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Cosmetology and Plastic Surgery Center, LinYi People’s Hospital, Lin Yi, China
Background: Rheumatoid arthritis (RA) is a systemic immune-related disease

characterized by synovial inflammation and destruction of joint cartilage. The

pathogenesis of RA remains unclear, and diagnostic markers with high sensitivity

and specificity are neededurgently. This study aims to identify potential biomarkers in

the synovium for diagnosing RA and to investigate their association with

immune infiltration.

Methods: We downloaded four datasets containing 51 RA and 36 healthy synovium

samples from theGeneExpressionOmnibus database. Differentially expressedgenes

were identified using R. Then, various enrichment analyses were conducted.

Subsequently, weighted gene co-expression network analysis (WGCNA), random

forest (RF), support vector machine–recursive feature elimination (SVM-RFE), and

least absolute shrinkage and selectionoperator (LASSO)wereused to identify thehub

genes for RA diagnosis. Receiver operating characteristic curves and nomogram

models were used to validate the specificity and sensitivity of hub genes. Additionally,

weanalyzed the infiltration levelsof28 immunecells in theexpressionprofileand their

relationship with the hub genes using single-sample gene set enrichment analysis.

Results: Three hub genes, namely, ribonucleotide reductase regulatory subunit

M2 (RRM2), DLG-associated protein 5 (DLGAP5), and kinesin family member 11

(KIF11), were identified through WGCNA, LASSO, SVM-RFE, and RF algorithms.

These hub genes correlated strongly with T cells, natural killer cells, and

macrophage cells as indicated by immune cell infiltration analysis.

Conclusion: RRM2, DLGAP5, and KIF11 could serve as potential diagnostic

indicators and treatment targets for RA. The infiltration of immune cells offers

additional insights into the underlyingmechanisms involved in the progression of RA.
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1 Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease

characterized by chronic inflammation, proliferation of synovial

membranes, and cartilage destruction, which has a serious impact

on the physical and mental health of patients (1). Although RA does

not directly lead to the mortality of patients, its systemic

inflammatory damage can affect the function of organs such as

the heart, lungs, and kidneys, reducing the quality of the patient’s

life (2, 3). The pathogenesis of RA is complex and involves multiple

factors such as genetics, environment, and metabolism. Moreover,

the exact mechanisms associated with these factors and RA have not

yet been systematically determined (4, 5). According to recent

research, different types of immune cells, such as B cells, T cells,

and macrophages, are closely associated with the development of

RA (6). Other immune cells, including natural killer (NK) cells,

mast cells, and dendritic cells (DCs) also play an important role in

the development or advancement of RA (7–9).

Currently, studies on the treatment and pathogenesis of RA are

increasing, but there is still a lack of highly specific and sensitive

biomarkers for its early diagnosis. Bioinformatics is a discipline that

combines biology, mathematics, and information technology and plays

a prominent role in disease detection, biomarker identification, high-

risk patient identification, and so on (10).Weighted gene co-expression

network analysis (WCGNA) is a common method of identifying

disease biomarkers and treatment targets. Machine learning

algorithms, a subset of artificial intelligence that allows computers to

learn from data and predict genes associated with disease, are also
Frontiers in Immunology 02
widely used in research (11). In our study, bioinformatics and three

machine learning algorithms were comprehensively applied to

integrate and analyze multiple expression datasets. This approach

allowed the identification of highly sensitive and specific biomarkers

and treatment targets and would provide new directions for subsequent

experimental research. In this study, the expression matrix of four

synovium samples was downloaded, the intersection genes were

obtained by difference analysis and WGCNA, and then hub genes

were identified by least absolute shrinkage and selection operator

(LASSO), support vector machine–recursive feature elimination

(SVM-RFE), and random forest (RF) machine learning algorithms,

and their diagnostic efficiency was validated. Additionally, we analyzed

the infiltration levels of 28 immune cells in the expression profile and

their relationship with hub genes using single-sample gene set

enrichment analysis (ssGSEA).
2 Materials and methods

2.1 Data collection and preprocessing

The steps in the analysis of the entire research are shown in

Figure 1. First, we obtained gene expression datasets of RA synovial

samples (GSE77298, GSE55235, GSE12021, and GSE55457) from the

Gene Express ion Omnibus (GEO) database (https : / /

www.ncbi.nlm.nih.gov/geo/) (12). These datasets included 87

synovial samples (36 normal control samples and 51 RA samples)

