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CD4+CD25+Foxp3+ regulatory T cells (Tregs), a vital component of the immune

system, are responsible for maintaining immune homeostasis and preventing

excessive immune responses. This review explores the signaling pathways of the

cytokines that regulate Treg cells, including transforming growth factor beta (TGF-

b), interleukin (IL)-2, IL-10, and IL-35, which foster the differentiation and enhance

the immunosuppressive capabilities of Tregs. It also examines how, conversely,

signals mediated by IL-6 and tumor necrosis factor -alpha (TNF-a) can undermine

Treg suppressive functions or even drive their reprogramming into effector T cells.

The B7 family comprises indispensable co-stimulators for T cell activation. Among

its members, this review focuses on the capacity of CTLA-4 and PD-1 to regulate

the differentiation, function, and survival of Tregs. As Tregs play an essential role in

maintaining immune homeostasis, their dysfunction contributes to the

pathogenesis of autoimmune diseases. This review delves into the potential of

employing Treg-based immunotherapy for the treatment of autoimmune diseases,

transplant rejection, and cancer. By shedding light on these topics, this article aims

to enhance our understanding of the regulation of Tregs by cytokines and their

therapeutic potential for various pathological conditions.
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1 Introduction

CD4+CD25+Foxp3+ regulatory T cells (Tregs) are immunoregulatory cells that express

the master transcription factor forkhead box protein 3 (Foxp3) (1). Tregs exhibit persistent

and high expression of the interleukin (IL)-2 receptor alpha chain or CD25, as IL-2 is

crucial for their survival and proper functioning (2). Tregs refer to those T cell subsets that

can regulate or suppress the overreaction of the immune system. Although Tregs account

for only 3–10% of the peripheral CD4+ T cell population, they are crucial for maintaining

immune tolerance by suppressing the activation, proliferation, and function of effector

immune cells. They secrete anti-inflammatory cytokines such as IL-10, IL-35, and

transforming growth factor beta (TGF-b) to inhibit immune cells in a contact-
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independent manner (3, 4). Additionally, Tregs possess a high level

of CD25 surface expression, which leads to the consumption of IL-2

in the surrounding environment. This consumption helps restrict

the proliferation and activation of effector T cells (Teffs) (5).

Tregs also suppress immune cells through contact-dependent

mechanisms involving co-stimulatory molecules, such as cytotoxic

T lymphocyte–associated protein 4 (CTLA-4), programmed cell

death protein 1 (PD-1), and programmed death ligand 1 (PD-L1)

(6–10). Through these regulatory mechanisms, Tregs play a crucial

role in inhibiting the activity of immune cells, ensuring the balance

of the immune system, and preventing the occurrence of excessive

immune responses and the development of autoimmune diseases

(11, 12).

Tregs can be classified based on their developmental origins

(13). Thymus-derived Tregs (tTregs) develop in the thymus, while

a small proportion of Tregs is derived from conventional T cells

(Tconvs) or peripherally derived Tregs (pTregs) and matures

under specific conditions, such as exposure to microbial

antigens in the intestinal mucosa (14). In the presence of

specific cytokines (i.e., TGF-b and IL-2), antigen stimulation in

vitro can induce the expression of Foxp3 in Tconvs, which exhibit

phenotypic and functional characteristics similar to those of

tTregs and pTregs and are called inducible Tregs (iTregs) (15).

Subsets of Tregs in peripheral blood exhibit T helper–like

characteristics, meaning they share chemokine receptor and

transcription factor expression with T helper cells (16).

Examples include Th1-Tregs (CXCR3+ T-BET+ Foxp3+ Tregs)

and Th2-Tregs (CCR8+ GATA3+ Foxp3+ Tregs) (17). Another

type of T helper–like Treg cell is the follicular regulatory T (Tfr)

cell, which suppresses follicular helper T (Tfh) cells. Tfr

cells play a critical role in germinal center reactions and

antibody production, and defects in Tfr cells lead to antibody

accumulation and the occurrence of widespread autoimmune

diseases (18–20). These Treg subsets are summarized in Table 1.

