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Triple-negative breast cancer (TNBC) accounts for about 10-20% of all breast

cancer cases and is associated with an unfavorable prognosis. Until recently,

treatment options for TNBC were limited to chemotherapy. A new successful

systemic treatment is immunotherapy with immune checkpoint inhibitors, but new

tumor-specific biomarkers are needed to improve patient outcomes. Cannabinoids

show antitumor activity in most preclinical studies in TNBC models and do not

appear to have adverse effects on chemotherapy. Clinical data are needed to

evaluate efficacy and safety in humans. Importantly, the endocannabinoid system is

linked to the immune system and immunosuppression. Therefore, cannabinoid

receptors could be a potential biomarker for immune checkpoint inhibitor therapy

or a novel mechanism to reverse resistance to immunotherapy. In this article, we

provide an overview of the currently available information on how cannabinoids

may influence standard therapy in TNBC.
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1 Triple-negative breast cancer

Triple-negative breast cancer (TNBC) accounts for about 10-20% of all breast cancer

cases and is associated with the worst prognosis. TNBC is a heterogeneous group of tumors

defined by the absence of the estrogen receptor (ER), the progesterone receptor (PR), and

the absence of the human epidermal growth factor receptor 2 (HER2). It mainly occurs in

younger patients and patients with BRCA germline mutations (1, 2). TNBC has been

divided into six different subgroups: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal

(M), mesenchymal stem-like (MSL), immunomodulatory (IM) and luminal androgen

receptor (LAR) (3). The TNBC microenvironment (TME) includes tumor-infiltrating

lymphocytes (TILs) with CD3+ T and CD20+ B lymphocytes, CD38+/CD138+ plasma

cells, tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), tumor-

associated neutrophils (TANs), natural killer (NK) cells and cancer-associated adipocytes

(CAAs). The TNBC TME is unique in that it has a high expression of vascular endothelial

growth factors and a high infiltration rate of TILs and TAM and plays an important role in
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the pathogenesis of the disease. Type M2 macrophages are

upregulated compared to other subtypes of breast cancer. CAAs

also play a greater role. A variety of cytokines and chemokines

influence tumor growth, metastasis and drug resistance, mediate

immunosuppression and antitumor activity, and play an important

role in TNBC TME (4). Dendritic cells (DCs) are antigen-

presenting cells (APCs) that play a crucial role in acquired and

innate immune responses and are involved in the development of T

cell-mediated antitumor immune responses (5). Neoangiogenesis is

necessary for the nutrition and oxygen supply of the tumor and thus

for the progression of the tumor. The endothelium is involved in the

invasion of tumor cells into the vascular lumen and the resulting

metastasis. In addition, endothelial cells are one of the main sources

of CAFs (6). Until recently, treatment options for TNBC were

limited to chemotherapy, e.g. anthracyclines and taxanes. The

prognosis of metastatic TNBC is poor, with a median survival of

11 to 17 months. A new successful systemic treatment is

immunotherapy with inhibitors of programmed cell death ligand

1 (PD-L1) and programmed cell death protein 1 (PD-1), also

known as immune checkpoint inhibitors (ICI). Atezolizumab

(PD-L1 inhibitor) and pembrolizumab (PD-1 inhibitor) are in

clinical use (7). Atezolizumab is used for the treatment of

metastatic or unresectable locally advanced breast cancer and is

restricted to patients whose tumors express PD-L1 on immune cells

(> 1% PD-L1 positive tumor cells) (8). Pembrolizumab is used in

early-stage TNBC (9) and in patients with advanced cancer with a

combined positive score (CPS score), defined as the number of PD-

L1–staining cells (tumor cells, lymphocytes and macrophages)

divided by the total number of viable tumor cells multiplied by

100) > 10 (10). In TNBC PD-1/PD-L1 are used as biomarkers for

response to immunotherapy. However, new tumor-specific

biomarkers are needed to improve patient outcomes (11). In

patients with BRCA mutation, poly (ADP-ribose) polymerase

(PARP) inhibitors are used in adjuvant and metastatic treatment.

This is an example of synthetic lethality and targeted treatment (12,

13). Newer treatment options are the antibody-drug conjugates

sacituzumab govitecan and trastuzumab deruxtecan. Sacituzumab

govitecan is an antibody directed against Trop2 to which SN38 (a

derivative of irinotecan) is bound (14). Trastuzumab deruxtecan is

an antibody-drug conjugate consisting of the humanized

monoclonal antibody trastuzumab covalently linked to the

topoisomerase I inhibitor deruxtecan (a derivative of exatecan). It

is used in a subset of TNBC that is considered HER2-low, a category

that blurs the distinction between HER2-positive and TNBC (15).
2 Cannabinoids and the
endocannabinoid system

Cannabinoid receptors (CBRs) are membrane-bound G

protein-coupled receptors (GPCRs) and were identified over 30

years ago. Cannabinoid receptor 1 (CB1R) is one of the most

abundant receptors in the brain. To a lesser extent, CB1R is also

expressed in the periphery, including the immune system.