(Table 1). GSE55457 was used as an external validation dataset,
FIGURE 1

The flowchart depicting the investigation procedure. GSEA, gene set enrichment analysis; GSVA, gene set variation analysis; WGCNA, weighted gene co-
expression network construction analysis; DEGs, differentially expressed genes; ssGSEA, single-sample gene set enrichment analysis; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, least absolute shrinkage and selection operator; RF, random forest; SVM-RFE, support vector
machine–recursive feature elimination; ROC, receiver operating characteristic curve; TFs, transcription factors; miRNAs, microRNAs; DCA, decision
curve analysis.
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whereas the other datasets were merged and normalized for data

analysis as a training set using the sva package (13). Common genes

across each dataset were identified for further analysis.
2.2 Identification of differentially expressed
genes and enrichment analyses

Differentially expressed genes (DEGs) were identified using the

limma package with |log Fold Change (FC)| ≥ 1 and P-value < 0.05

used as the cutoff for filtering the DEGs (14). DEGs were visualized

using a heatmap and volcano map obtained by using pheatmap and

ggplot2 packages. Gene Ontology (GO) enrichment analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis were conducted

with a cutoff of P < 0.05 (15). A gene set variation analysis (GSVA) was

performed using the GSVA R package to calculate a normalized

enrichment score under the background of the hallmark gene set

(c2.cp.kegg.v7.2) with the thresholds of the P-value and false discovery

rate (FDR) set as 0.05 and 0.25, respectively (16). We also used GSEA

to identify the biological attributes and functions of all genes in the

training set by using clusterProfiler in the R package with significant

thresholds selected as P-value < 0.05 and FDR < 0.25 (17).
2.3 Construction of the co-
expression network

The WGCNA package was used to construct a weighted gene

co-expression network (18). The samples were organized into

clusters to identify outliers. Then, pairwise correlations were

calculated between genes and a weighted adjacency matrix was

constructed using a soft thresholding power b. The hierarchical

clustering method was used to construct the clustering tree

structure of the TOM(Topological overlap matrix). Different

branches of the cluster tree represented different gene modules

whcic were screened by different colours. To establish a link

between modules and clinical characteristics, estimations of

module membership (MM) and gene significance (GS) were

computed. The modules with the highest Pearson coefficient and

P < 0.05 were used to select the candidate hub genes under the

criterion of MM > 0.8 and GS > 0.5.
2.4 Identifying hub genes

The Venn package was used to obtain intersecting DEGs and

WGCNA candidate hub genes. LASSO logistic regression analysis
Frontiers in Immunology 03
was conducted using the R package glmnet with the optimal

minimal lambda identified. Our study validated the selection of

optimization parameters through 10-fold cross-validation, ensuring

that the partial likelihood deviation satisfied the minimum criteria.

The e1071 package was used to conduct the SVM-RFE with five-

fold cross-validation, and the RF algorithm of the RF package was

used to analyze the intersection genes. Ultimately, hub genes were

obtained by identifying the overlapping genes derived from the

three machine learning methods using a Venn diagram.
2.5 Constructing nomogram model and
validation of hub genes

A nomogram for predicting RA was constructed using the rms

package (19). The predictive power of the nomogram model was

assessed using a calibration curve. A decision curve was used to assess

the clinical utility of the nomogram model. A receiver operating

characteristic (ROC) curve was created using the R package pROC

function to determine the diagnostic value of the hub genes and the

nomogram model for RA in the training and validation sets.
2.6 Correlation between immune cell
infiltration and hub genes

The relative infiltration levels of 28 immune cells in the training set

were quantified using the ssGSEA algorithm (20). Barplots were used to

show the differential expression levels of 28 immune-infiltrating cells.

Spearman correlations of 28 immune-infiltrating cells with hub genes

were calculated and then visualized using the ggplot2 package.
2.7 Co-expression network of identified
hub genes

GeneMANIA (https://genemania.org) was used to create a hub

gene co-expression network (21).
2.8 Functional enrichment analysis of
hub genes

The online tool Enrichr (22) (https://maayanlab.cloud/Enrichr/)

was used to determine the biological process (BP), cellular component

(CC), molecular function (MF), KEGG, WikiPathways, and Reactome
TABLE 1 Information of datasets obtained from GEO.