The complex interactions among T cell subsets are characterized

by diverse functional dynamics. Both iTregs and pTregs typically

differentiate from Tconvs, a step critical for peripheral tolerance. It is

essential to distinguish tTregs from pTregs and iTregs as they display

distinct roles in maintaining central tolerance. The transcription

factor Helios has been identified as a biomarker for stable tTregs

(32). Additionally, research has uncovered specialized subsets of

Tregs, such as Th1-Tregs and Th2-Tregs, each characterized by

distinct functions tailored to modulate Th1 and Th2 responses,

respectively (33, 34). Indeed, the Treg compartment exhibits a

degree of plasticity that enables Tregs to modulate their suppressive

functions according to the surrounding microenvironment. For

example, interferon gamma (IFN-g) or IL-27 induce Th1-Tregs

with expression of Th1-related molecules, namely chemokine (C-X-

C motif) receptor 3 (CXCR3) and T-box gene expressed in T cells (T-

bet) (35), which can migrate to sites of Th1 inflammation and

suppress Th1 cells effectively (36). Th2-specific Tregs are tailored to

suppress Th2 responses, which are associated with allergic

inflammation and characterized by Th2 cytokines like IL-4, IL-5,

and IL-13, as well as GATA binding protein 3(GATA3) (37, 38).

The development and function of Tregs are heavily reliant on

cytokines and co-stimulatory molecules. Exploring their regulatory
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mechanisms in Tregs is essential for gaining a deeper understanding

of immune regulation, the development of related diseases, and the

potential for new immunotherapeutic approaches. This review

focuses on the role of these signaling pathways in Tregs and their

potential implications for future therapeutic strategies.
2 Treg-promoting cytokines

2.1 TGF-b

TGF-b is a multifunctional cytokine produced by macrophages

and T cells that plays a critical role in immune regulation. TGF-b
exerts its immunoregulatory effects primarily by modulating the

development and function of T cell subsets (39). TGF-b induces the

expression of Foxp3, a key transcription factor for Tregs, by

activating the suppressor of mothers against decapentaplegic

(SMAD) signaling pathway (40). This promotes the generation of

Tregs, which suppress inflammation and prevent autoimmune

reactions. Members of the TGF-b family cooperate with receptors

as ligands to form receptor complexes and activate receptor-

regulated SMAD (R-SMAD), which cooperates with common

mediator SMAD (Co-SMAD) to enter the nucleus. By identifying

different SMAD-binding proteins and forming complexes, the

specific expression of various target genes is regulated, and

multiple biological effects of TGF-b ultimately occur (41). The

SMAD family of proteins is the first set of signaling molecules

involved in TGF-b signal transduction (40), and this signaling is

tightly regulated by inhibitory SMAD (I-SMAD i.e., SMAD6 and

SMAD7). The N-terminal domains of SMAD6 and SMAD7 share

only 37% homology, while chimeras containing the SMAD7 N-

terminal domain and SMAD6 MH2 domain inhibit TGF-b
signaling pathways in the same manner as SMAD7 (42). SMAD6

is biased to inhibit signaling pathways induced by the BMP type I

receptors ALK-3 and ALK-6. SMAD6−/− mice can develop a variety

of cardiovascular diseases (43). SMAD7 inhibits the formation of

SMAD complexes and prevents the phosphorylation of SMAD2

and SMAD3, thereby interrupting the signaling cascade and

influencing TGF-b signaling and Treg induction (Figure 1) (44).

TGF-b also plays an important regulatory role in the balance

between Treg and Th17 cell differentiation (45). Endogenous TGF-
TABLE 1 Treg subtypes and their specific markers and characteristics.

