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Unveiling the role of
disulfidptosis-related genes in
the pathogenesis of non-
alcoholic fatty liver disease
Xiaohua Luo, Junjie Guo, Hongbo Deng, Zhiyong He,
Yifan Wen, Zhongzhou Si* and Jiequn Li*

Department of Liver Transplant, The Second Xiangya Hospital, Central South University,
Changsha, China
Backgrounds: Non-alcoholic fatty liver disease (NAFLD) presents as a common

liver disease characterized by an indistinct pathogenesis. Disulfidptosis is a

recently identified mode of cell death. This study aimed to investigate the

potential role of disulfidptosis-related genes (DRGs) in the pathogenesis

of NAFLD.

Methods: Gene expression profiles were obtained from the bulk RNA dataset

GSE126848 and the single-cell RNA dataset GSE136103, both associated with

NAFLD. Our study assessed the expression of DRGs in NAFLD and normal

tissues. Weighted gene co-expression network analysis (WGCNA) and

differential expression analysis were employed to identify the key NAFLD-

specific differentially expressed DRGs (DE-DRGs). To explore the biological

functions and immune regulatory roles of these key DE-DRGs, we conducted

immune infiltration analysis, functional enrichment analysis, consensus

clustering analysis, and single-cell differential state analysis. Finally, we

validated the expression and biological functions of DRGs in NAFLD patients

using histology and RNA-sequencing transcriptomic assays with human liver

tissue samples.

Results: Through the intersection of WGCNA, differentially expressed genes, and

DRGs, two key DE-DRGs (DSTN and MYL6) were identified. Immune infiltration

analysis indicated a higher proportion of macrophages, T cells, and resting

dendritic cells in NAFLD compared to control liver samples. Based on the key

DE-DRGs, Two disulfidptosis clusters were defined in GSE126848. Cluster 1, with

higher expression of the key DE-DRGs, exhibited increased immune infiltration

abundance and was closely associated with oxidative stress and immune

regulation compared to cluster 2. High-resolution analysis of mononuclear

phagocytes highlighted the potential role of MYL6 in intrahepatic M1

phenotype Kupffer cells in NAFLD patients. Our transcriptome data revealed

that the expression levels of the majority of DRGs were significantly increased in

NAFLD patients. NAFLD patients exhibit elevated MYL6 correlating with

inflammation, oxidative stress, and disease severity, offering promising

diagnostic specificity.
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Conclusion: This comprehensive study provides evidence for the association

between NAFLD and disulfidptosis, identifying potential target genes and

pathways in NAFLD. The identification of MYL6 as a possible treatment target

for NAFLD provided a novel understanding of the disease’s development.
KEYWORDS

NAFLD, disulfidptosis, oxidative stress, Kupffer cell, MYL6
1 Introduction

Non-alcoholic fatty liver disease (NAFLD) comprises a

collection of chronic liver disorders distinguished by the

excessive accumulation of lipids within hepatocytes and the

presence of steatosis (1). The global occurrence of this condition

has significantly risen over the years, making NAFLD the

prevailing liver ailment across the globe (2). It is currently

estimated to affect up to 25% of the population (3). It covers a

range of liver conditions that vary from simple steatosis (non-

alcoholic fatty liver, NAFL) to non-alcoholic steatohepatitis

(NASH). Increasing epidemiological evidence suggests that

NAFLD is quickly becoming a primary cause of hepatocellular

carcinoma (HCC) in numerous instances (4, 5). Despite the

increasing prevalence of NAFLD over time, its underlying

causes remain unclear and there is a lack of definitive treatment

options (6). Therefore, it is critically important to identify

potential pathogenic and therapeutic targets in NAFLD.

Recent research has identified a novel metabolism-related

regulated cell death mechanism termed disulfidptosis (7).

Xiaoguang Liu et al. discovered that when the intracellular

reducing molecule nicotinamide adenine dinucleotide

phosphate was depleted, leading to the accumulation of

disulfide compounds such as cystine and triggering disulfide

stress. This led to the creation of disulfide bonds between

cytoskeletal proteins and the collapse of the actin filament

network, ultimately causing disulfidptosis to occur (7). In this

process, the cellular redox state played a crucial role. It was widely

recognized that individuals with NAFLD demonstrate hepatic

oxidative stress caused by compromised mitochondrial

respiratory capacity and proton leakage (8). Oxidative stress in

NAFLD can induce the activation of Kupffer cells, leading to their

polarization towards the pro-inflammatory M1 phenotype. This

polarization causes the discharge of many pro-inflammatory

cytokines, promoting an inflammatory reaction that harms liver

cells and speeds up the advancement of NAFLD (9, 10).

Furthermore, previous studies have indicated a close association

between sulfide metabolism and the development of NAFLD (11,

12). All of these findings indicated that disulfidptosis-related
02
genes (DRGs) might carry a crucial component in the

development and progression of NAFLD.

In this research, we employed weighted gene co-expression

network analysis (WGCNA) and differential expression analysis to

identify 312 differentially expressed genes (DEGs) strongly

associated with NAFLD, elucidating their enriched biological

pathways. We also investigated the immune microenvironment in

NAFLD patients. Subsequently, we identified two key NAFLD-

specific differentially expressed DRGs (DE-DRGs), MYL6 and

DSTN, based on 23 DRGs (7). We characterized two subtypes of

disulfidptosis associated with NAFLD and immune infiltration.