Datasets Platform Total sample number Normal
sample number

RA sample number

GSE55235 GLP96 30 10 10

GSE77298 GLP96 23 7 16

GSE12021 GLP96 21 9 12

GSE55457 GLP570 33 10 13
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enrichment analysis of the three hub genes (19). The significant

threshold was adj. P-value < 0.05.
2.9 Transcription factors and microRNAs
associated with the three hub genes

The JASPAR (https://jaspar.elixir.no/) database was used to find the

transcription factors (TFs) that frequently bind to the three hub genes.

MicroRNA (miRNAs) that interact with the hub genes were obtained

from an online platformMirTarbase (https://mirtarbase.cuhk.edu.cn/).
2.10 Suppressive potential of small
molecules in RA

We accessed the DSigDB (version 1.0) database through the

Enrichr platform and obtained the top 10 small molecules that

could suppress the expression of hub genes.
2.11 Statistical analysis

Thestatistical softwareRversion4.3.4wasused toperformstatistical

analysis, with P-values of < 0.05 indicating statistical significance.
3 Results

3.1 DEG identification

A total of 575 DEGs (including 383 upregulated genes and 192

downregulated genes) were identified between RA and normal

samples. The top 10 upregulated and downregulated DEGs are

presented in a volcano plot (Figure 2A). In addition, the expression
Frontiers in Immunology 04
levels of the 25 most upregulated and 25 most downregulated genes

are shown in a heatmap (Figure 2B).
3.2 Functional enrichment analysis

DEGs in the BP category of GO were enriched in mononuclear

cell differentiation, leukocyte cell–cell, and immune response–

regulating cell surface receptor signaling pathways. In the MF

category, DEGs were mostly related to antigen binding, immune

receptor activity, and chemokine activity. In the CC category,

DEGs were mostly assigned to the external side of the plasma

membrane and clathrin-coated vesicle membrane (Figure 3A).

KEGG pathway analysis showed that DEGs were enriched in

cytokine–cytokine receptor interaction, chemokine signaling

pathway, and RA; GSEA analysis produced similar results

(Figure 3B). GSEA was used to depict the signal pathways

involved in RA. The top five pathways enriched by DEGs were

the chemokine signaling, cytokine–cytokine receptor interaction,

intestinal immune network for Immunoglobulin A (IgA)

production, RA, viral protein interactions with cytokines, and

cytokine (Figure 3C). In the RA group, the GSVA results of

enriched DEGs also indicated that immunity and inflammation

pathways, such as chemokine signaling, NK cell–mediated

immunity, B-cell receptor signaling, primary immunodeficiency,

and intestinal immune network for IgA production were

evident (Figure 3D).
3.3 WGCNA construction and hub
module identification

Samples in the training set were clustered using the WGCNA

package. Subsequently, the unscaled connectivity index was

determined, and an average connectivity analysis was conducted.
A B

FIGURE 2

Identifications of RA hub genes. (A) Volcano plot and (B) heatmap present the identified DEGs between patients with RA and normal controls (|Iog FC| > 1
and adjusted p-value < 0.05 were defined as six screening standard to obtain DEGs). RA, rheumatoid arthritis; DEGs, differentially expressed genes.
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FIGURE 3

GO, KEGG, GSEA, and GSVA analyses based on GSE55235, GSE12021, and GSE77298. (A) Bubble diagram showing the GO enrichment analysis of
DEGs. (B) Bubble diagram showing the KEGG enrichment analysis of DEGs. (C) GSEA analysis. (D) GSVA analysis. GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; BP, biological process; MF, molecular function; CC, cellular component;
GSEA, gene set enrichment analysis; GSVA, gene set variation analysis.
A B

DC

FIGURE 4

WGCNA analysis and hub candidates for RA. (A) Analysis of the mean connectivity and scale-free fit index for different soft-thresholding powers (b).
Where the correlation coefficient is 0.9 and the matching soft-thresholding power is 8, the red line represents this location. (B) The cluster
dendrogram of the top 25% of genes median absolute deviations. Each hue in the graphic below corresponds to a co-expression module, and each
branch in the figure represents a single gene. (C) Heatmap illustrating the relationships between modules and traits. The salmon module has a strong
correlation with RA. (D) Scatter plot showing the relationship between the genes relevance and its inclusion in the salmon module of genes.
WGCNA, weighted gene co-expression network analysis.
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When the soft threshold b = 8, the network reached an unscaled

topological threshold of 0.9 (Figure 4A). By dynamic tree cutting

and calculation, 11 gene modules were obtained (Figure 4B).