Treg Subtype Origin Main Markers

pTregs (21, 22) Peripheral GATA3, IRF4, RORC, TBX21, HELIOS

tTregs (21, 23) Thymus CCR7, CD45RA, CD31, SELL, NRP1

iTregs (21, 24, 25) Peripheral Treg-specific demethylated region (TSDR)

Th1-Tregs (26) Peripheral CXCR, Tbet

Th2-Tregs (27, 28) Peripheral
IL-4, IL-13, IRF4

CCR6-, CXCR3-, CCR4, GATA3

Tr1 (29, 30) Peripheral IL-10, CD49b, Lag3, Foxp3-

Tr35 (31) Peripheral IL-35, Foxp3-
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b, along with inflammatory mediators such as IL-6, IL-21, and IL-

23, inhibits Foxp3 expression and initiates the differentiation

pathway of retinoic acid receptor–related orphan receptor

gamma-t (RORgt)–mediated Th17 cells (46). As IL-6 levels

decrease during the late phase of inflammation, TGF-b alone

promotes the expression of Foxp3 for Treg differentiation and

suppresses RORgt to limit Th17 cells, thus maintaining Treg

function and controlling the effector cell response for the

termination of the immune response (47, 48). Within the cell, the

TGF-b/SMAD signaling pathway promotes the expression of

Foxp3. SMAD3 can cooperate with nuclear factor of activated T

cells (NFAT) to enhance histone acetylation in the Foxp3 enhancer

region, thereby inducing Foxp3 transcription (49). Compared to

controls, SMAD3−/− mice exhibit a significant reduction in the

quantity of Foxp3 induced by TGF-b (50).

The combination of TGF-b and the immunosuppressant

rapamycin can significantly promote the proliferation of Tregs,

indicating that rapamycin relies largely on TGF-b to exert its

immunosuppressive effect (51). Rapamycin is a 32-ring azotriene-

containing macrolide that inhibits immunity by inhibiting IL-2

signal transduction by blocking mTOR which is important in IL-2

receptor signaling (52). The IL-2 receptor signaling also leads to the

activation of the PI3K/Akt pathway. Akt then activates mTOR by

inhibiting the tuberous sclerosis complex (TSC1/TSC2), which

normally suppresses mTOR activity. The rapamycin the FK506-

binding protein 12 (FKBP12) complex binds to mechanistic target

of rapamycin complex1 (mTORC1), inhibits the mammalian

target protein of rapamycin (mTOR) pathway, and induces

immunosuppression (53). By inhibiting mTORC1, rapamycin

effectively blocks the downstream effects of mTOR activation,

including protein synthesis and cell cycle progression, which are
Frontiers in Immunology 03
necessary for T cell proliferation. High-dose rapamycin can

promote the proliferation of Tregs by inhibiting the mTOR

signaling pathway, thereby significantly inhibiting the progression

of experimental autoimmune encephalomyelitis (EAE) in a model

and eventually mitigating the incidence and EAE clinical scores of

each stage (early onset, peak, and remission) (54).

Many preclinical studies have shown that blocking TGF-b
signaling is an effective anti-tumor treatment that can reduce

Treg-mediated immunosuppression, increase CD8+ T cell

cytotoxicity, promote T cell penetration into the center of the

tumor, and thus contribute to strong anti-tumor immunity and

tumor regression (55). TGF-b suppresses the immune system by

modulating the function of immune cell classes in the tumor

microenvironment (TME) (56, 57).
2.2 IL-2

IL-2 is a cytokine mainly produced by activated CD4+ T cells,

particularly Th1 subsets (58). In the thymus and peripheral lymphoid

organs, IL-2 signaling promotes the differentiation and development

of Tregs by binding to the high-affinity IL-2 receptor (IL-2R), which

is a heterotrimer consisting of the IL-2R(a/b/g) subunits. This leads
to an increase in Foxp3 gene expression in T cells, promoting the

