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Background: Skin Cutaneous Melanoma (SKCM) incidence is continually

increasing, with chemotherapy and immunotherapy being among the most

common cancer treatment modalities. This study aims to identify novel

biomarkers for chemotherapy and immunotherapy response in SKCM and

explore their association with oxidative stress.

Methods: Utilizing TCGA-SKCM RNA-seq data, we employed Weighted Gene Co-

expression Network Analysis (WGCNA) and Protein-Protein Interaction (PPI)

networks to identify six core genes. Gene co-expression analysis and immune-

related analysis were conducted, and specific markers associated with oxidative

stress were identified using Gene Set Variation Analysis (GSVA). Single-cell analysis

revealed the expression patterns of Oxidative Stress-Associated Genes (OSAG) in the

tumor microenvironment. TIDE analysis was employed to explore the association

between immune therapy response and OSAG, while CIBERSORT was used to

analyze the tumor immune microenvironment. The BEST database demonstrated

the impact of the Oxidative Stress signaling pathway on chemotherapy drug

resistance. Immunohistochemical staining and ROC curve evaluation were

performed to assess the protein expression levels of core genes in SKCM and

normal samples, with survival analysis utilized to determine their diagnostic value.

Results:We identified six central genes associated with SKCMmetastasis, among

which the expression of DSC2 and DSC3 involved in the oxidative stress pathway

was closely related to immune cell infiltration. DSC2 influenced drug resistance

in SKMC patients. Furthermore, downregulation of DSC2 and DSC3 expression

enhanced the response of SKCM patients to immunotherapy.
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Conclusion: This study identified two Oxidative Stress-Associated genes as novel

biomarkers for SKCM. Additionally, targeting the oxidative stress pathway may serve

as a new strategy in clinical practice to enhance SKCM chemotherapy and sensitivity.
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1 Introduction

Melanoma originates from neuroectodermal melanin-

producing cells, known as SKCM, distributed across various

tissues, with predilection for skin and mucous membranes. The

rising incidence of melanoma is attributed to factors like UV

exposure, oxidative stress, DNA damage, and mutations,

culminating in its genesis (1). SKCM, characterized by its high

incidence, metastasis, and mortality rates, represents the most

invasive malignancy of skin melanocytes. Its poor prognosis

stems from early metastasis and challenging early-stage diagnosis

(2). Given its significant morbidity and economic burden, early

detection and stratification of novel biomarkers are imperative for

enhancing SKCM management.

Notably, various factors contribute significantly to SKCM

development, warranting the identification of biomarkers.

For instance, Wang et al. correlated SRGN expression with

SKCM and SKCM-metastasis patient survival (3). Zhang et al.

associated lower GBP2 expression with reduced immune cell

infiltration and poorer SKCM prognosis (4). Additionally, B cell

characteristics play pivotal prognostic (5, 6), and predictive roles in

SKCM, shaping its immunobiology and potential immunogenomics

features (7).

Oxidative stress, implicated in aging, inflammation, and

chronic diseases, results from the imbalance between reactive

oxygen and nitrogen species and a compromised antioxidant

defense system. Studies by Elena Piskounova et al. revealed

that oxidative stress inhibits distant metastasis in human

melanoma cells (8, 9). Moreover, oxidative stress is linked to

various cancers, with drugs like doxorubicin modulating oxidative

stress to improve survival (10). Intracellular oxidative stress

amplification is explored as a synergistic cascade cancer therapy

strategy (11). Recent research developed an oxidative stress-related

prognostic model for SKCM, offering new insights for melanoma

analysis (12).

Challenges in malignant melanoma diagnosis and treatment

include the development of primary or secondary drug resistance in

over half of patients, rendering existing treatments ineffective.

Addressing this necessitates identifying new molecular therapeutic

targets to enhance SKCM patient management. Thus, this article

aims to identify and evaluate novel potential biomarkers, offering

valuable insights for further exploration.
02
2 Materials and methods

2.1 Data collection and processing

Clinical specimens were provided by GuizhouMedical University

Affiliated Hospital (Guiyang, China), comprising 92 pairs of tumor

and adjacent samples (1-2 cm from tumor tissue). These samples

encompassed 24 trunk subtype samples and 68 other subtype

samples. Approval for this study was obtained from the Human

Characteristics Ethics Committee of Guizhou Medical University,

and the principles of the Helsinki Declaration were strictly followed.