Correlation analysis was performed between the 11 modules and

the normal and RA groups, resulting in a correlation heatmap

(Figure 4C). The salmon module had the strongest correlation with

the RA (r = 0.73, P < 0.001) and was identified as the key module for

RA. Based on filtering criteria, we identified 17 candidate hub genes

in the salmon module (Figure 4D).
3.4 Screening of hub genes

By intersecting the DEGs and candidate hub genes, 13

intersection genes were obtained (Figure 5A). The 13 intersection

genes were then submitted into three machine learning algorithms
Frontiers in Immunology 06
including LASSO, SVM-RFE, and RF. LASSO resulted in four hub

genes (Figures 5B, C), SVM identified five hub genes (Figure 5D),

and RF identified seven hub genes (Figures 5E, F). Finally, we

obtained three hub genes ribonucleotide reductase regulatory

subunit M2 (RRM2), DLG-associated protein 5 (DLGAP5), and

kinesin family member 11 (KIF11) by intersecting the three

machine learning results (Figure 5G).
3.5 Constructing the nomogram model
and validation

A nomogram model was then constructed using the three hub

genes in the training set to predict the risk of RA (Figure 6A). The

nomogram model was found to have the best predictive and clinical

efficiency for RA by calibration curves (Figure 6B) and decision
A

B D

E F G

C

FIGURE 5

Screening of hub genes. (A) Venn diagram for overlapped genes between DEGs and WGCNA. (B) The LASSO regression partial likelihood deviance with
changing log (l) plotted in 10-fold cross-validations. Dotted vertical lines were drawn at the optimal values using the minimum criteria (lambda.min) and
1 standard error of the minimum criteria (1-SE criteria). (C) The LASSO coefficient profiles for four hub genes in the 10-fold cross-validation. The intersection
of (D) five gene signatures was identified by SVM-RFE analysis. (E) Prediction accuracy of the RandomForest model. (F) Seven gene signatures were identified
by RandomForest analysis. (G) Overlapped genes obtained from the LASSO, SVM-RFE, and random forest algorithms. DEGs, differentially expressed genes;
WGCNA, weighted gene co-expression network analysis; LASSO, least absolute shrinkage and selection operator; SVM-REF, support vector machine–
recursive feature elimination.
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curve analysis (Figure 6C), respectively. The area under the ROC

curve (AUC) of the nomogram model and three hub genes were

also calculated (Figures 6D, E). Next, we constructed a validation set

using all the procedures, which showed a perfect match with the

resultsin the training set. To further validate this result, we obtained

RNA-seq data on the synovium of patients with RA and

osteoarthritis (OA) uploaded to GitHub by Shanghai Guanghua

Hospital (23) and analyzed the expression levels of key genes in the

data. Consistent with this study, we found that the expression levels

of three hub genes in RA synovium were significantly higher than in

OA synovium (P < 0.05) (Figure 7).
Frontiers in Immunology 07
3.6 Correlation between the immune cell
infiltration and hub genes

The distribution of 28 immune cells in the training set is

demonstrated in Figure 8A. In our results, a significantly higher

infiltration of activated CD4 T cells, activated B cells, and activated

DC infiltration was found in RA, indicating the important role that

they play in the disease (Figure 8B). Correlation analysis of the 28

immune cells with hub genes demonstrated that various T cells, B

cells, NK cells, and macrophages were positively correlated with the

three hub genes (Figure 8C).
A B

D

E

C

FIGURE 6

Nomogram model construction for RA diagnosis. (A) Nomogram to predict RA risk. (B) Calibration curve evaluation for the diagnostic potential of
the nomogram model. (C) DCA curve to assess the nomogram practical efficacy. (D) ROC analysis of the model. (E) ROC analysis of three hub
genes. DCA, decision curve analysis; ROC, receiver operating characteristic; AUC, area under the ROC curve (based on GSE77298, GSE55235,
and GSE12021).
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3.7 Function analysis of hub genes

To analyze the biological functions of the identified hub genes,

we constructed a comprehensive gene interaction network using

data from the gene MANIA database (Figure 9A). This network

comprised physical interactions, co-expression relationships,

predicted interactions, co-localization patterns, genetic

interactions, pathway interactions, and shared protein domains.