differentiation of Foxp3+ Tregs (59). Upon IL-2 binding to its

receptor, the receptor-associated JAKs, specifically JAK1 and JAK3,

are activated. JAK1 is associated with the IL-2Rb chain, and JAK3 is

closely linked with the IL-2Rg chain (60). The activation of JAK

kinases is initiated by their phosphorylation, which subsequently

enables them to phosphorylate IL-2Rb and other downstream

signaling molecules. This phosphorylation creates docking sites for
FIGURE 1

Six cytokines that promote Tregs. The TNF-a, TGF-b, IL-6, IL-35, IL-10, and IL-2 pathways can influence their respective receptors to varying
degrees, thereby activating different signaling pathways and ultimately upregulating the transcription levels of Foxp3, resulting in increases in the
number and stability of Tregs. Among them, there are gene loci that represent the corresponding signaling pathways and functions of different
cytokines. Solid lines indicate pathways that have been functionally analysed, while dashed lines represent the effect on the Foxp3 gene without
specific key loci identified. JAK, Janus-family tyrosine kinase; CNS, non-coding sequence; TYK2, tyrosine kinase 2. Arrows represent signal path
direction, dashed lines represent ambiguity, and horizontal lines represent suppression.
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signaling molecules containing SH2 domains. Specifically, STAT5 is

attracted to the phosphorylated IL-2Rb chain. Within the STAT5

family, there are two distinct proteins, STAT5A and STAT5B, both of

which undergo phosphorylation by the action of JAK kinases (61).

Once phosphorylated, STAT5 proteins form homodimers or

heterodimers, dissociate from the receptor, and translocate to the

nucleus where they bind to specific DNA elements and promote the

transcription of target genes (62). Previous studies have revealed that

IL-2 signaling activates STAT5 and promotes Foxp3 expression by

binding to the intronic enhancer element within conserved non-

coding sequence 2 (CNS2) of the Foxp3 gene cluster (Figure 1) (63).

This process is essential for maintaining Foxp3 expression in mature

Treg cells. Phosphatase 2A (PP2A) is a negative regulator of IL-2

production in Teffs (64) and prevents IL-2Rb from being clipped

from the cell surface by restricting the activity of ADAM

metallopeptidase domain 10 (ADAM10) in Tregs, thereby

achieving effective IL-2R signaling and ultimately affecting Tregs (65).

IL-2 and IL-2/anti–IL-2 mAb immunocomplexes have been

shown to have therapeutic efficacy against autoimmune diseases in

preclinical studies via Treg promotions. The complex of IL-2/JES6

(IL-2 and JES6–1 mAb) can selectively expand Tregs for

the suppression of autoimmune diseases in EAE (66). With

increasing research on the immune regulatory mechanism of low-

dose IL-2, IL-2 has gained attention as a potential treatment for

various immunological diseases, such as graft-versus-host disease

(GvHD) (67), hepatitis C–related vasculitis (68), and type 1 diabetes

(69). Low-dose IL-2 promotes a balance between Treg and Th17

cells in patients with Sjögren’s syndrome (SS), a condition

characterized by dryness (70). In patients with inflammatory

myopathy who received 500,000 IU of IL-2 therapy for 5 days,

Treg cell numbers significantly increased, while erythrocyte

sedimentation rates, muscle enzyme levels, and pain scores

significantly decreased (71). Recent clinical studies have shown

that low-dose IL-2 is safe and effective against 11 autoimmune

diseases, including rheumatoid arthritis (RA) and ankylosing

spondylitis (72). Overall, the IL-2 signaling pathway moderates

the role of Tregs in immune regulation and self-tolerance by

affecting their development, proliferation, survival, and function.
2.3 IL-10

IL-10 is produced by macrophages, monocytes, and T cells and

is considered a Th2 cytokine and an anti-inflammatory cytokine.