Informed consent was also obtained from patients providing samples.

Transcriptomic data and related clinical information were

sourced from the TCGA database (https://portal.gdc.cancer.gov/

projects/TCGA-SKCM). The RNA-sequencing dataset encompasses

472 samples, including 78 samples from Trunk CutaneousMelanoma

(TCM) and 394 samples from other melanoma subtypes. A threshold

of 140, post-normalization, was applied to identify outliers using the

hierarchical clustering algorithm. The cut-off for FPKM was

established at 0.5 to exclude genes with low expression levels. A

threshold of 0.5 was set during gene selection. Following merge

and batch normalization, differential expression genes (DEGs) are

identified using ‘‘sva’’ R package (13–15). Moreover, DEGs

were discerned between tumor and normal tissues using a cut-off

value of |Log2 fold-change (FC)| > 0.5 and an adjusted P-value

< 0.05 (16).
2.2 Gene co-expression network
construction and identification of crucial
clinical modules

Genes were analyzed for the construction of a scale-free

network via the ‘‘WGCNA’’ methodology (17, 18). This

expression network, predicated on weighted gene co-expression

data, was established utilizing the top quartile of genes exhibiting

the highest variance. Initially, an expression data-derived similarity

matrix was generated to compute the absolute values of Pearson

correlation coefficients between gene pairs. Subsequently, this

similarity matrix was transformed into an adjacency matrix, with

the application of a soft threshold that accentuated strong

connections while diminishing the significance of weaker
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correlations within the matrix. This adjacency matrix was further

converted into a topological overlap matrix (TOM), designed to

more accurately depict the strength of relationships and the degree

of connectivity among genes within the dataset. Serving as a

measure for assessing network connectivity among genes, TOM

was employed as an input for hierarchical clustering analysis. The

‘‘DynamicTreeCut’’ algorithm, utilized within the ‘‘WGCNA’’ R

package, facilitated the identification of network modules (19).

Following module identification, gene significance (GS) was

evaluated, correlating these genes with other biological

information. The higher the GS value, the more substantial the

prognostic relevance for patients. Hence, an analysis employing

Pearson’s correlation coefficient was conducted to ascertain the

correlation between identified modules and clinical features,

including patient age and cancer stage. Through this approach,

‘‘WGCNA’’ aids in elucidating the connections between gene

expression patterns and clinical characteristics, offering vital

insights for the discovery of biomarkers and the formulation of

therapeutic strategies for disease management.
2.3 GO and KEGG enrichment

GO and KEGG enrichment analyses were conducted using

the R package ‘‘clusterProfiler’’ to explore pivotal modules, with

P < 0.05 defined as significant enrichment (20). These analyses

aimed at identifying potential signaling pathways, elucidating the

biological processes and pathways crucial in the occurrence and

progression of melanoma (21).
2.4 Construction of PPI network and gene
co-expression analysis

PPI network was constructed using the online STRING database

(https://string-db.org/). During network construction, disconnected

nodes were removed to ensure network connectivity. Subsequently,

the network graph of key modules was created using Cytoscape 3.72,

revealing crucial interactions by identifying the top 30 ranked genes.

Each node in the PPI network represents a protein encoded by a gene,

while edges depict interactions between two proteins. To explore the

potential of DSC2 and DSC3 as novel targets for regulatory

intervention, an analysis was conducted to identify genes that show

co-expression with these markers. This analysis highlighted twelve

genes exhibiting the highest co-expression coefficients with DSC2 and

DSC3. The findings, represented in a circular graph, underscore the

importance of further investigation into these associated genes,

suggesting they warrant closer scrutiny.
2.5 Survival analysis

Survival analysis was conducted using the ‘‘survival’’ and

‘‘survminer’’ packages in R language (22). Initially, patients were
Frontiers in Immunology 03
stratified into high and low expression groups based on the median

gene expression levels, and the association between these gene

expression levels and prognosis was determined using the Log-

rank test.
2.6 Single-cell analysis combined with
CIBERSORT examination of
immune infiltration