Our findings indicate that the hub genes are primarily associated

with mitotic nuclear division, spindle, and microtubule cytoskeleton

organization involved in mitosis and spindle organization.

Furthermore, to discern the specific biological roles of the three

hub genes, we conducted an enrichment analysis. In Figures 9B–D,
Frontiers in Immunology 08
we illustrate the most enriched terms in the CC, BP, and MF

analyses of GO terms. Additionally, Figures 9E–G depict the most

significant pathways based on data from the Reactome, Wiki

Pathway, and KEGG databases, respectively.
3.8 Identification of regulatory signatures

The interplay between the three hub genes and TF regulators is

depicted in Figure 10A, whereas the relationships between the hub

genes and miRNA regulators are illustrated in Figure 10B. In total,

we identified 18 TFs and 17 miRNAs as regulatory signatures by

analyzing TF–gene and miRNA–gene interaction networks.
A B

D

E F

C

FIGURE 7

Nomogram model construction for RA diagnosis. (A) Nomogram to predict RA risk. (B) Calibration curve evaluation for the diagnostic potential of
the nomogram model. (C) DCA curve to assess the nomogram practical efficacy. (D) ROC analysis of the model. (E) ROC analysis of three hub
genes. (F) Expression level of hub genes according to datasets from GitHub by Shanghai Guanghua Hospital. DCA, decision curve analysis; ROC,
receiver operating characteristic; AUC, area under the ROC curve (based on GSE55457).
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3.9 Discovery of potential small molecules

We generated potential small-molecule findings based on odds

ratios. Table 2 presents the top 10 small molecules that could

potentially target the hub genes sourced from the DSigDB database.
4 Discussion

RA is a chronic inflammatory disease that currently lacks early

diagnostic indicators (6). Recent studies have highlighted the close

association of various immune cells, such as B cells, T cells, and
Frontiers in Immunology 09
macrophages, with the pathogenesis of RA (24). Therefore, the

exploration of new diagnostic biomarkers and their relationship

with immune cell infiltration patterns holds significant implications

for advancing our understanding of RA pathophysiology. To

address this, we gathered four RA synovial microarray datasets

from the GEO database and identified 575 DEGs between RA and

healthy controls. Enrichment analyses, GO, KEGG, GSEA, and

GSVA revealed a robust correlation between RA and the

immune response.

Fibroblast-like synoviocytes (FLSs) are the most abundant cells

of the stroma and a key population in RA. Recent research indicates

that the interaction between RA FLSs and infiltrating immune cells
A

B

C

FIGURE 8

Analyses of the OA-related immunological environment. The distribution of 28 different types of immune cells in healthy control and OA synovial
tissues is shown in a heatmap (A) and a violin plot (B). (C) The association between immune cells infiltration and four hub genes. ****, ***, **, *
represented P<0.0001, P<0.001, P<0.01, P<0.05.
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FIGURE 9

(A) Co-expression network of hub genes. Hub genes and their co-expression genes were analyzed via GeneMANIA. (B) Significantly enriched cellular
components. (C) Significantly enriched biological processes. (D) Significantly enriched molecular functions. GO, Gene Ontology. (E) Reactome
pathway, (F) WikiPathway, and (G) KEGG 2021 human pathway. KEGG, Kyoto Encyclopedia of Genes and Genomes.
A B

FIGURE 10

The cohesive regulatory interaction network of three hub genes and TFs and miRNAs obtained from the Network Analyst. (A) Genes and TFs.
(B) Genes and miRNAs. Herein, the diamond nodes are TFs; the square node indicates miRNAs; gene symbols as circle nodes. TF, transcription
factors; miRNAs, microRNAs.
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is pivotal in chronic inflammation and bone degradation.

Specifically, CD4+ T helper cells, T helper cell 1 (Th1) and T

helper cell 17 (Th17) cells, produce cytokines that either inhibit or

stimulate osteoclast formation, impacting bone health. The

involvement of T cells in bone loss was first demonstrated in

1999, highlighting their role in promoting osteoclastogenesis and

subsequent bone erosion. Studies using mouse models further

support the significance of Th17 cells and Interleukin-17 (IL-17)

in bone damage, with therapeutic interventions targeting IL-17

showing promise but not leading to complete disease remission in

patients with RA (25).