IL-10 signaling requires the presence of cell surface–expressed IL-10

receptors (IL-10R) (73). IL-10 induces STAT3 signaling by

phosphorylating the cytoplasmic tails of IL-10R1 and IL-10R2

through Janus-family tyrosine kinase 1 (JAK1) and non-receptor

tyrosine-protein kinase (Tyk2), respectively (74). IL-10−/− mice

exhibit more severe inflammatory damage, as IL-10 can regulate

the function of Tregs through the activation of STAT3, and the lack

of IL-10 leads to a significant decrease in STAT3 phosphorylation in

microglia. Although the IL-10 promoter lacks binding sites for

Foxp3, it does contain binding sites for STAT3, suggesting that

Foxp3 may modulate IL-10 expression indirectly through STAT3

signaling. Indeed, Foxp3 is involved in the transcriptional activation
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of IL-10 by acetylating STAT3 through histone acetyltransferases

(HATs), forming the most important connection between IL-10

and Foxp3 (Figure 1) (75). Although IL-10 signaling is not required

for the induction of Tregs, it is required for Tregs to mediate their

suppressive function. For example, IL-10R is indispensable for

Tregs to suppress the autoreactive Th17 response (PMID:

21511185). IL-10 may auto-regulate its expression through a

negative feedback loop, which involves the autocrine stimulation

of IL-10R and inhibition of the p38 signaling pathway (76).

Additionally, IL-10 expression is widely regulated at the post-

transcriptional level, possibly involving AU-rich element (77), let-

7 (78), or miR-106 (79). Under normal conditions, human iTreg

cells produce low levels of IL-10. Inhibiting glycogen synthase

kinase-3 (GSK3) can significantly upregulate IL-10 expression in

Tregs and promote the generation of IL-10+ Foxp3+ iTreg cells (80).

IL-10 is predominantly secreted by type 1 regulatory T cells (Tr1

cells). Tr1 cells are typically induced from naïve T cells in the

periphery, their differentiation can be driven by several factors,

including IL-10, IL-27, and TGF-b (81). The transcription factors

(TFs) c-Maf interacts with AhR to synergistically transactivate the IL-

10 and IL-21 promoters, thereby promoting IL-27-induced

differentiation of murine Tr1 cells (82). Tr1 cells are characterized

by their lack of Foxp3 expression and are identified by the co-

expression of CD49b and LAG-3, which serve as distinctive markers

in both humans and mice (83). Tr1 cells play a critical

immunoregulatory role in promoting tolerance in transplant

scenarios, such as renal and pancreatic islet transplantation in

humans and mice, and in reducing GvHD following hematopoietic

stem cell transplantation, largely through their IL-10 mediated

activities and antigen-specific actions (84–86). Tr1 cells have also

been shown to ameliorate autoimmune diseases by inhibiting

pathogenic Th17 response in experimental autoimmune

encephalomyelitis and experimental autoimmune uveitis (87, 88).

IL-10 is a major cytokine involved in Treg-mediated immune

regulation and immunosuppression (89). It primarily acts on

monocytes and macrophages. IL-10 can inhibit the secretion of

the pro-inflammatory cytokines TNF-a and IL-1b by monocytes

and macrophages (90). IL-10 also inhibits IL-12 synthesis,

hindering the differentiation of Th1 cells (73, 91). Blocking the

Treg-mediated suppression of Teffs can be achieved by using anti–

IL-10 neutralizing antibodies (92). Treg cells regulate the expression

of IL-10 through the transcription factor B-lymphocyte-induced

maturation protein-1 (Blimp-1). Mice lacking Blimp-1 in peripheral

effector CD4+ and CD8+ T cells show increased cell numbers,

while the overexpression of Blimp-1 in T cells promotes the

differentiation of Treg cells and enhances their inhibitory effect

on T cell proliferation (93). This highlights the importance of IL-10

in mediating the immunosuppressive function of Treg cells.