Cannabinoid receptor 2 (CB2R) is also expressed in the central
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nervous system, but to a much lesser extent than CB1R. In addition,

CB2R is highly expressed in the periphery, particularly in organs

that are part of the immune system and in other peripheral tissues.

Natural polymorphisms and alternative splice variants may be

important for its function (16). In addition, there is a “non-

canonical” extended signaling network of the endocannabinoid

system. It consists of fatty acid derivatives, ionotropic

cannabinoid receptors (transient receptor potential (TRP)

channels) and other GPCRs (GPR18, GPR19, GPR55, peroxisome

proliferator-activated receptor alpha (PPARa), eCB), enzymes

involved in the biosynthesis and degradation of endocannabinoids

(fatty-acid amide hydrolase 1 (FAAH) and monoacylglycerol lipase

(MAGL)), and protein transporters fatty-acid-binding proteins

(FABPs)) (17–22). Cannabinoid receptors recognize different

agonists and antagonists and can be activated by endogenous or

exogenous cannabinoids. Endogenous cannabinoids or

endocannabinoids are metabolites of arachidonic acid (AA). The

best studied are N-arachidonoylethanolamine (anandamide, the

Sanskrit word for “bliss”) and 2-arachidonoylglycerol (2-AG),

which together with the CBRs form the endocannabinoid system

(23). Anandamide binds to CBRs with higher affinity than 2-AG,

but acts only as a partial agonist (24). 2-AG, on the other hand,

behaves as a full agonist for CBRs (25, 26). 2-AG binds selectively to

CBRs, whereas anandamide is less selective (27). It has been

suggested that 2-AG and not anandamide is the actual natural

ligand for CBRs (28–30). Tetrahydrocannabinol (THC) is the main

psychoactive constituent of Cannabis sativa and thus an exogenous

phytocannabinoid and a non-selective agonist of CB1R and CB2R

(31). Other important phytocannabinoids are cannabidiol (CBD),

cannabichromene (CBC), cannabigerol (CBG), cannabidivarin

(CBDV) and tetrahydrocannabivarin (THCV) (32). Compared to

THC, CBD has a lower CB1R and CB2R affinity and acts as an

inverse agonist on CB2R. It is a non-psychoactive substance and

therefore a potential therapeutic agent (33). Synthetic cannabinoids

(i.e. JWH-015, WIN55,212-2, compound-10, etc.) are a

heterogeneous group of substances that can be selective agonists

or antagonists of CB1R or CB2R (34). CB1R and CB2R exhibit

allosteric binding and biased signaling that influences the biological

response mediated by agonists (31, 35).
3 Cannabinoids and the
immune system

Various components of the endocannabinoid system act as

important regulators of the immune system and the immune

response (36–38). Exogenous cannabinoids are generally

immunosuppressive and potent immunological mediators (39–43).

Immune cells express both CB1R and CB2R (44, 45), although the

expression of CB1R is significantly lower compared to CB2R (41, 46).

CB2R is mainly found in cells of the immune system and plays an

important role as a modulator of immune function (47–49). The

activation of CB2R inmany immune cells is central to the suppressive

effects of cannabinoids. However, the pro-inflammatory effects

appear to be linked to the expression of CB1R. Cannabinoids
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inhibit adenylyl cyclase and activate beta-gamma-mediated signaling

pathways and modulate intracellular free calcium levels. These

changes may negatively affect the release of inflammatory

mediators and the induction of pro-inflammatory transcriptional

programs. Exposure to cannabinoids inhibits the release of

prostaglandins, histamine, and matrix-active proteases from mast

cells (50). Phagocytic function is suppressed by cannabinoids.

Cannabinoids also suppress inflammation at a secondary level by

downregulating the production of cytokines (e.g. tumor necrosis

factor alpha (TNFa), interferon gamma (IFNg), interleukin-1 (IL-1),

and IL-4 (41, 51–54). There are relatively few descriptions of

immunological side effects of cannabinoids in humans. However,

the human immune system is altered by chronic exposure to

cannabinoids (55). Cannabinoid exposure does not accelerate the

loss of immunocompetence in HIV-1 infected patients (56, 57).

Cannabis use is associated with long-term changes in

immunological homeostasis (58, 59). Inhibition of cell-mediated

immunity has been found in marijuana smokers (60) and cannabis

smoking causes inflammatory changes in the airways (61). Studies

have shown that exposure to cannabinoids leads to a suppression of

responsiveness to infectious diseases, and a link between cannabis

use and increased susceptibility to various infections has been

suggested (62–64). These studies suggest a significant potential

for immunological side effects of cannabinoid compounds in

humans. Interestingly, cannabinoids can affect the gut microbiota

(65–67), which also influences immunotherapy for cancer (68–71).
4 Cells of the TNBC
microenvironment and the
endocannabinoid system

It appears that most of the cell types present in the TNBC TME

express CBRs and may be affected in some way by the exogenous

cannabinoids and/or the endocannabinoid system (4, 72). CB2R is

expressed in CD8+ T lymphocytes and CD4+ T lymphocytes and

CB1R mRNA transcripts are modestly present in human T-

lymphocytes (40, 41, 73). The expression of the CB2R receptor is

low in circulating T lymphocytes. However, several studies have

reported that CB2R receptor expression is increased in activated T

lymphocytes and that its activation decreases their proliferation

(74–76). This is associated with reduced production of pro-

inflammatory cytokines and increased apoptosis (74–78). In

addition, CBR agonists can upregulate immunosuppressive

cytokines (79, 80) and cause inhibition of chemotaxis (81–83).