Subsequently, exploration of subpopulation clustering in SKCM

at the single-cell level was carried out utilizing the TISCH2 single-

cell database (23). Briefly, the ‘‘Seurat’’ package is employed for

scrutinizing scRNA-seq data of SKCM (18). Initially, following

the exclusion of cells expressing fewer than 250 or exceeding

6000 genes, a logarithmic normalization is performed on

gene expression. Subsequently, employing the functions

‘‘FindNeighbors’’ and ‘‘FindClusters’’, individual cells are

clustered into distinct subgroups. To further elucidate the roles of

DSC2 and DSC3 in immune infiltration, the ‘‘CIBERSORT’’

algorithm was employed to calculate immune infiltration scores

in each sample (24). Samples were dichotomized based on the

median gene expression levels, comparing the infiltration of various

types of immune cells between these two groups and assessing

DSC2 and DSC3 respectively. The correlation analysis between gene

expression and immune cell infiltration was visualized using the

‘‘ggplot2’’ package, including box plots and correlation scatter plots.

Finally, the correlation between genes and immune checkpoints was

analyzed using the ‘‘corrplot’’ package and visualized through heat

maps. Furthermore, specific gene associations with immune

checkpoint genes were evaluated.
2.7 Evaluation of immunotherapy response
and chemotherapy resistance

In recent years, immunotherapy has emerged as a promising

anti-tumor strategy (25), demonstrating favorable anti-tumor

effects in SKCM treatment. Hence, further investigation into the

role of oxidative stress-related genes in SKCM immunotherapy was

conducted. The association between immunotherapy response and

oxidative stress-related genes was explored using TIDE analysis.

Additionally, the BEST database illustrated the impact of oxidative

stress signaling pathways on chemotherapy drug resistance.

Immunohistochemical staining and ROC curve analysis were

employed to evaluate the protein expression levels of core genes

in SKCM and normal samples, and their diagnostic value was

determined through survival analysis (26).
2.8 Gene set variation analysis

GSVA is a non-parametric unsupervised analytical method

used to assess the enrichment of gene sets in transcriptome

data (27). The score of oxidative stress were determined by the
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‘‘ssGSEA’’ using ‘‘GSVA’’ R package, and the certain signatures that

respond to oxidative stress were obtained from database (http://

www.informatics.jax.org/vocab/gene_ontology/GO:0006979). This

method transforms gene expression data into an expression

matrix characterized by a specific set of genes (28). Besides,

Pearson correlation analysis was conducted to validate the

correlation between hub genes and oxidative stress scores.

Through this process, we could assess association between

screened genes and oxidative stress.
2.9 Immunohistochemistry experiment

In an ambient laboratory environment, tissues were subjected to a

4% Paraformaldehyde fixation process. Subsequently, these

specimens were encased within paraffin blocks and dissected into

sections of 4 µm in thickness. The process of removing paraffin was

conducted utilizing xylene at a temperature of 60°C, succeeded by a

graded rehydration sequence employing ethanol concentrations of

100%, 80%, 60%, and 40%. To inhibit the intrinsic peroxidase

reactions present in the samples, 3% H2O2 was utilized, while

sodium served the purpose of facilitating antigen retrieval.

