis, prediction, and

treatment of many diseases, such as GDM and breast cancer (122).

Although multiple biomarkers, including sFlt-1, sEng, and

PlGF, have been developed for PE diagnosis, their sensitivity and

specificity are suboptimal due to the interference of many

molecules. A reliable serum biomarker is required for an accurate

and early diagnosis of PE. Molecular biomarkers, rather than

biochemical indicators, may provide a more reliable platform for

screening and diagnosing PE. The bioactivity, transfer, and, most

importantly, uptake of exomiRs by target cells have been reported in

pathological conditions associated with PE (192). For PE, exomiRs

can be regarded as diagnostic biomarkers and therapeutic targets

based on their differential expression levels (18, 122). Hence,

detecting the expression of exomiRs and their gene products,

such as exomiR-210-3p, may be useful for the diagnosis and

prediction of PE. The ability of exosomes to transport vital

information across cells can be exploited to improve clinical

efficiency by leveraging their ability as biomarker candidates and

prominent treatment targets (Figure 5). Recently, immune

abnormalities in the placenta and maternal circulation have been

found to occur before the clinical onset of PE (193). Particularly,

Excessive systemic and placental complement activation, as well as

poor adaptive T cell tolerance with Th1/Th2/Th17/Treg imbalance,

have been observed in both human and animal models of PE (194).

This indicates that the potential of immune-modifying therapy for

preventing or treating PE is significant, despite the limited existing

evidence (195). As mentioned above, exomiRs can regulate the Th1/

Th2 balance and immune response, indicating that the regulation of

exomiRs may help treat PE. Particularly, several studies have

identified exomiR-15a-5p as a potential therapeutic target for PE

due to its ability to inhibit trophoblast viability, migration, invasion,

and epithelial-to-mesenchymal transition in trophoblasts (196).

Currently, there are no effective pharmaceutical treatments or

strategies to prevent PE. Traditionally, exercise, low-dose aspirin

and calcium intake are recommended to prevent PE in high-risk

women by professional societies (197). Nowadays, statins,

etanercept, sulfasalazine, hydroxychloroquine, eculizumab,

metformin, and proton pump inhibitors are gaining more and

more attention from researchers (9, 198). This review may

provide a new idea for the prevention of PE. Targeting exomiRs

and their related signaling pathways, transcripts, etc., may play a
TABLE 1 Continued

ExomiRs Mechanism Reference

ExomiR-499 ExomiR-499 suppresses proinflammatory
cytokine production by decreasing NF-kB
signaling, reducing inflammatory responses
and generating an immune-tolerant
microenvironment in the uterus.

(171)

ExomiR-
517a

ExomiR-517a is crucial for controlling the
Th1/Th2 balance, which triggers the immune
system. In this particular case, the imbalance
may be the cause of PE development.

(18)

ExomiR-
517b

ExomiR-517b can increase the expression of
TNF-a and/or other death ligands.

(88)

ExomiR-
520c-3p

Upregulation of exomiR-520c-3p inhibits
EVTs invasion by targeting CD44 in PE.

(172)

ExomiR-
525-5p

Overexpression of exomiR-525-5p can
decrease the anti-inflammatory factor VIP
that may participate in the occurrence of PE.

(173)

ExomiR-
526b-5p

ExomiR-526b-5p modulates MMP1 and
HIF1a expression that are important in the
remodeling of the spiral arteries.

(174)

ExomiR-
550a-5p

ExomiR-550a-5p positively regulates
cell migration.

(163)

ExomiR-
571a-3p

ExomiR-571a-3p represses cGMP-dependent
protein kinase 1 by NK cells, a key mediator
of nitric oxide signaling.

(175)

ExomiR-
1269b

ExomiR-1269b regulates the expression of the
FOXO1, which is critical in endometrial
stromal decidualization and implantation.