Gene set enrichment analysis (GSEA) results showed that

oxidative stress pathways, triglyceride metabolism pathways, and

pro-inflammatory pathways were activated in the subtype with high

expression of key DE-DRGs. Furthermore, MYL6 was found to be

highly expressed in liver immune cells and might potentially

promote Kupffer cell polarization towards the pro-inflammatory

M1 phenotype through oxidative stress. To reinforce our findings,

we further validated the expression of the 23 DRGs in NAFLD

patients and explored the associated biological functions and

clinical significance of MYL6.
2 Materials and methods

2.1 Gene expression profiles collection

The workflow is shown in Figure 1. Original bulk RNA

sequencing (RNA-seq) data was collected from the gene

expression profile GSE126848, based on the GPL18573 Illumina

NextSeq 500 (Homo sapiens) downloaded from the Gene

Expression Omnibus (GEO) database, a public depository

database of gene expression data (13). Data of single-cell RNA

sequencing (scRNA-seq) from GSE136103 were obtained from the

GEO database (14). The GSE136103 dataset included single-cell

transcriptome data from 11 healthy patient liver tissue samples, 9

cirrhotic patient liver tissue samples, 4 cirrhotic patient PBMC

samples, and 2 mouse liver samples. Only 4 human NAFLD-

associated cirrhotic samples were included, so all of them were
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included in our study as the NAFLD group and 4 human healthy

liver tissue samples were randomly selected as the control group.

Additional information regarding the aforementioned datasets is

provided in Supplementary Table S1.
2.2 Weighted gene co-expression
network analysis

We divided genes into different modules based on their similar

expression in 57 liver samples using the WGCNAmethod (15). After

evaluating the significance of genes in the module and analyzing the

correlation between modules and subtypes, a module strongly

associated with NAFLD was discovered. The genes within this

module were then utilized for further investigation.
2.3 Differential expression analysis

The RNA-seq data was analyzed for differentially expressed

genes (DEGs) using the DESeq2 R package (version 1.40.2) (16).

DEGs were classified as significant if their absolute log2 fold

change (log2FC) was greater than 0.5 and their p-value was less

than 0.05. Ensemble ID with no corresponding gene symbols were

removed, and genes with more than one Ensemble ID

were averaged.
2.4 Functional enrichment analysis

With the “clusterProfiler” package (version 4.8.1), we

conducted GSEA and the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses (17, 18). The

“c2.cp.v2023.2.Hs.symbols.gmt” was used as the annotation gene
Frontiers in Immunology 03
set (19). Significant terms were only considered if their p-value was

less than 0.05. The outcomes of the enrichment analyses were

graphically represented through the use of the “clusterProfiler”

package (20), “enrichplot” package (version 1.20.0), and

“GseaVis” package (version 0.0.9) in R 4.3.1 software.
2.5 Immune infiltration analysis

In our research, we utilized three algorithms, CIBERSORT,

xCell, and ssGSEA, to quantify immune cell infiltration in NAFLD

liver tissues (21–23). We assessed the relative proportions of

immune cells in each sample. Additionally, we employed

Spearman correlation analysis to assess the correlation between

the relative proportions of different cells in CIBERSORT and the

mRNA levels of key DE-DRGs. Finally, we visualized the results of

immune infiltration analysis using the R package “ggplot2”

(version 3.4.4).
2.6 Consensus clustering analysis for the
key DE-DRGs

Liu’s study provided the information for 23 DRGs (SLC7A11,

CD2AP, PDLIM1, ACTN4, MYH10, IQGAP1, FLNA, TLN1, MYL6,

ACTB, CAPZB, GYS1, NDUFA11, NCKAP1, NDUFS1, RPN1,

NUBPL, SLC3A2, INF2, MYH9, FLNB, DSTN, LRPPRC) (7). The

“RCircos” package (version 1.2.2) was utilized to map the positioning

of DRGs on chromosomes. Subsequently, the key DE-DRGs were

identified from the DEGs, the module of WGCNA, and the DRGs

using an interactive Venn diagram. Consensus clustering analysis was

conducted using the R package “ConsensusClusterPlus” (version

1.64.0) to categorize patients into distinct clusters according to the

expression levels of the key DE-DRGs. The range of the cluster
FIGURE 1

Research design flow chart.
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category’s k value was between 2 and 9. Differences in expression of

key DE-DRGs between clusters as reflected by heat map.
2.7 Analysis of scRNA-seq data