Following a 16-hour incubation period at 4°C in a medium

containing 5% bovine serum albumin, the sections underwent a

further incubation with an array of primary antibodies (Santa Cruz,

CA, USA), specifically (DSC2; 1:200), (DSC3; 1:200), (DSG1; 1:200),

(KRT6B; 1:200), (PKP1; 1:200), and (PKP3; 1:400). Subsequent to

this, for a duration of 2 hours at an ambient temperature, the sections

were exposed to secondary antibodies targeted against mouse and

rabbit immunoglobulins. Visual documentation of the samples was

achieved using a high-resolution light microscopy technique,

employing magnification levels of x200 and x400. Following this, a

staining protocol involving 3,3’ diaminobenzidine and hematoxylin

was applied for a minute at ambient temperature. The evaluation of

the staining intensity for the genes of interest was performed, with

scores assigned as follows: 0 indicating no staining, 1 for weak

positivity, 2 for moderate positivity, and 3 for strong positivity,

facilitating the quantification of protein expression. The Image Pro

Plus software was employed to determine the scoring based on the

proportion of positively stained cells, with a scoring rubric of 0-2 for

low expression, 3-4 for moderate expression, and 5-6 denoting high

expression. P-value < 0.05 was interpreted as indicative of a

statistically significant variance.
2.10 Statistical analysis

All statistical analyses were conducted using packages in the R

programming language (version 3.6.3). Prior to statistical analysis,

normality tests were performed to determine the appropriate

statistical methods. Analysis of normal and non-normal data was

conducted using unpaired Student’s t-test and Wilcoxon test,

respectively (29). Pearson method was employed for correlation

analysis, with P < 0.05 considered statistically significant. * P < 0.05,

** P < 0.01, *** P < 0.001, **** P < 0.0001.
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3 Results

3.1 Construction of WGCNA co-
expression network

Upon downloading and integrating expression data along with

clinical data, no aberrant samples were identified through the sample

dendrogram, and most clinical features were documented (Figure 1A).

Subsequently, the WGCNA network was constructed using the gene

expression profile after filtering out low-expressed genes. TheWGCNA

algorithm was applied to construct co-expression networks and

modules for 472 samples from TCGA. We selected the top 25%

mutated genes from the TCGA-SKCM cohort and performed

clustering analysis using the ‘WGCNA’ R package. With a soft

threshold b set to 11, the scale independence of the topological

network exceeded 0.85, and the average connectivity approached 0

(Figures 1B, C). Therefore, setting the soft threshold to b=11 satisfied

the scale-free topology criterion, with R2 = 0.88 for the TOM

(Figure 1D). The dynamic tree cutting algorithm based on TOM was

employed to cluster all selected genes, resulting in the division of the

tree into 12 modules (Figure 1E), each labeled with distinct colors.
3.2 Identification of key modules and
central genes associated with
clinical features

Subsequently, we summarized the co-expression of feature

genes and calculated the correlation between feature genes and

clinical characteristics. Pathological diagnosis typically includes

information on pathological stages M, N, and T at the time of

diagnosis. Each module consists of distinct gene clusters, marked in

an overlapping heatmap with different colors; red indicating

positive correlation and green indicating negative correlation

(Figure 2A). Among the co-expression modules and features we

analyzed, we observed that the yellow module is most closely related

to pathological stage M (R=0.43, P=1e-04); additionally, this

module is positively correlated with age (R=0.25, P < 0.05)

(Figure 2B). Therefore, we consider the yellow module containing

520 genes as a critical gene module and employ it for further

analysis (Figure 2C).
3.3 Analysis of KEGG pathways and
GO enrichment

To elucidate the functional mechanisms of the yellow module, we

conducted enrichment analyses of GO terms and KEGG pathways. In

this study, we initially examined biological processes (BP), molecular

functions (MF), and cellular components (CC) to identify the most

enriched GO pathways. The results revealed that, in terms of

biological processes, these genes are primarily involved in

epidermal development, keratinocyte differentiation, and

keratinization processes. Regarding cellular components, the main

enrichment was observed in cornified envelope, extracellular region,
frontiersin.org
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B C D

E

A

FIGURE 1

Analysis of SKCM weighted gene co-expression networks by WGCNA. (A) Dendrogram illustrating samples of SKCM along with clinical patient
characteristics. (B) Evaluation of scale independence fit indexes through soft thresholding power analysis. (C) Soft thresholding power analysis
depicting mean connectivity. (D) Demonstration of topology with scale-free scaling at b=11. (E) Identification of 12 gene co-expression modules
utilizing a dissimilarity measure.
B CA