The antitumor function of T lymphocytes is enhanced in Cnr2

conditional knockout mouse (84). The activation of CB2R appears

to have different effects depending on the subtype of T lymphocytes,

with the functions of Th1 and Th17 tending to be reduced and those

of Th2 promoted in humans (72, 75, 85, 86). In addition, the CB2R

receptor is highly expressed in cytokine-induced killer (CIK) cells, a

subset of cytotoxic T lymphocytes with a CD3+ CD56+

immunophenotype (4, 87–90). It is important to note that the

activation of T lymphocytes is the primary mechanism of action of
Frontiers in Immunology 03
ICI (91, 92). B-cells express CB1R and CB2R (93, 94). Treatment

with a CB2R agonist increased the proliferation of B lymphocytes, a

phenomenon that was blocked by a CB2R antagonist (95). In mice,

activation of the CB2R receptor was associated with differentiation,

migration, proliferation and antibody class switching of B

lymphocytes (96–98). These results suggest that CB2R is part of

the immune programming of B lymphocytes and plays an

important role in the development of B lymphocytes (72, 99).

CBRs are overexpressed in chronic lymphocytic leukemia (CLL)

compared to healthy B lymphocytes and CBR1 could be a new

prognostic marker (100). CB2R is expressed in monocytes and

CB1R mRNA transcripts are modestly present (40, 41, 73). CB2R

agonists can modulate human monocyte migration (101, 102).

Macrophages express both CB1R and CB2R (103, 104). Several

studies have shown that cannabinoids negatively regulate

phagocytosis, cell-spreading, and antigen presentation by

macrophages (105–107). CB2R has been shown to switch the

polarization of M1 macrophages to M2 macrophages (108–110).

CB2R is expressed in human fibroblasts (111) and transcripts for

CB1R and CB2R have been found in both odontoblasts and gingival

fibroblasts (112). Fibroblasts also express enzymes that metabolize

endocannabinoids. Fibroblasts can be influenced by autocrine

signaling of endocannabinoids via CB1R and CB2R and paracrine

signaling by neighboring leukocytes (113). CB2R is expressed in

polymorphonuclear neutrophils (40, 41, 73). Cannabinoids can

influence neutrophil function via CBRs or other mechanisms. The

inhibitory effect of cannabinoids on neutrophil functional responses

is mostly related to a mechanism other than CBRs, consistent with

the absence or very low expression of CB2R (114–119). Neutrophil

migration is related to the expression of CB2R and GPR55 (120).

Chemotaxis of human neutrophils is inhibited by CBR agonists

(114, 121). CB1R and CB2R are expressed in NK cells. The

predominance of CB2R in NK cells is illustrated by a striking

ratio of 100:1 between CB2R and CB1R (40, 41, 44, 73, 122–125).

NK cells release large amounts of endocannabinoids (125) and

endocannabinoids influence the chemotaxis of NK cells (126). NK

cell activity is inhibited by CBR agonists (127), and cannabis use has

been associated with a decrease in NK cell counts (58, 59). Mature

adipocytes from visceral and subcutaneous adipose tissue express

CBRs on their plasma membranes and CB1R is located at various

subcellular levels, including the plasma membrane and

mitochondria of the adipocyte (128, 129). However, there is some

uncertainty regarding CB2R expression in differentiated adipocytes

(130–134). A complete endocannabinoid system has been found in

both murine and human adipocytes (135–137). Bone marrow-

derived DCs from mice express CB1R and CB2R (138) and the

endocannabinoid system is present in human DCs (139).

Endocannabinoids act as chemoattractants for DCs and activation

of CBRs induces apoptosis (138, 140). Both CB1R and CB2R are

expressed in endothelial cells (141, 142). It is possible that an

atypical cannabinoid receptor, the endothelial cannabinoid

receptor (eCB receptor), is responsible for the vasodilatory effect

of cannabinoids (143). A study found that CBRs are expressed in

glioblastoma endothelial cells. CB1R expression was detected in

about 38% and CB2R expression in 54% of cells. Compared to
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1386548
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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CB1R, the expression of CB2R was increased in the endothelial cells

of glioblastoma (142).
5 Cannabinoid receptor expression
in TNBC

The presence of CBRs in human breast tumors was investigated

by quantitative real-time PCR and confocal microscopy. Lower

levels of CB1R mRNA were detected in low, intermediate and high

histologic grade tumors compared to normal, non-cancerous breast

tissue. In all tumors examined, CB2R expression was higher than

CB1R expression. Hormone receptor-negative (HR-) tumors

expressed more CB2R mRNA than ER +/PR + tumors (144).