Our findings revealed that macrophages play an important role in

the infiltration of immune cells in the synovium. In contrast to tissue-

resident macrophages, infiltrating macrophages may originate from

various monocyte subpopulations in the blood and possess a high level

of adaptability. For instance, in mice, they can arise from classical

Ly6C+ or patrolling Ly6C− monocytes (26, 27). In a recent

comprehensive analysis of immune cell status in patients with RA,

single-cell RNA-seq, bulk RNA-seq, and mass spectrometry flow

cytometry were used to identify 18 distinct synoviocyte populations,

including four monocyte/macrophage populations denoted as SC-M1

to SC-M4 (28). This analysis demonstrated that the activation of

different cytokines promoted the expansion of diverse macrophage

subpopulations in the RA synovium. Furthermore, as the primary

orchestrators of the immune response, DCs can secrete chemokines

that facilitate the activation of inflammatory T cells, thereby attracting

proinflammatory immune cells such as macrophages and neutrophils

(29–31). In vitro, RA synovial DCs have the potential to induce

regulatory T (Treg) cells through the prolonged engagement of

programmed cell death 1 receptors (32, 33). Although Treg cells in

the peripheral blood of patients with RA retain inhibitory capacity,

this function is compromised in local Treg cells, suggesting that the

inflammatory cytokine environment may contribute to Treg cell

dysfunction (34).

Through the use ofWGCNA andmachine learning algorithms, we

identified DLGAP5, RRM2, and KIF11 as potential diagnostic markers
Frontiers in Immunology 11
for RA. RRM2 plays a critical role in controlling the production of

deoxyribonucleotides, which is essential for DNA repair and synthesis

(35). Blocking RRM2 has a substantial impact on reducing cellular

growth and triggering cell death (36, 37). Recently, other studies have

demonstrated that RRM2 could increase the levels of apoptosis and

inhibit the proliferation of RA-FLSs by regulating transforming growth

factor-b (TGF-b) and IL-6 (38).

Although several bioinformatics methodologies have been used to

investigate potential biomarkers for RA, there is limited literature

regarding the involvement of DLGAP5 in the pathophysiology of this

condition (39, 40). Previous investigations have examined the structure

and function of DLGAP5 across various species, considering both

physiological and clinicopathological perspectives. These studies have

revealed that DLGAP5 plays a crucial role in facilitating cell growth,

proliferation, and migration (41, 42). Therefore, this presents an

opportunity to investigate in further detail the potential of DLGAP5

in diagnosing and differentially diagnosing RA, as well as its role in the

pathophysiology of the disease.

KIF11 encodes amotor protein belonging to the kinesin-like protein

family, which is recognized for its involvement in diverse spindle

dynamics. The role of the gene product encompasses chromosome

positioning, centrosome separation, and the establishment of a bipolar

spindle during cell mitosis (43). However, there is limited literature on

the role of KIF11 in the RA joint microenvironment. Therefore, in this

study, KIF11 along with the two other hub genes performed a diagnosis

of RA with optimal sensitivity and specificity.

This study has several limitations. First, the dataset obtained

from the GEO database lacks comprehensive patient information,

including serological and imaging indicators. As a result, we were

unable to evaluate the correlation of biomarkers or immune cells

with clinical characteristics such as hematological indicators, degree

of joint destruction, and treatment status in patients with RA. More

detailed data are necessary for the further exploration of the clinical

significance of the biomarkers. Second, the biomarker discovery was

based on the GEO database. Despite the satisfactory performance of

our biomarkers in both test and validation datasets, additional in
TABLE 2 Top 10 small-molecule drugs for RA.

Term Overlap P-value Adjusted P-value Odds ratio Combined score Genes

LUCANTHONE CTD 00006227 3/213 1.19E-06 1.86E-04 59361 809723.5033 RRM2;KIF11;DLGAP5

0173570-0000 PC3 DOWN 2/43 1.35E-05 5.35E-04 973.4634146 10913.3726 KIF11;DLGAP5

Phytoestrogens CTD 00007437 2/48 1.69E-05 5.35E-04 867.4347826 9531.856143 RRM2;DLGAP5

Etoposide MCF7 DOWN 2/48 1.69E-05 5.35E-04 867.4347826 9531.856143 KIF11;DLGAP5

Methotrexate MCF7 DOWN 2/52 1.99E-05 5.35E-04 797.88 8638.620968 KIF11;DLGAP5

Piroxicam CTD 00006571 3/549 2.06E-05 5.35E-04 58353 629719.0634 RRM2;KIF11;DLGAP5