FIGURE 2

Relationship between modules and traits. (A, B) Correlation between modules and age, M state, N state, and T state. (C) Comparison of module
membership and gene significance highlighted in yellow.
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and extracellular region part. Molecular function analysis indicated

that these genes are predominantly enriched in epidermal structural

components (Figure 3A). Subsequently, based on the enrichment

results of KEGG pathways, we identified pathways closely associated

with tumorigenesis, including central carbon metabolism, cell

adhesion molecules, junctional protein binding, and melanogenesis,

providing important clues for understanding the functional

mechanisms of genes within the yellow module (Figures 3B, C).
3.4 Relationship between central genes
and oxidative stress characteristics

To explore the interrelations among genes and identify central

genes, an initial analysis was conducted on genes within the yellow

module, followed by visualization using STRING. After eliminating

unconnected nodes, a PPI network was obtained (Figure 4A).

Subsequently, employing ‘Cytoscape’, topological parameters for

all nodes were computed, and the six highest-ranking node genes

were identified as pivotal for subsequent analyses (Figure 4B). To

investigate the association between central genes (DSC2, DSC3,

DSG1, KRT6B, PKP1, and PKP3) and the response to oxidative

stress, we employed GSVA to compute the oxidative stress scores

for each sample. Pearson correlation analysis revealed a significant

correlation between oxidative stress scores and DSC2 (R=0.45; P <

0.001) as well as DSC3 (R=0.094; P < 0.05), whereas other genes

showed no involvement in the oxidative stress response (Figure 4C).
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This underscores the need for further exploration into the

relationship between oxidative stress and DSC2, DSC3.
3.5 Gene co-expression analysis and
survival analysis

Through correlation analysis, we identified a set of 12 genes

highly correlated with both DSC2 and DSC3, and delved into the

interrelationships among them. Circular diagrams were presented

for DSC2 (Figure 4D) and DSC3 (Figure 4E) separately to illustrate

their associations. KM survival analysis was conducted on these

selected central genes, revealing a significant association with the

prognosis of SKCM patients (P < 0.05). As the expression levels of

DSC2, DSC3, DSG1, KRT6B, PKP1, and PKP3 increased, the

overall survival time of trunk subtype melanoma patients

significantly decreased (Figure 5).
3.6 Immune infiltration

Immunohistochemical analysis revealed heightened infiltration

levels of NK cells, with significant differences observed between

groups with varying DSC2 expression levels. Likewise, significant

disparities in dendritic cell activation and infiltration were evident

between the two DSC3 expression level groups (Figure 6A).

Furthermore, a positive correlation was identified between DSC2
B

C

A

FIGURE 3

Exploration of KEGG and GO pathways. (A) GO analysis of core genes within modules. (B, C) KEGG pathway analysis of core genes within modules.
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expression and activation of CD4 memory T cells, dendritic cells,

mast cells, and neutrophil infiltration. Conversely, DSC2 expression

exhibited a negative correlation with regulatory T cells and activated

NK cell infiltration (Figure 6B). Additionally, DSC3 expression

showed a positive correlation with dendritic cell activation and

neutrophil infiltration. Figure 6C depicts the association between

DSC2 and DSC3 and highly correlated immune checkpoint genes.
Frontiers in Immunology 07
3.7 Analysis of GSVA

Subsequently, we compared the functional pathways associated

with different oxidative stress scores in melanoma. Utilizing GSVA,

we assessed the oxidative stress-related signaling pathways in

melanoma and further explored them based on KEGG and GO

datasets. Enriched genes, signaling pathways, and functions were
B

C

D E

A

FIGURE 4

Identification of hub genes in melanoma. (A) Construction of a protein-protein interaction network using modules containing core genes.
(B) Recognition of top 6 node genes (DSC2, DSC3, DSG1, KRT6B, PKP1, PKP3) as key genes for further analysis. (C) Investigation into the relationship
between gene expression and oxidative stress in SKCM patients. (D) Discovery of 12 genes predominantly correlated with DCS2 and the
interconnectedness among them. (E) Examination of correlation with DCS3 and the interconnectedness among these genes.
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highlighted using heatmap plots. In the KEGG analysis, we

investigated the top 20 associated signaling pathways such as the

MAPK signaling pathway, JAK STAT signaling pathway

(Figure 7A). Additionally, GO analysis revealed significant

differential functional pathways between the two oxidative stress

groups, presenting the top 20 signals in Figure 7B, including muscle

cell proliferation, growth factor receptor binding.
3.8 Single-cell analysis reveals the
expression patterns of oxidative stress in
subpopulations of SKMC cells

We identified a close association between DSC2 and DSC3 with

oxidative stress processes. Further investigation demonstrated a

positive correlation between the expression of DSC2 and DSC3 and

the infiltration of activated dendritic cells and neutrophils, while

showing a negative correlation with memory B cells (Figures 8A, B).