(176)
ECs, endothelial cells; EMT, epithelial-mesenchymal transition; exomiRs, exosomal
microRNAs; EVTs, extravillous trophoblasts; FOXO1, forkhead box O1 gene; HIF1a,
hypoxia-inducible factor 1-a; IGF1, insulin-like growth factor 1; MMP, metalloproteinase;
PE, preeclampsia; PTEN, phosphatase and tensin homolog; THBS1, thrombospondin-1; TNF-
a, tumor necrosis factor-a; UCMSCs, umbilical cord mesenchymal stem cells; UTRs,
untranslated regions; VEGFA, vascular endothelial growth factor A; VIP, vasoactive
intestinal peptide.
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role in the prevention of PE. Research on PE is ongoing and will

lead to innovative preventive methods as our knowledge of the

condition progresses.
6 Conclusions and perspectives

The diagnosis, prediction, and treatment of PE are challenging

owing to its complicated and heterogeneous nature. With the

advancement of epigenetic research, distinct layers of the human

placenta have been found to express hundreds of miRNAs associated

with cell proliferation, differentiation, and apoptosis, implying an

association between aberrant miRNA expression and PE. Specific

miRNAs can influence MSC function by regulating their survival,

proliferation, and migration. Moreover, several miRNAs are involved

in the proliferation, migration, and invasion of trophoblasts,

regulating their functions. In addition to controlling the expression

of different factors related to angiogenesis, such as VEGFA, MMP2,

and TIMP2, miRNAs contribute to the regulation of the placental

renin–angiotensin system by controlling the expression of anti-

angiogenic factors, such as sFlt-1 and sEng, associated with

vascular resistance. Moreover, certain miRNAs regulate placental

NO production and are linked to maternal blood pressure. In PE,

exosomes may contain molecules with characteristics of damaged

trophoblasts, including miRNAs and other proteins such as NEP and

VEGF. The exosomal lipid bilayer is protected from the extracellular

environment, making it an ideal delivery mechanism for miRNAs

and endowing exomiRs with improved stability and protection from

degradation compared with miRNAs.

In particular, exomiRs have the characteristics of disease-

causing cells, and considering their significance and stability, they

may represent an effective non-invasive method for the early

diagnosis of PE in maternal peripheral blood. Additionally,

exosomes in PE may include miRNAs with the characteristics of

injured trophoblasts. Accordingly, analyzing exomiRs may aid in
Frontiers in Immunology 11
predicting the onset of PE. Moreover, exomiRs may be viable targets

for treating PE. Since exomiRs can lead to the occurrence and

development of PE through different pathways, inhibiting the

expression of these exomiRs and blocking these pathways may be

effective for treating PE. Specifically, measuring exomiRs, such as

exomiR-210-3p and exomiR-520c-3p, may improve our ability to

identify patients with PE earlier. Furthermore, varying levels of

exomiR expression may be associated with the development and

prognosis of PE, increasing the accuracy of predicting PE

progression and clinical outcomes. That is, determining the

concentration of exomiRs may assist in predicting the progression

and prognosis of PE. Considering the overexpression and

downregulation of exomiRs and their expression products, future

PE treatments may involve targeting these exomiRs, specific

signaling pathways, and downstream gene products, such as the

PTEN/PI3K/AKT signaling pathway and IGF1.

In conclusion, the pathogenesis of PE has not been fully

elucidated, and its early diagnosis, prevention, and treatment are

significant but currently limited. The ability to identify exomiRs

generated during pregnancy and implement non-invasive therapies

to mitigate their effects may prove critical in clinical applications for

the diagnosis, prediction, and treatment of PE. For example, it may

be helpful for the diagnosis and prediction of PE by detecting the

expression levels of exomiRs and transcripts. Additionally, targeting

exomiRs and related pathways may have great potential for the

treatment of PE. However, further research is warranted to identify

the mechanisms underlying the release of exomiRs involved in

PE progression.
Author contributions

YS: Writing – original draft. BH: Writing – original draft. JW:

Writing – original draft. AC: Writing – review & editing. SL:

Writing – review & editing.
FIGURE 5

The prospects of exomiRs in PE.
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