Perez-Gomez et al. performed a histopathologic analysis of tissue

samples for the expression of CBRs. A very large proportion of

human breast adenocarcinomas (~75%) expressed CB2R and

expression was strongly associated with HER2+ tumors, while no

association was found between CB2R expression and HR+ or

TNBC. There was an association between increased expression of

CB2R and poorer prognosis and higher likelihood of local

recurrence in HER2+ breast cancer (145). The orphan receptor

GRP55 could play an important role in TNBC. In the study by

Andradas et al. it was found that the TNBC cell line MDA-MB-231

reduced its invasive behavior when GPR55 expression was knocked

down. Similar effects were observed in an animal model of lung

metastasis. In breast cancer patients, there is a strong association

between GPR55 protein levels and TNBC tumors. Using tissue

microarrays and publicly available data from The Cancer Genome

Atlas (TCGA), it has been shown that higher GPR55 expression is

associated with poorer patient prognosis (lower disease-free

survival and metastasis-free survival) (146).
6 Effect of different cannabinoids
on TNBC

The antitumor effect of THC on breast cancer cell lines was

documented. Among the tumor cells, those with a more aggressive

phenotype, including the MDA-MB-231 cell line, were more

sensitive to THC. One mechanism of this effect is that THC

arrests the cells at the G2-M cell cycle checkpoint via

downregulation of the cyclin-dependent kinase 1 (Cdc2), as

suggested by the reduced sensitivity of Cdc2-overexpressing cells

to THC (144). In addition, CBD has an antitumor and anti-

metastatic effect in TNBC cell lines. The antitumor effect of CBD

is mediated by the activation of apoptosis. Apoptosis in the MDA-

MB-231 cell line can be induced by direct or indirect activation of

the CB2R receptor and transient receptor potential vanilloid type-1

(TRPV1) as well as by an increase in intracellular Ca2+ and reactive

oxygen species (ROS) independent of the cannabinoid/vanilloid

receptors (147). CBD induces an interaction between the PPARg,
the mammalian target of rapamycin (mTOR) and cyclin D1, which

promotes apoptosis (148) and can downregulate the expression of

an inhibitor of basic helix-loop-helix transcription factors (Id-1) in
Frontiers in Immunology 04
metastatic TNBC cells, which leads to a reduction in tumor

aggressiveness (149). The downregulation of Id-1 expression is

the result of differential modulation of extracellular signal-

regulated kinase (ERK) and ROS. In addition, the pro-

differentiation factor Id-2 is upregulated by CBD. The anti-

metastatic activity was also confirmed in animal models, in which

CBD significantly reduced the primary tumor mass as well as the

size and number of metastases in the lung (150). The study by Elbaz

et al. showed that CBD inhibits the growth and metastasis of breast

cancer cells by inhibiting epidermal growth factor (EGF)/EGFR

signaling and modulating the tumor microenvironment, and that it

can significantly inhibit EGF-induced proliferation and chemotaxis

of breast cancer cells. Inhibition of EGF-induced activation of the

EGFR, ERK, protein kinase B (AKT) and nuclear factor kappa B

(NF-kB) signaling pathways and the secretion of the matrix

metallopeptidases (MMP2 and MMP9) has been described. In in

vivo models, the analysis of the molecular mechanism showed that

CBD significantly inhibits the recruitment of TAMs in the primary

tumor stroma and in secondary lung metastases (151). The selective

CB2R agonist JWH-015 reduced the primary tumor burden and

metastasis of the luciferase-labeled murine TNBC 4T1 cell line in

immunocompetent mice in vivo and reduced the viability of murine

4T1 cells in vitro by inducing apoptosis. The reduction in cell

viability mediated by JWH-015 was not dependent on Gai signaling
in vitro, nor was it altered by classical pharmacological blockade of

other CBRs (CB1R, GPR55, TRPV1). The effect of JWH-015 was

calcium-dependent and led to changes in mitogen-activated protein

kinase (MAPK)/ERK signaling (152). Rimonabant (SR141716), a

CB1R antagonist, inhibits the proliferation of the TNBC cell line

MDA-MB-231 more effectively than ER+ cell lines. It also shows an

antiproliferative effect in vivo by reducing the volume of xenograft

tumors induced by injection of MDA-MB-231 in mice. Rimonabant

inhibits the growth of human TNBC cells via a CB1R-lipid raft/

caveolae-mediated mechanism (153). A strong synergy between

rimonabant and erastin in inhibiting the growth of TNBC cells has

been described both in vitro and in vivo. This occurred by increasing

the levels of lipid peroxides, malondialdehyde (MDA), 4-

hydroxynonenal (4-HNE) and ROS production in the cytosol,

enhancing intracellular glutathione (GSH) depletion and inducing

G1 cell cycle arrest (154). Cannabidiolic acid activates the

expression of PPARb/d target genes in the MDA-MB-231 cell line

(155). The molecular interaction between the cannabinoid agonists

of vetiver oil and the CBR2 receptor was found to be the cause of the

cytotoxicity of vetiver oil on the 4T1 cell line (156). Styrene-maleic

acid nanomicelles encapsulating WIN55,212-2 were synthesized to

reduce the side effects and increase the efficacy of the drug. The

synthetic cannabinoid analog WIN55,212-2 is a synthetic CBR

agonist with a cytotoxic effect on the MDA-MB-231 cell line, but

causes psychoactive side effects (157). The synthesis and evaluation

of a selective, non-psychotropic CB2R agonist, designated

compound 10, with in vivo activity against MDA-MB-231 cells

was reported. This novel cannabinoid o-quinone (compound 10)

has been described to induce cell apoptosis through CB2R

activation and oxidative stress. Importantly, compound 10

showed no toxic effects on non-cancerous human mammary

epithelial cells or in vivo (158). Photodynamic therapy for TNBC
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was combined with CB2R agonists for TNBC. Synergistic effects

were observed in both in vitro (MDA-MB-231 cell line) and in vivo

experiments. The survival time of tumor-bearing animals was

significantly prolonged (159).
7 Cannabinoids and triple-negative
breast cancer treatment