Subsequently, we delved deeper into the expression patterns of DSC2

and DSC3 at the single-cell level (Figure 8C). Remarkably, the average

expression level of DSC2 was highest in monocytes, followed by pDCs

(Figures 8D, E). Interestingly, DSC3 was predominantly enriched in

NK cells, CD8 T cells, and CD4 T cells (Figures 8F, G), indicating

distinct spatial distributions of these two oxidative stress molecules.
3.9 Impact of DSC2 on immunotherapy
response and chemotherapy resistance

Immunotherapy, as a prominently featured anticancer strategy

in recent years, has demonstrated significant efficacy in the

treatment of SKCM. However, some patients exhibit insensitivity
Frontiers in Immunology 08
or even develop resistance to immunotherapy. Thus, we further

investigated the role of oxidative stress-related genes in SKCM

immunotherapy. It was observed that patients with high expression

levels of DSC2 and DSC3 were more sensitive to immunotherapy

(Figures 9A, B), possibly due to infiltration by macrophages and

CD8 T cells (Figures 9C, D). Additionally, DSC2 could serve as an

effective predictive biomarker for immunotherapy response in

SKCM patients (Figure 10A). Intriguingly, SKCM patients with

high expression of DSC2 exhibited poorer prognosis following

Anti-PD-1/PD-L1 therapy compared to those with lower DSC2

expression (Figure 10B), which may be attributed to the pro-

tumorigenic characteristics of DSC2. Furthermore, chemotherapy,

as a crucial component of anticancer therapy, often fails ultimately

due to the development of resistance. Therefore, we further

investigated the expression of DSC2 in drug resistance. Results

indicated that SKCM patients with high expression of DSC2 were

more prone to developing resistance to Apitolisib, Motesanib, and

Amuvatinib (Figure 11), suggesting DSC2 as one of the targeted

strategies to enhance chemotherapy sensitivity.
3.10 Immunohistochemistry reveals distinct
expression patterns of core proteins across
trunk subtypes

Given the lack of expression profiles for adjacent normal tissues

within the TCGA-SKCM cohort, a total of 92 SKCM samples were

obtained, comprising both tumor and adjacent normal tissues.

Differential expression analysis of these core proteins was

subsequently performed through immunohistochemistry

experiments (Figures 12A, 13A). The results indicate that in trunk

subtype melanomas, the protein expression levels of DSC2, DSC3,
FIGURE 5

Kaplan-Meier survival plot.
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DSG1, KRT6B, PKP1, and PKP3 are significantly higher than those in

adjacent normal samples (Figures 12B, C), suggesting the crucial roles

of these central genes in SKCM progression. However, in other

subtype melanoma patients, only DSG1 and PKP1 exhibit

significantly elevated protein expression levels compared to

adjacent normal samples, with no observed differences in other

genes between tumor and adjacent normal samples (Figures 13B, C).
4 Discussion

SKCM continues to challenge oncology, with its heterogeneity

in clinicopathological and cytological features complicating
Frontiers in Immunology 09
prognosis and treatment (30). Recent advancements have

highlighted the role of oxidative stress in melanoma progression,

metastasis, and resistance to therapy (31). This study leveraged

high-throughput data to unravel the complex interplay between hub

genes, oxidative stress, and the immune landscape in SKCM,

offering novel insights into its pathogenesis and potential

therapeutic targets.