Troglitazone CTD 00002415 3/651 3.43E-05 7.65E-04 58047 596691.1364 RRM2;KIF11;DLGAP5

Apigenin MCF7 DOWN 2/87 5.60E-05 0.0010851 468.5176471 4587.228583 RRM2;KIF11

Pyrvinium MCF7 DOWN 2/92 6.26E-05 0.0010851 442.3777778 4281.648144 RRM2;KIF11

Resveratrol MCF7 DOWN 2/104 8.01E-05 0.001249052 390.0980392 3679.655006 KIF11;DLGAP5
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vitro and in vivo experiments are required to validate our findings

and determine the mechanisms underlying significant

immunological changes during RA.
5 Conclusion

Using LASSO, SVM-RFE, and RF algorithms in conjunction with

bioinformatic analyses, we identified a three-gene signature (RRM2,

DLGAP5, and KIF11) implicated in the progression of RA. Immune

infiltration analyses revealed that the identified hub genes exhibited

the strongest correlation with various T cells, B cells, NK cells, and

macrophages. To confirm our identification of diagnostic markers

with high sensitivity and specificity for RA, prospective large-sample

investigations with experimental validation should be conducted.
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19. Núñez E, Steyerberg EW, Núñez J. [Regression modeling strategies]. Rev Esp

Cardiol. (2011) 64:501–7. doi: 10.1016/j.recesp.2011.01.019
20. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, et al.

Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape
in human cancer. Immunity. (2013) 39:782–95. doi: 10.1016/j.immuni.2013.10.003
21. Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, et al.

GeneMANIA update 2018. Nucleic Acids Res. (2018) 46:W60–w64. doi: 10.1093/nar/
gky311
22. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al.

Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic
Acids Res. (2016) 44:W90–7. doi: 10.1093/nar/gkw377
23. Zhang R, Jin Y, Chang C, Xu L, Bian Y, Shen Y, et al. RNA-seq and network

analysis reveal unique chemokine activity signatures in the synovial tissue of patients
with rheumatoid arthritis. Front Med (Lausanne). (2022) 9:799440. doi: 10.3389/
fmed.2022.799440
24. Smolen JS. Insights into the treatment of rheumatoid arthritis: A paradigm in

medicine. J Autoimmun. (2020) 110:102425. doi: 10.1016/j.jaut.2020.102425

25. Wehmeyer C, Pap T, Buckley CD, Naylor AJ. The role of stromal cells in
inflammatory bone loss. Clin Exp Immunol. (2017) 189:1–11. doi: 10.1111/cei.12979

26. Ammari M, Presumey J, Ponsolles C, Roussignol G, Roubert C, Escriou V, et al.
Delivery of miR-146a to ly6C(high) monocytes inhibits pathogenic bone erosion in
inflammatory arthritis. Theranostics. (2018) 8:5972–85. doi: 10.7150/thno.29313

27. Misharin AV, Cuda CM, Saber R, Turner JD, Gierut AK, Haines GK, et al.
Nonclassical Ly6C(-) monocytes drive the development of inflammatory arthritis in
mice. Cell Rep. (2014) 9:591–604. doi: 10.1016/j.celrep.2014.09.032

28. Zhang F, Wei K, Slowikowski K, Fonseka CY, Rao DA, Kelly S, et al. Defining
inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating
single-cell transcriptomics and mass cytometry. Nat Immunol. (2019) 20:928–42.
doi: 10.1038/s41590-019-0378-1

29. Azizi G, Jadidi-Niaragh F, Mirshafiey A. Th17 Cells in Immunopathogenesis and
treatment of rheumatoid arthritis. Int J Rheum Dis. (2013) 16:243–53. doi: 10.1111/
1756-185x.12132

30. Prevosto C, Goodall JC, Hill Gaston JS. Cytokine secretion by pathogen
recognition receptor-stimulated dendritic cells in rheumatoid arthritis and
ankylosing spondylitis. J Rheumatol. (2012) 39:1918–28. doi: 10.3899/jrheum.120208

31. Yamada H, Nakashima Y, Okazaki K, Mawatari T, Fukushi JI, Kaibara N, et al.
Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis.
Ann Rheum Dis. (2008) 67:1299–304. doi: 10.1136/ard.2007.080341

32. Estrada-Capetillo L, Hernández-Castro B, Monsiváis-Urenda A, Alvarez-
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