7.1 Cannabinoids and chemotherapy
in TNBC

A brief overview of the research on cannabinoids and

chemotherapy in TNBC is summarised in Table 1. CB2R

expression is increased in the MDA‐MB‐231 cell line when

treated with chemotherapy. Overexpression of CB2R had an

inhibitory effect on TNBC cells and significantly improved their

sensitivity to chemotherapy with cisplatin, doxorubicin and

docetaxel . Therefore , CB2R may be involved in the

chemosensitivity of the MDA‐MB‐231 cell line to chemotherapy

(160). The antitumor efficacy of pure THC was compared with that

of an herbal drug preparation of fresh cannabis flowers containing a

variety of cannabinoids and terpenes. The herbal drug preparation

contained THC and CBG, but no CBD, and was more effective than

pure THC in producing antitumor responses in cell cultures and

animal models of various breast cancer subtypes, including the

TNBC subtype (MDA-MB-231 and SUM159 cell lines). In the study

by Blasco-Benito et al. different combinations of chemotherapy with

THC and herbal preparations were tested. The combination of THC

or the herbal preparation with paclitaxel or epirubicin had no effect

on the decrease in cell viability. When the herbal preparation was

added to cisplatin treatment, an enhanced antiproliferative response

was observed. Furthermore, this was tested in vivo by injecting the

MDA-MB-231 cell line into immunodeficient mice. The herbal

drug preparation was significantly more potent than pure

cannabinoid (the same dose of THC was administered). The

combination of the herbal drug preparation with cisplatin had

neither a positive nor a negative effect on the antitumor effect of

platinum chemotherapy (161).

Greish et al. investigated the effects of a nano-micellar

formulation of the synthetic cannabinoid WIN55,212-2, a CBR

agonist, on TNBC. Cannabinoid nano-micelles decreased the cell

viability of TNBC cell lines (4T1 and MDA-MB-231). In addition,

the antitumor effect of cannabinoid nano-micelles was

investigated in mice with 4T1 tumors. Cannabinoid nano-

micelles were more effective compared to free WIN55,212-2 and

were able to reduce the psychotropic effect of WIN55,212-2. In

addition, administration of cannabinoid nano-micelles sensitized

the 4T1 cell line to the effect of doxorubicin. This effect was also

observed in vivo . The combination of doxorubicin and

cannabinoid nano-micelles potentiated the antitumor effect of

both drugs and reduced tumor volume (162). The addition of CBD

did not attenuate the effect of cisplatin in the MDA-MB-231 cell

line (163). In combination with CBD, increased sensitivity to

doxorubicin was observed in MDA-MB-468 cells. This was partly

due to activation of apoptosis and inhibition of autophagy. The
Frontiers in Immunology 05
combination of CBD and doxorubicin decreased lysyl oxidase

(LOX) and integrin-a5 and increased caspase-9 protein in the

MDA-MB-468 cell line (164). CBD-loaded extracellular vesicles

isolated from human umbilical cord mesenchymal stem cells and

encapsulated by sonication with CBD sensitize TNBC cells to

doxorubicin in both in vitro and in vivo models. CBD-loaded

extracellular vesicles alone or in combination with doxorubicin

reduced inflammation and metastasis and promoted apoptosis in

the MDA-MB-231 cell line through cell cycle arrest in G1 phase

and downregulation of IL-17, NF-kB, Twist, phosphorylated

transducer and activator of transcription-3 (pSTAT3), STAT3

proteins in vitro. This was confirmed by in vivo studies, which

showed that the combination of extracellular CBD vesicles and

doxorubicin significantly reduced tumor burden. The

combination modulated the tumor microenvironment by

decreasing the expression of transforming growth factor-beta

(TGFb), IL-6, NF-kB, Integrin a−5 (ITGA5), Smad-2, GPC 1&6

and Twist and mediated apoptosis by increasing the expression of

Bcl-2-associated X protein (BAX) and caspase 9 and decreasing

the expression of Bcl2. The study concluded that extracellular

CBD vesicles increase the sensitivity of the MDA-MB-231 cell line

to doxorubicin, thereby reducing the required effective dose of

doxorubicin and thus reducing or eliminating toxicity, and that

extracellular vesicles can be used as potential delivery systems for

cannabinoids due to their easy internalization by tumors (165).