To identify reliable cell subpopulations from scRNA-seq data,

we employed the “Seurat” package (version 4.3.0.1) for data

processing (24). Using the Seurat R package, we applied

normalization, clustering, dimensionality reduction, and

visualization techniques to analyze the scRNA-seq data. Each

gene must be expressed in a minimum of three cells. The

PercentageFeatureSet function was used to calculate the

proportions of mitochondria and ribosomal RNA, making sure

that each cell had over 200 genes and less than 6,000 genes with

less than 25% mitochondrial content and less than 50% ribosome

content per cell. To eliminate the influence of confounding

factors, the CellCycleSoring function was utilized. To correct

batch effects, we employed the RunHarmony function from the

harmony R package using the PCA reduction method to integrate

samples (25). We used the FindAllMarkers function to identify

DEGs for determining the cellular identity. We utilized a three-

step workflow including automatic cell annotation, manual cell

annotation and verification. The SingleR package (version 2.2.0) is

used for automatic annotation. Marker genes used to define

different cell types were selected based on the literature, and

these cells were identified by their typical characteristic gene

profiles (26–28). Finally, we validated the annotation results

with the online tool CellMaker (29). During the examination of

each cell type, any group of cells that exhibit the presence of

multiple markers from various cell types will be eliminated. The

condition-specific responses of cell subpopulations measured

from two groups of patients were investigated using the

“muscat” package (version 1.15.1) through differential state

analysis (30). To demonstrate the functional characteristics of

mononuclear phagocytes (MPs), we gathered gene collections

from various sources and computed functional scores for each

individual cell (28, 31–34). The gene list scores were calculated

using the AddModuleScore function in Seurat. Online

Supplementary Table S2 contained detailed information for each

score. Finally, certain R packages were used for the visualization of

single-cell data results, such as the “plot1cell”, “Nebulosa”,

“scRNAtoolVis” and “ggplot2” packages (35–37).
2.8 Clinical samples and patient data

This study involved 16 patients who underwent surgical

procedures, with six diagnosed with NAFL, four with NASH, and

six serving as controls (Supplementary Table S3). Two experienced

hepatopathologists, who were unaware of clinical data, centrally

evaluated liver specimens from all of these patients. Liver samples

were assessed for histologic characteristics using the NAFLD
Frontiers in Immunology 04
activity score (NAS) (38). This research received approval from

the Ethics Committee of the Second Xiangya Hospital of Central

South University (No. 2019–050). Participant consent was obtained

in writing prior to participating in the study.
2.9 Hematoxylin and eosin staining of
liver tissue

In the initial step, liver tissue samples were fixed using 4%

paraformaldehyde. After fixation, the tissues were dehydrated in

low to high concentrations of ethanol. Following dehydration, the

tissues were transparent in xylene and then embedded in paraffin

wax for fixation. Afterward, the tissue was sliced to a thickness of 3–

5 um, baked for about 1 h, immersed in xylene to deparaffinize, and

then hydrated in ethanol from high to low concentration. Once

drained, the slices were placed in a vat of hematoxylin staining

solution for a duration of 5 minutes, followed by a thorough rinse

with running water to restore their blue color. The sections were

then immersed in an eosin vat for 5 min and rinsed again under

running water. Following a successful staining process, the sections

underwent dehydration using varying concentrations of ethanol,

followed by transparency achieved with xylene. Subsequently, the

sections were sealed and finally examined and captured using

a microscope.
2.10 Liver transcriptome sequencing

The RNAmini kit (Qiagen, Germany) was used to extract total

RNA from every liver tissue sample. The quality of RNA was

assessed using gel electrophoresis and Qubit (Thermo, Waltham,

MA, USA). The TruSeq RNA sample preparation kit (Illumina, San

Diego, CA, USA) was used to construct strand-specific libraries.

The Illumina Novaseq 6000 instrument was used for sequencing,

which was performed by Genergy Biotechnology Co. Ltd.

(Shanghai, China). Skewer was used to process the raw data and

FastQC v0.11.2 was utilized to verify the quality of the data. The

length of the read was 2×150 base pairs. STAR (version 2.5.3a) was

employed to align the clean reads to the Human genome hg38.

StringTie software (version 1.3.1c) was utilized to count the raw

sequence counts of established genes in all samples.
2.11 Statistical analysis

Statistical analysis was performed using R version 4.3.1 and

GraphPad Prism 9.3.0 software. The Wilcoxon test was utilized to

complete the comparative analysis among the groups. Correlation

analysis was conducted using Spearman analysis. The gene

expression levels in this study were reported as log2(TPM+1)

unless otherwise specified. The statistical difference between the

sets was significant with a p-value less than 0.05.
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3 Results

3.1 Building co-expression networks and
screening of critical module

In dataset GSE126848, we analyzed 57 liver tissue samples by

applying median absolute deviation to screen the top 5000 genes for

WGCNA analysis. A clustering tree for the dataset was established

and no outliers were found (Figure 2A). A dendrogram was formed

by clustering samples with clinical traits (Figure 2B). Afterwards, we

assessed the fitting index for scale-free networks and the average

connectivity for different soft threshold powers, using the scale-free

R2 as a basis (Figure 2C). Ultimately, we identified 13 modules

through hierarchical clustering (Figure 2D). We utilized a

correlation heatmap to investigate the correlation between each

module and NAFLD. Our analysis revealed that the yellow module
Frontiers in Immunology 05
exhibited the strongest connection with NAFLD, displaying a

correlation value of 0.85 and a p-value of 7E-17 (Figure 2E).

Figure 2F showed that the yellow module genes exhibited a

strong correlation not only with the yellow module itself but also

with NAFLD. A heatmap was constructed to display the network of

gene co-expression (Figure 2G). Figure 2H displayed the

connections between the modules and the clinical trait weight.