Our analysis, grounded in WGCNA and PPI networks,

identified six genes (DSC2, DSC3, DSG1, KRT6B, PKP1, PKP3)

with pivotal roles in melanoma’s oxidative stress response and

immune infiltration (32, 33). Particularly, DSC2 and DSC3’s

association with oxidative stress underscores their potential as

biomarkers for SKCM prognosis and therapy response (34). The
B

C

A

FIGURE 6

Correlation analysis. (A) Assessment of immune infiltration levels based on DSC2 and DSC3 expression groups. (B) Evaluation of immune relationship
levels within DSC2 and DSC3 expression groups. (C) Examination of associations between DSC2, DSC3, and highly correlated immune checkpoint
genes. *P < 0.05, **P < 0.01.
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B
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FIGURE 7

GSVA analysis. (A) GSVA depicting the relationship between oxidative stress and KEGG pathways. (B) GSVA illustrating the relationship between
oxidative stress and GO pathways.
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C

D E

F G

A

FIGURE 8

Expression patterns of oxidative stress pathways in single-cell subtypes. (A, B) Correlation between DSC2, DSC3, and immune cell infiltration.
(C) Subtypes of single cells in SKCM patients. (D, E) Expression patterns of DSC2 and DSC3 in subtypes of SKCM patient cells. (F, G) Expression
patterns of DSC3 in subtypes of SKCM patient cells.
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significant variation in their expression between melanoma

subtypes and adjacent normal tissues suggests these genes

influence melanoma development, possibly by modulating cell

adhesion pathways crucial for tumor metastasis. SKCM can occur

on various parts of the human body, indicating potential significant

heterogeneity among them. Emi et al., using “anatomical location”

as a variable, classified melanoma patients into three categories:

limbs, trunk, and head/neck. They discovered that melanomas at

different anatomical locations possess distinct risk factors (35).

Epidemiological studies have shown that most melanomas are
Frontiers in Immunology 11
located on the lower limbs, followed by the trunk, with

melanomas of the head and neck and those with unspecified

anatomical locations having the poorest survival rates (36). Trunk

SKCMs tend to have less sun exposure compared to facial SKCMs,

and studies have confirmed that anti-PD-1 immunotherapy is

particularly recommended for melanomas originating from areas

of chronic sun exposure (37). This underscores the necessity of

conducting separate research on trunk-SKCM and non-trunk

SKCM. Our findings indicate that trunk-SKCMs, compared to

normal tissue, exhibit higher activation of oxidative stress
B

C

A

D

FIGURE 9

Immune response and infiltration landscape. (A, B) Expression levels of oxidative stress pathway genes in immune therapy responders and non-
responders among SKCM patients. (C, D) Landscape of immune infiltration in SKCM patients with differential expression of oxidative stress pathway
genes. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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pathways, such as DSC2 and DSC3. Conversely, these differences

are not significantly observed in other subtypes of SKCM.

In the progression and onset of cancer, the immune system

assumes a pivotal role (38, 39), rendering immunotherapy research a

promising therapeutic avenue (40, 41). Immune infiltration analysis

revealed a significant correlation between the expression levels of

DSC2, DSC3, and the infiltration of various immune cells,

highlighting the intricate relationship between the tumor

microenvironment and melanoma progression (42). High DSC2

expression correlated with increased infiltration of CD4 memory
Frontiers in Immunology 12
activated T cells, dendritic cells, mast cells, and neutrophils, while

negatively correlating with regulatory T cells and activated NK cells.

Similar to our study, Li et al. found that the proportion of CD4+

memory-activated T cells is higher in metastatic melanoma. These T

cells may become exhausted due to excessive activation, exhibiting

tumor immune suppression (17, 43). Early infiltration of mast cells is

found in various human and animal tumors, particularly malignant

melanoma (44). Within the tumor, mast cells interact with

infiltrating immune cells, tumor cells, and ECM through direct

cell-cell interactions or by releasing various mediators capable of
B

A

FIGURE 10

Reliability of immune response prediction. (A) ROC curve demonstrating the predictive performance of oxidative stress pathway genes for immune
therapy response. (B) Survival analysis of SKCM patients receiving immune therapy.
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reshaping the TME (44, 45). Mast cells can facilitate tumor

angiogenesis and tumor cell proliferation by releasing pro-

angiogenic and pro-tumorigenic factors (46–48). Similarly, DSC3’s

expression positively correlated with dendritic cells and neutrophil

infiltration (49, 50). Neutrophils play a crucial role in tumor

development by promoting tumor cell proliferation, invasion, and

metastasis (51, 52). These findings suggest that DSC2 and DSC3 not

only contribute to the oxidative stress response but also play a

central role in modulating the immune landscape of SKCM.