One study found that a threshold mechanism rather than a dose-

dependent curve better describes the CBD effects on the MDA-

MB-231 cell line. The threshold is reached between 3 and 5 mM. At

low doses, CBD exerts no antiproliferative effect. At intermediate

doses, near the threshold concentration, CBD induces survival

mechanisms, including cell cycle arrest and autophagy, and exerts

an antagonistic effect on treatment with cisplatin. In contrast, at

high doses (> 5 µM), CBD exerts a strong cytotoxic effect by

activating bubbling death (166). Importantly, the major

cannabinoids (THC, CBD, and cannabinol) and their

metabolites found in the plasma of cannabis users can inhibit

several P450 enzymes, including CYP2B6, CYP2C9, and CYP2D6,

and cause pharmacokinetic interactions between these

cannabinoids and xenobiotics that are extensively metabolized

by these enzymes (167). There is evidence that cannabinoids

alleviate peripheral neuropathic pain caused by chemotherapy

(168–170) and prevent doxorubicin-induced cardiomyopathy

(171–173). Both are side effects of taxane and anthracycline

chemotherapy, which is frequently used in TNBC (174, 175).
7.2 Cannabinoids and Immunotherapy

Exposure to THC can promote growth and metastasis of the 4T1

cell line. Specifically, THC exposure leads to an accelerated onset of

detectable tumors, larger tumor sizes, and a higher number of lung

metastases. The suppression of the immune response against the 4T1

tumor by THC may be responsible for the increased tumor growth

and metastasis. The study by McKallip et al. showed that MDA-MB-

231 expresses low levels of CB1R and undetectable levels of CB2R.

Therefore, it was hypothesized that the degree of tumor sensitivity to
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TABLE 1 In vitro and in vivo studies investigating the effect of cannabinoids on TNBC chemotherapy.

Result (in vitro) Results (in vivo) Study

Increased CB2R expression.
Increased sensitivity to antitumor drugs cells
overexpressing CB.

Not available (160) Song Q et al

The combination of THC or the herbal
preparation with paclitaxel or epirubicin had
no effect on the decrease in cell viability.
Herbal preparation added to cisplatin
produced enhanced antiproliferative response.

The herbal drug preparation was more effective than
pure cannabinoid.
The combination of the herbal drug preparation with
cisplatin had neither a positive nor a negative effect
on the antitumor effect of platinum chemotherapy.

(161) Blasco-Benito
S et al

Decreased the cell viability Cannabinoid nano-micelles were able to reduce the
psychotropic effect of WIN55,212-2.
The combination of doxorubicin and cannabinoid
nano-micelles potentiated the antitumor effect of
both drugs and reduced tumor volume.

(162) Greish K et al

The addition of CBD did not attenuate the
effect of cisplatin.

Not available (163) Dobovisěk L et al

Increased sensitivity to doxorubicin. Not available (164) Surapaneni
SK et al

CBD-loaded extracellular vesicles alone or in
combination with doxorubicin reduced
inflammation and metastasis and
promoted apoptosis.

The combination of extracellular CBD vesicles and
doxorubicin significantly reduced tumor burden.

(165) Patel N et al

Not available No antiproliferative effect at low CBD doses.
At intermediate doses CBD exerts an antagonistic
effect on treatment with cisplatin.
CBD exerts a strong cytotoxic effect at high doses.

(166) D’Aloia A et al
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Anti-cancer drug Cannabinoid Cell line Animal model

Cisplatin,
doxorubicin, Docetaxel

Not available MDA-MB-231 Not available

Paclitaxel
Epirubicin

THC,
herbal drug
preparation of fresh
cannabis flowers
(THC, CBG).

MDA-MB-231 SUM159 MDA-MB-231 cell
line into
immunodeficient
female nude mice

Doxorubicin nano-micellar
formulation of the
synthetic cannabinoid
WIN55,212-2

4T1
MDA-MB-231

Female Balb/c mice
implanted with 4T1
mammary carcinoma

Cisplatin CBD MDA-MB-231 Not available

Doxorubicin CBD MDA-MB-231
MDA-MB-468

Not available

Doxorubicin CBD-loaded
extracellular vesicles

MDA-MB-231 MDA-MB-231
xenograft model of
athymic nude mice

Cisplatin CBD MDA-MB-231 Not available
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THC is directly related to the degree of CB1R and CB2R expression