Therefore, we focused on the 564 genes in the yellow module in our

follow-up study (Supplementary Table S4).
3.2 Identification of NAFLD-specific DEGs
and their KEGG enrichment analysis

We examined the DEGs in the GSE126848 dataset to

investigate the underlying gene expression pattern and possible
B C

D E F

G H

A

FIGURE 2

WGCNA analysis and clinically significant module identification. (A) Sample clustering dendrogram for outlier detection. (B) Clustering dendrogram
of 57 liver samples with trait heatmap. (C) Under different soft thresholds, the scale-free fit index and mean connectivity are shown. (D) Hierarchical
clustering of genes in the dendrogram. (E) The correlation between clinical traits and gene modules is represented as a heatmap. (F) A scatter plot of
the yellow module’s eigengenes. (G) The co-expression modules are plotted as a network heatmap. (H) The eigengene network shows the
relationships between modules and clinical trait weights.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1386905
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2024.1386905
correlation between control and NAFLD. By removing the

duplicate and irrelevant genes, we discovered a combined count

of 2702 up-regulated DEGs and 2075 down-regulated DEGs

(Supplementary Table S5). Figure 3A displayed volcano maps of

the DEGs. Subsequently, we identified 312 NAFLD-specific DEGs

in DEGs and WGCNA, of which 293 were up-regulated and 19

were down-regulated (Figure 3B). We used a heat map to show the

expression of NAFLD-specific DEGs in the two groups of samples

(Figure 3C). In addition, KEGG pathway enrichment analysis was

used in R to determine the pathways involved in NAFLD-specific

DEGs (Figure 3D; Supplementary Table S6). The up-regulated

NAFLD-specific DEGs were implicated in Ribosome, Oxidative

phosphorylation, Non-alcoholic fatty liver disease, Diabetic

cardiomyopathy, Motor proteins, Phagosome, and PPAR

signaling pathways. Conversely, the down-regulated NAFLD-

specific DEGs participated in signaling pathways related to

Pentose and glucuronate interconversions, Arachidonic acid

metabolism, Linoleic acid metabolism, and Retinol metabolism.

Interestingly, we found that 17 of the screened NAFLD-specific

DEGs were significantly enriched in the Non-alcoholic fatty liver

disease signaling pathway (Figure 3E). This confirms the

effectiveness of our screening method and also identifies novel
Frontiers in Immunology 06
genes related to NAFLD. Overall, the NAFLD-specific DEGs

identified in this study might be involved in the occurrence and

progression of NAFLD.
3.3 The immune microenvironment in
patients with NAFLD

To investigate the immune microenvironment in patients

with NAFLD, we applied to three algorithms, CIBERSORT,

xCel l , and ssGSEA, to revealed relat ive immune cel l

composition (Figure 4; Supplementary Figure S1). The findings

ind ica t ed tha t there i s a var i a t ion in the immune

microenvironment between patients with NAFLD and those

without the condition (Figure 4A; Supplementary Table S7). In

addition, there was a close interplay between immune cells, with

a significant negative correlation between M1 macrophages and

M2 macrophages, and a strong positive correlation between

activated dendritic cel ls and foll icular helper T cells

(Figure 4B). In patients with NAFLD, the proportion of

plasma cells, CD8 T cells, CD4 memory activated T cells,

gamma delta T cells, M0 macrophages, M1 macrophages, and
B

C

D E

A

FIGURE 3

Identification of NAFLD-specific DEGs and their KEGG enrichment analysis. (A) Volcano plot of DEGs for the GSE126848 dataset. The top 5 most
significantly up- and down-regulated DEGs are labeled individually. (B) Venn diagram showing the NAFLD-specific DEGs common to DEGs and
WGCNA. (C) Heatmap of NAFLD-specific DEGs expression data. (D) Bar chart of KEGG enrichment analysis of NAFLD-specific DEGs. (E) Network
diagram of pathway enrichment analysis.
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resting dendritic cells was found to be higher than those in

control samples. However, the percentage of activated NK cells,

M2 macrophages, resting mast cells, and neutrophils was lower

in NAFLD samples (Figures 4C, D; Supplementary Figure S1).

All of these results suggested that alterations in the immune

microenvironment play a crucial role in the pathogenesis

of NAFLD.
3.4 Identification of key DE-DRGs in
NAFLD and disulfidptosis clusters immune
infiltration analysis

The location of 23 DRGs on chromosomes were demonstrated

in Figure 5A. To explore the role of DRGs in NAFLD, we examined

the expression patterns of 23 DRGs in the control and NAFLD

groups. Figure 5B showed that 7 DRGs were differentially expressed

in the two groups. After intersecting with the yellow module genes

obtained from WGCNA, two key DE-DRGs associated with

NAFLD, MYL6 and DSTN, were identified. We then grouped the

samples using a consistent clustering algorithm based on the key

DE-DRGs. Two disulfidptosis clusters were obtained by cluster

analysis (Figures 5C, D). Compared to cluster 2, the key DE-DRGs

were up-regulated in cluster 1 (Figure 5E). To clarify the

characteristics of the two disulfidptosis clusters in the immune

microenvironment, an immune infiltration analysis was performed
Frontiers in Immunology 07
(Figure 5F). It is worth noting that the analysis of correlation

depicted in Figure 5G demonstrated a significant positive

correlation between the main DE-DRGs and regulatory T cells,

CD8 T cells, M0 macrophages, M1 macrophages, and resting

dendritic cells. On the other hand, there was a significant negative

correlation between the DE-DRGs and M2 macrophages, as well as

resting mast cells. Subsequently, GSEA was applied to analyze the

biological behavior of the two clusters. The GSEA enrichment

analysis showed that the electron transport chain oxphos system

in mitochondria, oxidative stress induced senescence, metabolic

disorders of biological oxidation enzymes, triglyceride metabolism,

diseases of programmed cell death and proinflammatory and

profibrotic mediators were upregulated in cluster 1 (Figure 5H),

all of which have been shown to be associated with the pathogenesis

of NAFLD (39, 40). In conclusion, these results strongly indicated

that the key DE-DRGs might be involved in the development and

progression of NAFLD and were related to immune modulation.
3.5 Processing of the GSE136103 single-
cell data set and construction of a cell
atlas for NAFLD