A multitude of variables exert influence on the progression of

tumors (53–56), encompassing proliferation, metastasis (57), and

resistance to treatment (58). The role of oxidative stress in tumor

immune infiltration represents a focal point of contemporary

research interest (59). Excessive oxidative stress can detrimentally

impact the immune system. For instance, elevated levels of oxidative

stress may precipitate apoptosis or impair functionality in immune

cells, thereby diminishing the efficacy of immune infiltration (60–
Frontiers in Immunology 13
62). Moreover, oxidative stress may facilitate the proliferation and

functional enhancement of immune suppressive cells within the

tumor microenvironment, such as TAMs, further inhibiting the

immune cells’ action against tumors (63, 64). Currently,

immunotherapy is recognized as an effective treatment strategy

for various cancers (65). Yu et al. have delineated the interactions

between oxidative stress and the TME suggesting the potential of

oxidative stress to augment immunotherapy (66). Our findings

indicate that high expression of DSC2 and DSC3 is indicative of

an improved immune response (Figures 9A, B). However, this is

inversely related to survival in patients undergoing anti-PD-1/PD-

L1 therapy, while positively correlated with survival benefits in

patients treated with anti-CTLA-4 therapy (Figure 10B). This

suggests that the oxidative stress pathway may influence the

expression patterns of CTLA-4.

Moreover, our study delves into the impact of these genes on

drug resistance and response to immunotherapy (67, 68). The
FIGURE 11

Prediction of drug resistance in subgroups of SKCM patients.
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FIGURE 12

Expression patterns of core proteins in trunk-subtype. (A) Heatmap illustrating expression patterns. (B, C) Immunohistochemistry confirming high
expression of DSC2, DSC3, DSG1, KRT6B, PKP1, and PKP3 in trunk-subtype SKCM. **P < 0.01.
B

C

A

FIGURE 13

Expression patterns of core proteins in other-subtype. (A) Heatmap depicting expression patterns. (B, C) Immunohistochemistry confirming the
expression of DSC2, DSC3, DSG1 in other-subtype SKCM. *P < 0.05, **P < 0.01.
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expression of DSC2, in particular, was found to influence SKCM

patients’ sensitivity to immunotherapy and chemotherapy drugs,

pointing toward its potential as a predictive biomarker for

treatment response (69). This is critical, considering the

increasing application of immunotherapy in SKCM treatment and

the challenge of overcoming drug resistance. It is worth noting that

Sven et al. found that knockdown of DSC2 in mice resulted in

damaged colonic mucosal repair, which was associated with

decreased levels of integrins b1 and b4 (70, 71). Additionally,

Vite et al. observed that low expression of DSC2 was associated

with ventricular developmental abnormalities (72). Therefore, in

future studies targeting DSC2 for the treatment of SKCM, it is

necessary to consider its role in protecting myocardium and

intestinal mucosa function.

However, this study is not without limitations. The reliance on

TCGA data, with its scarce normal samples, introduces potential

biases (73), and the six hub genes identified may not cover all genes

associated with SKCM survival (74). Furthermore, our conclusions

are primarily drawn from bioinformatic analyses and require

validation through experimental studies and prospective cohorts

to confirm these genes’ roles in SKCM pathogenesis and their

therapeutic potential.

In conclusion, this investigation enriches our understanding of

melanoma’s molecular underpinnings, emphasizing the significance

of oxidative stress and immune infiltration in its progression. The

identified hub genes offer promising directions for future research

into targeted therapies for SKCM, aiming to improve patient

prognosis and combat resistance to existing treatments. Further

experimental validation and clinical trials are essential to translate

these findings into clinical applications, potentially revolutionizing

melanoma treatment strategies.
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