and that THC may only kill tumors that express CBRs. However,

THC exposure may lead to increased growth and metastasis of

tumors with little or no expression of CBRs due to suppression of

the antitumor immune response (176). Two studies investigated the

effects of cannabis use during immunotherapy with ICI. A clinical

retrospective analysis including 140 patients with advanced

melanoma, non-small cell lung cancer and clear cell renal

carcinoma showed a worse response rate (RR) in cannabis users

(37.5% RR with nivolumab alone versus 15.9% in the nivolumab-

cannabis group). Cannabis use was not a significant factor for

progression-free survival (PFS) or overall survival (OS) (177). A

prospective observational study by Bar-Sela et al. included 102

patients with advanced cancers (melanoma, non-small cell lung

cancer and clear cell renal carcinoma) treated with ICI (anti-PD1

and anti-PDL1). Cannabis use correlated with a significant reduction

in time to tumor progression and OS. Cannabis users were associated

with a lower number of immune-related adverse events (iAEs). Blood

samples from patients taken before the start of treatment were

analyzed for endocannabinoids and endocannabinoid-like

substances. A single endocannabinoid-like lipid, 2-oleoyl-glycerol

(2-OG), was associated with significantly different levels between

groups. The concentrations of AA, 2-AG, N-docsatetraenoyl

ethanolamide (DtEA), linolenic acid (LnA), N-linoleoyl

ethanolamide (LEA), N-oleoyl amide (O-Am), N-oleoyl

ethanolamide (OEA), N-palmitoyl ethanolamide (PEA) and N-

stearoyl ethanolamide (SEA) were significantly affected by the onset
Frontiers in Immunology 07
of immunotherapy. The levels of O-Am and OEA increased, while

the levels of the other substances decreased after immunotherapy.

Four lipids (measured before immunotherapy) correlated with OS:

increased levels of N-arachidonoylamide (A-Am) were associated

with better OS expectancy, and an inverse relationship was observed

between OS and SEA, 2-AG and 2-linoleoylglycerol (2-LG) (178).

Another possible interaction between cannabinoids and ICI therapy

is the gut microbiota, as already mentioned in this article (65–69).
7.3 Cannabinoids and other therapies in
triple-negative breast cancer

There are no data on cannabinoids interfering with PARPi therapy

and antibody-drug conjugates (sacituzumab govitecan and

trastuzumab deruxtecan). However, it should be remembered that

liver metabolism can be affected by cannabinoids, as mentioned above.

PARPi olaparib is subject to extensive hepatic metabolism (mainly by

the isoenzymes cytochrome P450 3A4/5 (179). Exatecan is primarily

metabolized in the liver by hepatic P450 metabolism (CYP3A4 and

CYP1A2) (180) and SN38 is metabolized in the liver by UDP-

glucuronosyltransferase (UGT) (UGT1A1 and UGHT1A9) and

UGT1A9 and other non-hepatic UGT enzymes (181). The main

cannabinoids and their metabolites found in the plasma of cannabis

users inhibit several P450 enzymes. THC competitively inhibits

CYP1A2 and CBD competitively inhibits CYP3A4. THC-COOH is a

substrate for UGT (167).
FIGURE 1

Selective CB2R antagonist/inverse agonist as a potential sensitizer for immunotherapy with ICI. ICI, Immune checkpoint inhibitors; PD-L1,
programmed cell death ligand 1; PD-1, programmed cell death protein 1; CB2R, cannabinoid receptor 2; 2-AG, 2-arachidonoylglycerol.
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8 Discussion

Cannabinoids are already being used in palliative care for

cancer patients (182). However, the panel of the Multinational

Association of Supportive Care in Cancer (MASCC) advises against

the use of cannabinoids as an adjuvant analgesic for cancer pain

(183). In addition to breast cancer, cannabinoids influence tumor

progression in various types of cancer, e.g. glioma/glioblastoma,

skin, liver, colon, prostate (184–186). TNBC TME could be

influenced by cannabinoids, however the role of CBRs on

different cells infiltrating the TME is largely unknown (187).

Preclinical and clinical data show that cannabinoids can help with

chemotherapy-induced neuropathy (167–170). In addition, there is

a worldwide trend toward legalization (e.g., in the United States and

Canada) of recreational and medical use of cannabis and cannabis

products, with new health concerns arising related to the increasing

use of cannabis (188). Exposure to cannabis and the cannabinoids

(THC, CBD and CBG) may be a risk factor for the development of

breast cancer in the female population (189, 190). Therefore, many

breast cancer patients are exposed to cannabinoids in one way or

another during and/or after their oncologic treatment, but the safety

of this exposure is uncertain and requires further research. Many

patients take cannabinoids in the belief that this will help cure their

disease, although there is currently no clinical data to support this

claim in breast cancer patients, including TNBC. A survey of breast

cancer patients found that 42% of survey participants used cannabis

to treat symptoms and about half of these participants believed that

cannabis could treat the cancer itself. Most participants used

cannabis during active cancer treatment (191). There are no

clinical data on whether cannabinoids interfere with standard

TNBC treatment, although initial clinical trials show that patients

with metastatic non-breast cancer who use cannabis while receiving

ICI immunotherapy have poorer outcomes. The ability of

cannabinoids to shorten the survival of patients treated with

immunotherapy suggests the efficacy of cannabinoids and the

potentially important role of the endocannabinoid system in

generating the immune response triggered by ICI (177, 178). At

the preclinical level, there is increasing evidence that the

endocannabinoid system may play a role in tumor growth,

treatment resistance, and metastasis. In most preclinical studies,

various cannabinoids inhibited breast cancer cell lines and

improved cancer outcomes in TNBC animal models (148–150,

192–194) usually without interfering with standard treatment

(e.g., cisplatin, epirubicin, doxorubicin, paclitaxel) (162–165).

However, tumor-promoting effects of cannabinoids have also

been reported. An antagonistic effect of CBD on TNBC cell lines

treated with cisplatin at intermediate doses was observed (166).