We further explored the immunomodulatory role of the key

DE-DRGs in NAFLD patients through scRNA-seq data. After

rigorous quality control screening, a total of 20896 genes and
B

C D

A

FIGURE 4

Identification of the immune microenvironment in patients with NAFLD by CIBERSORT algorithm. (A) The relative ratio of immunocytes in patients
with NAFLD and controls. (B) Proportional correlation heatmap of immune cells. The gradient color represents the correlation strength. (C) A box
plot comparing the infiltration rates of 22 immune cells between NAFLD patients and controls. (D) Heatmap of the relative proportion of immune
cells in the samples. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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23929 high-quality cells were included in the subsequent analysis

(Figure 6A). The FindAllMarkers function and the Wilcoxon rank

sum test were used to identify specific gene signatures for each

cluster, as shown in Figure 6B. We finally identified 10 major cell

lineages based on marker genes from previous studies and SingleR

annotation, including T/NK cells (13083 cells, 54.7%, marked with

CD3D, CD3E, CD7, and KLRF1), B cells (930 cells, 3.9%, marked

with CD79A, CD79B, and MS4A1), plasma cells (286 cells, 1.2%,

marked with IGHA1, IGHG1, and MZB1), MPs (3496 cells, 14.6%,

marked with CD68, CD163, CD14, and C1QA), dendritic cells
Frontiers in Immunology 08
(DCs) (479 cells, 2.0%, marked with CD1C and CLEC10A), mast

cells (57 cells, 0.2%, marked with TPSAB1, TPSB2, and CPA3),

endothelial cells (ECs) (3475 cells, 14.5%, marked with CLEC4G,

TSPAN7, and VWF), hepatic stellate cells (HSCs) (483 cells, 2.0%,

marked with ACTA2 and COL1A1), hepatocytes (122 cells, 0.5%,

marked with ALB, APOA1, and APOC3), and cholangiocytes (1518

cells, 6.3%, marked with ANXA4, FXYD2, and KRT19) (26–28).

These ten populations contained cells from both controls and

NAFLD patients’ liver tissues (Figure 6C). The cells were grouped

into clusters using an unsupervised graph-based clustering method,
B C

D E

F G

H

A

FIGURE 5

Identification of the key DE-DRGs in NAFLD. (A) Chromosome position of the 23 DRGs. (B) Venn diagram showing the overlapping genes common
to DRGs, DEGs, and WGCNA. (C) Consensus matrix plots of the key DE-DRGs. (D) Delta area plot. (E) Heatmap of relative expression distribution
of key DE-DRGs in two clusters. (F) Box plot showing immune infiltration differences between disulfidptosis clusters by CIBERSORT algorithm.
(G) Correlation analysis of the key DE-DRGs with immune cells. (H) GSEA analysis based on the canonical pathways gene sets. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001.
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which was visualized in the uniform manifold approximation and

projection (UMAP) plot (Figure 6D).
3.6 The key DE-DRGs displayed significant
differential expression in the MPs cluster

A weighted kernel density estimation of the key DE-DRGs’ gene

expression was performed using the Nebulosa (v1.10.0) package

with default parameters. Figure 7A showed that MYL6 was

expressed in most intrahepatic cells. In addition, DSTN was

highly expressed mainly in cholangiocytes and ECs (Figure 7B).

We generated a multi-dimensional scaling (MDS) plot using

aggregated signal to explore similarities among samples. It is

shown that the first dimension (MDS1) separates control and

NAFLD samples, while the second dimension (MDS2) separates

cell clusters (Figure 7C). To further clarify which cell clusters have

altered the expression of key DE-DRGs in NAFLD patients

compared to controls, we performed differential state analysis
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(Figures 7D, E; Supplementary Table S8). Interestingly, we found

that MYL6 was significantly differentially expressed only in the MPs

cluster (log2FC=0.597, p value=0.0124), and its expression trend

was the same as in the bulk RNA samples (log2FC=1.247, p

value<0.0001). In addition, DSTN was differentially expressed in

the HSCs cluster (log2FC= -1.61, p value=0.00257) and MPs

(log2FC= -0.543, p value=0.0298), but both showed the opposite

trend of expression to that in bulk RNA samples (log2FC=0.596, p

value<0.0001). Consequently, we focused on MYL6 for our

subsequent investigation.
3.7 MYL6 might be involved in Kupffer cell
polarization in NAFLD patients

We performed re-decimation clustering of MPs into 5 distinct

clusters (Figure 8A; Supplementary Figure S2). It emerged 2 clusters

for monocytes (with a suffix of Mono) and 3 clusters for

macrophages (with a suffix of Macro). The phylogenetic tree
B

C

D

A

FIGURE 6

Clustering of GSE136103 scRNA-seq data and identification of cell types. (A) Violin plot of quality control parameters for scRNA-seq of liver tissue
samples. (B) Heatmap of each cell cluster’s top 60 specific marker genes, while the upper panel of the heatmap shows the hierarchical clustering of
clusters and the number of cells. In the heatmap, the gene expression is presented after Z-score processing, and the redder color represents the
higher gene expression. (C) A bar chart shows the cell composition of cell clusters in 8 liver tissue samples. (D) UMAP plot (center) shows 23,929
cells from 8 samples, colored by major classes. The circle is divided into three parts from inside to outside, representing the distribution of samples
in each cell cluster, the distribution of each cell cluster between groups, and the name of the cell clusters.
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relating to the “average” cell revealed that the 2 Mono clusters were

closely related as a branch node, as were the 3 Macro clusters

(Figure 8A right panel). MYL6 was highly expressed mainly in C01,

C02 and C04 clusters (Figure 8B). Heatmap showed that C02-

CD5L-Macro and C05-FCN3-Macro expressed high levels of

Kupffer markers such as CD5L, MARCO, VCAM1, and CD163

(Figure 8C; Supplementary Table S9). In addition, by examining

signature genes defined previously (28, 31, 32), we observed distinct

functional status for each MPs subset, with the high Kupffer mod-

score for C02-CD5L-Macro and C05-FCN3-Macro, high

phagocytosis mod-score in the Macro clusters, similar

proinflammatory mod-score in all clusters, highest M1 mod-score

for C02-CD5L-Macro, and highest NASH-associated macrophages

(NAMs) mod-score for C03-RNASE1-Macro (Figure 8D).
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Subsequently, differential state analysis in each cluster showed

that MYL6 was significantly differentially expressed mainly in

C01-S100A8-Mono (log2FC=0.524, p value=0.00489) and C02-

CD5L-Macro (log2FC= 0.544, p value=0.02170) (Figures 8E, F;

Supplementary Table S10). The results of GSEA enrichment

analysis for C02-CD5L-Macro indicated that, in comparison to

the control group, NAFLD patients exhibited up-regulation in the

pro-inflammatory signaling pathway, the signaling pathways

associated with regulated cell death (e.g., regulated necrosis and

ferroptosis), and the signaling pathway related to sulfide

metabolism (e.g., sulfide oxidation leading to sulfate) (Figure 8G;

Supplementary Table S11). These results suggested that MYL6

might play an important role through M1 phenotype Kupffer cells

in NAFLD patients.
B

C D

E

A

FIGURE 7

Weighted kernel density estimation of the key DE-DRGs and differential state analysis in GSE136103. (A) UMAP plot showing the Nebulosa expression
densities for MYL6. (B) UMAP plot showing the Nebulosa expression densities for DSTN. (C) Pseudobulk-level multi-dimensional scaling (MDS) plot.
(D) The violin plot shows the expression of MYL6 for the mononuclear phagocyte cluster. (E) The volcano plot shows the results of the differential
state analysis in GSE136103 with the key DE-DRGs labeled.
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3.8 The expression of MYL6 in patients
with NAFLD and its close correlation with
clinical parameters

We collected liver tissues from 16 patients and conducted HE

staining as well as RNA-seq analysis (Figure 9A; Supplementary

Table S12). The results indicated a substantial up-regulation of the

majority of DRGs in the NAFLD group when compared to the

control group (Figure 9B). In addition, the heatmap showed that

MYL6 was significantly positively correlated with the expression

of Kupffer cell signature genes, M1 phenotype macrophage

signature genes, and oxidative stress-related genes (Figure 9C).
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Subsequently, we divided 10 NAFLD patients into high and low-

expression groups based on the median MYL6 expression and

performed GSEA between the two groups. The group with high

expression of MYL6 showed an upregulation of inflammation-

related pathways such as the inflame pathway, cytokines, and

inflammatory response. They also showed an increase in fatty acid

metabolism pathways and oxidative stress-related pathways

(Figure 9D; Supplementary Table S13). It is noteworthy that

there was a positive correlation between MYL6 expression and

disease severity in NAFLD (Figures 9E, F). In addition, we

downloaded data related to liver hepatocellular carcinoma

(LIHC) from the TCGA database and categorized patients in
B C

D

E

F G

A

FIGURE 8

The specific phenotypes of mononuclear phagocytes. (A) UMAP plot showing 5 distinct clusters in mononuclear phagocytes, colored by cluster ID
(left panel). A distance matrix generated in either gene expression space is used to infer the phylogenetic tree of 5 clusters. (right panel). (B) UMAP
plot showing the Nebulosa expression densities for MYL6 in mononuclear phagocytes. (C) Heatmap of marker genes among different clusters.
(D) Violin plots showing the functional module (Mod) scores of mononuclear phagocyte subsets. (E) Pseudobulk-level MDS plot. (F) The volcano plot
shows the results of the differential state analysis in each mononuclear phagocyte cluster with MYL6 labeled. (G) GSEA in C02-CD5L-Macro cluster
based on the canonical pathways gene sets.
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whom the history of hepatocellular carcinoma risk factors was