THC exposure has been shown to stimulate the growth of the ER+

MCF-7 cell line (195) and can lead to increased growth and

metastasis of tumors with little or no expression of cannabinoid

receptors due to suppression of the antitumor immune response
Frontiers in Immunology 08
(176). Importantly, cannabinoids have immunosuppressive

properties (39–43). Immunosuppression in the periphery occurs

mainly through the modulation of CB2R, while CB1R are less

involved in this process (44–46). Due to the current limitations of

immunotherapy (non-response, disease progression and

hyperprogression), new strategies are needed to sensitize cancer

cells to immunotherapy (196) and modulators of CBRs may provide

a new mechanism to achieve this goal (Figure 1). CBRs could be a

predictive biomarker for ICI therapy or a novel mechanism to

reverse resistance to ICI therapy. Importantly, phytocannabinoids

are not selective for CBRs and therefore give us little insight into the

role of CBRs in the pathophysiology of cancer. Selective CB2R

agonists and antagonists are needed to develop potential anti-

cancer drugs that target the endocannabinoid system (197).
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Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer:
biomarker evaluation of the IMpassion130 study. J Natl Cancer Inst. (2021)
113:1005–16. doi: 10.1093/jnci/djab004

9. Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, et al.
Pembrolizumab for early triple-negative breast cancer. N Engl J Med. (2020)
382:810–21. doi: 10.1056/NEJMoa1910549

10. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, et al.
Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously
untreated locally recurrent inoperable or metastatic triple-negative breast cancer
(KEYNOTE-355): a randomzsed, placebo-controlled, double-blind, phase 3 clinical
trial. Lancet. (2020) 396:1817–28. doi: 10.1016/S0140-6736(20)32531-9

11. Sajjadi E, Venetis K, Scatena C, Fusco N. Biomarkers for precision
immunotherapy in the metastatic setting: hope or reality? Ecancermedicalscience.
(2020) 14:1150. doi: 10.3332/ecancer.2020.1150

12. Tutt ANJ, Garber JE, Kaufman B, Viale G, Fumagalli D, Rastogi P, et al.
Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J
Med. (2021) 384:2394–405. doi: 10.1056/NEJMoa2105215

13. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for
metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med.
(2017) 377:523–33. doi: 10.1056/NEJMoa1706450

14. Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, et al.
Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med.
(2021) 384:1529–41. doi: 10.1056/NEJMoa2028485

15. Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, et al. Trastuzumab
deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med.
(2022) 387:9–20. doi: 10.1056/NEJMoa2203690

16. Howlett AC, Abood ME. CB1R and CB2R receptor pharmacology. Adv
Pharmacol. (2017) 80:169–206. doi: 10.1016/bs.apha.2017.03.007

17. Pisanti S, Picardi P, D’Alessandro A, Laezza C, Bifulco M. The endocannabinoid
signaling system in cancer. Trends Pharmacol Sci. (2013) 34:273–82. doi: 10.1016/
j.tips.2013.03.003

18. Contino M, McCormick PJ. Editorial: the canonical and non-canonical
endocannabinoid system as a target in cancer and acute and chronic pain. Front
Pharmacol. (2020) 11:312. doi: 10.3389/fphar.2020.00312

19. Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson NO, Leonova J, et al. The
orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. (2007)
152:1092–101. doi: 10.1038/sj.bjp.0707460

20. McHugh D, Hu SS, Rimmerman N, Juknat A, Vogel Z, Walker JM, et al. N-
arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular
migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci.
(2010) 11:44. doi: 10.1186/1471-2202-11-44

21. Brown AJ. Novel cannabinoid receptors. Br J Pharmacol. (2007) 152:567–75.
doi: 10.1038/sj.bjp.0707481

22. Bondarenko AI. Endothelial atypical cannabinoid receptor: do we have enough
evidence? Br J Pharmacol. (2014) 171:5573–88. doi: 10.1111/bph.12866

23. Di Marzo V, Piscitelli F. The endocannabinoid system and its modulation by
phytocannabinoids. Neurotherapeutics. (2015) 12:692–8. doi: 10.1007/s13311-015-
0374-6

24. Mackie K, Devane WA, Hille B. Anandamide, an endogenous cannabinoid,
inhibits calcium currents as a partial agonist in N18 neuroblastoma cells. Mol
Pharmacol. (1993) 44(3):498–503.

25. Sugiura T, Kodaka T, Nakane S, Miyashita T, Kondo S, Suhara Y, et al. Evidence
that the cannabinoid CB1R receptor is a 2-arachidonoylglycerol receptor. Structure-
Frontiers in Immunology 09
activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related
compounds. J Biol Chem. (1999) 274:2794–801. doi: 10.1074/jbc.274.5.2794

26. Gonsiorek W, Lunn C, Fan X, Narula S, Lundell D, Hipkin RW.
Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2
cannabinoid receptor: antagonism by anandamide.Mol Pharmacol. (2000) 57:1045–50.

27. Pertwee RG. Ligands that target cannabinoid receptors in the brain: from THC
to anandamide and beyond. Addict Biol. (2008) 13:147–59. doi: 10.1111/j.1369-
1600.2008.00108.x
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