NAFLD only into the NAFLD-LIHC group. Our analysis showed

that MYL6 expression was significantly higher in patients with

NAFLD-LIHC than in controls (Figure 9G). Moreover, to validate

the effectiveness of MYL6 in the diagnosis of NAFLD, ROC

logistic regression analysis was performed based on our data. It

was found that the AUC value of MYL6 was 0.967 (Figure 9H),
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indicating good sensitivity and specificity of MYL6 in the

diagnosis of NAFLD. Further Spearman correlation analysis

revealed that there was a significant positive correlation between

intrahepatic MYL6 mRNA levels and NAS, as well as serum

concentrations of TC, TG, and LDL-C. On the other hand,

researchers discovered a negative connection between MYL6

expression and serum concentrations of HDL-C (Figures 9I–M).
B
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FIGURE 9

Validation of MYL6 in our data. (A) Liver tissue sections stained with H&E. (B) Relative expression of DRGs in liver samples from patients with NAFLD
and controls. (C) Heatmap showing the MYL6 was significantly positively correlated with the expression of Kupffer cell signature genes, M1
phenotype macrophage signature genes, and oxidative stress-related genes. (D) GSEA in NAFLD patients based on the median MYL6 expression.
(E, F) Box plot showing the expression of MYL6 among the control, NAFL, and NASH groups based on the different data. (G) Relative expression of
MYL6 in liver tissue samples from patients with NAFLD-LIHC and controls. (H) Validation of MYL6 in NAFLD diagnosis in our data with ROC curve
analysis. (I–M) Correlations of intrahepatic MYL6 mRNA levels with TG, TC, LDL-C, HDL-C, and NAS in our data. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001. ns: no statistically significant (P > 0.05).
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4 Discussion

Due to the escalating prevalence of obesity and weight-related

metabolic complications, NAFLD has become the most prevalent

chronic liver ailment worldwide (41). In a subset of patients, hepatic

steatosis progresses to NASH and may further develop into fibrosis,

cirrhosis, and NAFLD-related HCC (42–44). Fatty acid metabolic

reprogramming unique to hepatocytes is a key indicator of the liver

cancer (45). Despite extensive research, the pathogenesis of NAFLD

remains complex and not entirely understood, leading to a lack of

effective therapeutic drugs, reliable non-invasive diagnostic tools,

and dynamic biomarkers (46). Consequently, the identification of

pathogenic targets and effective biomarkers for NAFLD is crucial

for formulating personalized treatment strategies. There is no

consensus on the role of disulfideptosis in the occurrence of

NAFLD and its progression as a novel form of cell death (7). We

aimed to investigate the potential role of DRGs in the pathogenesis

of NAFLD and immune microenvironment based on single-cell and

bulk RNA-seq.

In our study, a yellow module with 564 genes was identified,

which has the highest correlation with the phenotype (NAFLD) in

WGCNA. Furthermore, we identified 312 NAFLD-specific DEGs in

DEGs and WGCNA, of which 293 were up-regulated and 19 were

down-regulated. Functional enrichment analysis in the present study

found that the NAFLD-specific DEGs were associated with important

pathogenesis processes and pathways of NAFLD (39, 40), including

Non−alcoholic fatty liver disease pathway, Oxidative phosphorylation

pathway, and PPAR signaling pathways. These findings strongly

indicated that the NAFLD-specific DEGs identified in this study

play an important role in the occurrence and development of

NAFLD and should be further investigated. Subsequently, immune

infiltration analysis revealed significant alterations in the composition

of immune cells in patients with NAFLD. The percentage of plasma

cells, CD8 T cells, gamma delta T cells, M1 macrophages, and resting

dendritic cells was higher in NAFLD samples compared to control

samples, while a lower percentage of M2 macrophages was present.

These were consistent with the results of previous studies (47–51).

Although NAFLD is primarily a metabolic disorder, it also involves

immune cell-mediated inflammatory processes. Inflammation

becomes an indispensable factor in disease progression, particularly

in the NASH stage. Liver immune cells are diverse in their steady state

and undergo further evolution during NAFLD, directly impacting the

severity of the disease (48).

To explore the role of disulfidptosis features in NAFLD, we

examined the expression patterns of DRGs in the control and

NAFLD groups. The results revealed that most of the DRGs were

significantly differentially expressed in patients with NAFLD, which

suggested a crucial role for DRGs in the occurrence and progression

of NAFLD. On the other hand, we employed unsupervised

clustering to categorize patients into two distinct disulfidptosis

subtypes. We found that the key NAFLD-specific DE-DRGs

(DSTN and MYL6) were up-regulated in cluster 1. Interestingly,

cluster 1 has a high abundance of immune cell infiltration. GSEA

analysis indicated that in cluster 1, oxidative stress-related pathways
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and pro-inflammatory pathways were upregulated. The expression

levels of key DE-DRGs were positively correlated with the

abundance of M1 macrophages and CD8 T cell infiltration. Prior

studies have also found that disulfidptosis-related long non-coding

RNAs are closely associated with the level of immune cell

infiltration in liver tissue (52). Additionally, previous studies

showed that elevated levels of reactive oxygen species played a

crucial role in the inflammatory response, fibrosis, necrosis, and

apoptosis occurring in NAFLD (53). Oxidative stress can induce

Kupffer cells to produce various cytokines, such as TNF-a, thereby
exacerbating inflammation and cell apoptosis (10). As for HSCs,

their proliferation and collagen synthesis are triggered by lipid

peroxidation induced by oxidative stress (54). This suggested that

DRGs may promote immune cell infiltration in NAFLD through

oxidative stress-related pathways, thereby accelerating the

progression of the disease.

Subsequently, we further explored the expression distribution

and biological functions of key DE-DRGs at the single-cell level

within the liver. Traditional transcriptomic data from bulk RNA-

seq pose challenges in depicting the heterogeneity of various cell

types within the livers of both NAFLD patients and healthy

individuals. With technological advancements, high-throughput

sequencing techniques, such as scRNA-seq, have surfaced to

furnish transcriptomic information at the cellular level (55, 56).

We annotated and identified ten different cell subtypes based on

scRNA-seq data. Results revealed that MYL6 was expressed in the

majority of immune cells within the liver, while DSTN was

predominantly expressed in cholangiocytes and ECs.

Furthermore, MYL6 exhibited significant differential expression in

the MPs cluster, with its expression trend aligning with that

observed in bulk RNA samples. Subsequently, further refinement

of the MPs cell subtype revealed that MYL6 was predominantly

expressed in the CD5L-Macro resident in the livers of NAFLD

patients. Functional module scores and enrichment analysis

unveiled that the CD5L-Macro was characterized by high

phagocytic activity and secretion of pro-inflammatory and fibrotic

mediators, belonging to the M1 phenotype kupfer cells. GSEA

enrichment analysis of C02-CD5L-Macro indicated activation of

pro-inflammatory and pro-fibrotic signaling pathways, pathways

related to regulatory cell death (such as regulated necrosis and

ferroptosis), lipid metabolism pathways, and pathways associated

with sulfur metabolism (such as sulfate formation due to sulfide

oxidation) in NAFLD patients compared to the controls. Numerous

studies suggested that Kupffer cells, a self-sustaining macrophage

population residing in the liver, played a role in the progression of

NAFLD (57, 58). During the onset of NAFLD, Kupffer cells

underwent pro-inflammatory polarization, serving as crucial

inflammatory mediators (51, 59). Subsequently, cytokines released

by Kupffer cells stimulate a pro-inflammatory cascade, activating

other immune cells (such as T cells), inducing the expression of

transcription factors involved in lipid metabolism and transport,

and promoting programmed cell death (60, 61). Therefore, we have

reason to believe that MYL6 may contribute to the development of

NAFLD through the promotion of M1 phenotype Kupffer cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1386905
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2024.1386905
Finally, we designed a validation study to investigate whether

DRGs exhibited differential expression in NAFLD across 16 human

liver tissue samples. Based on the RNA-seq results, the expression of

the majority of DRGs was significantly increased in the NAFLD

patients compared to the controls. In this study, particular emphasis

was placed on the investigation of MYL6. Limited knowledge exists

regarding the role of MYL6 in NAFLD. MYL6 encodes a myosin

alkali light chain that is expressed in smooth muscle and non-

muscle tissues, which is important for the assembly of cytoskeletal

structures (62). Previous studies have identified a close association

between MYL6 and the inflammatory disease Multiple Sclerosis,

suggesting its predictive value for prognosis (63). Furthermore,

MYL6 exhibited elevated expression in conditions such as obesity,

asthma, and cervical cancer, yet the underlying mechanisms remain

not fully elucidated (64). Our transcriptomic analysis revealed

upregulation of MYL6 expression in the NAFLD group, closely

associated with the expression of characteristic genes of Kupffer

cells, M1 phenotype macrophages, and oxidative stress-related

genes. The high-expression group of MYL6 exhibited

upregulation of pathways related to inflammation, fatty acid

metabolism, and oxidative stress. Intriguingly, the expression of

MYL6 was significantly positively correlated with the progression of

the disease spectrum in NAFLD. Evaluation of clinical features

indicated a significant positive correlation between MYL6

expression levels and NAS, as well as concentrations of TC, TG,

and LDL-C in the serum, while a significant negative correlation

was observed with serum HDL-C concentration. Our findings

suggested that MYL6 may promote the occurrence of oxidative

stress, increase the infiltration of M1 phenotype Kupffer cells, and

facilitate the progression of NAFLD through multiple pathways.

Certainly, this study inevitably has some limitations. The

investigation solely validated the mRNA levels of DRGs and did

not explore their protein-level changes in NAFLD. Additionally,

further experimental validation was required to elucidate the

potential regulatory role of DRGs in the occurrence and

development of NAFLD. Finally, larger sample sizes in subsequent

studies were needed to clarify the correlation between MYL6

expression levels and clinical pathological indicators of NAFLD.

In summary, this study comprehensively demonstrated the

relationship between NAFLD and disulfidptosis using both single-

cell and bulk RNA-seq data. It elucidated the regulatory role of

DRGs in the hepatic immune microenvironment of NAFLD

patients. Numerous potential target genes and pathways have

been identified in NAFLD, providing potential targets for

therapeutic interventions. Importantly, we revealed MYL6 as a

novel immunomodulator participating in the pathogenesis of

NAFLD. In conclusion, our research findings may offer a better

understanding of the underlying mechanisms, thereby providing

novel targets for the treatment of NAFLD.
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