In addition, IL-10 has various other regulatory functions. It can

induce the differentiation of Th0 cells into helper T cells (Th2),

while inhibiting Th1 differentiation, thereby affecting the balance

between Th1 and Th2 immune responses (94). IL-10 can also

inhibit antigen presentation and prevent monocytes and

macrophages from producing pro-inflammatory cytokines. IL-10

can inhibit the secretion of IL-6 and IL-12 by dendritic cells (DCs),

thereby suppressing Th17 differentiation (95–97). Compared to
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wild-type mice, IL-10−/− mice exhibit more severe arthritis,

decreased numbers of Tregs, decreased expression of Foxp3, and

increased numbers of Th1 and Th17 cells. This further confirms

that IL-10 may work in coordination with Tregs and other immune

cells to inhibit the differentiation and development of Th1 and Th17

cells, exerting negative immune regulatory effects (98). The

immunostimulatory capacity of IL-10 in the context of

immunoregulation has been demonstrated. IL-10 expression in

tumor cell lines transfected from IL-10 transgenic mice controls

primary tumor growth and reduces the burden of metastasis (99).

Recombinant mouse IL-10 has been shown to induce IFN-g and

CD8+ T cell–dependent anti-tumor immunity in vivo (100, 101).
2.4 IL-35

IL-35, a member of the IL-12 family, is a heterodimeric protein

that consists of p35 and Epstein-barr virus-induced gene 3 (EBI3)

(102). It can be secreted by Tregs. IL-35 can be expressed in various

tissues and environments, such as the thymus, peripheral lymphoid

organs, and inflammatory sites, and influences the generation and

maintenance of Tregs by activating the IL-35 receptor (IL-35R)

(103). IL-35 not only suppresses effector T cells but also promotes

the conversion of CD4+ T cells into IL35-producing induced

regulatory T cells (iTr35). IL-35 triggers signal transduction by

binding to IL-35R, which is composed of two subunits (i.e. IL-

12Rb2 and IL-27Ra) and subsequently activates the JAK family

(102). Specifically, IL-35 induces the phosphorylation and

activation of the JAK1 and Tyk2 kinases (104). Activated JAK

further phosphorylates and activates STAT proteins, including

STAT1 and STAT4 (Figure 1) (105). These phosphorylated STAT

proteins undergo conformational changes, form dimers or

multimers, and then translocate to the cell nucleus, where they

can activate the transcription of the Foxp3.

The function of Tregs proved effective in EBI3−/− and p35−/−

mice, that is, IL-35 subunit knockout models, suggesting that IL-35

plays an important role in maintaining the function of Tregs (106).

The immunosuppressive capacity of Tregs in EBI3−/− and p35−/−

mice was significantly diminished compared to that of Tregs in

wild-type mice. In cases of human colon cancer, the expression level

of IL-35 in tumor tissues was positively correlated with the degree of

malignancy and clinical stage of the tumor. Additionally, a strong

positive correlation between the level of IL-35 expression and the

number of Tregs in peripheral blood has been noted (107).

Therefore, tumor-derived IL-35 may promote tumor growth by

recruiting Tregs into the TME (108). Another study conducted by

Meghan et al. demonstrated that targeting IL-35 can potentially

serve as a therapeutic strategy for tumor suppression. Their research

findings revealed that the neutralization of IL-35 led to enhanced

tumor control in wild-type C57BL/6 mice when compared to

control mice (109).

In summary, IL-35 plays an important role in immune

regulation and immune balance by regulating the development of

Tregs, enhancing Foxp3 expression and function, and exerting

immunosuppressive effects.
Frontiers in Immunology 05
3 Treg-inhibitory cytokines

3.1 IL-6

IL-6 is an inflammatory cytokine linked to autoimmune and

inflammatory diseases (110). It can be produced by lymphoid and

some non-lymphoid cells. It can also be secreted by fibroblasts,

endothelial cells, keratinocytes, mesangial cells, and tumor cells.

The pro-inflammatory properties of IL-6 include inhibition of the

immunosuppressive capacity of Tregs and interference with their

differentiation from naïve T cells (111). Studies have shown that

high levels of IL-6 and IFN-g inhibited the expression of Foxp3

during the differentiation of Tregs (112, 113). In early pregnancy,

C57BL/6 models, which are susceptible to congenital toxoplasmosis,

exhibited elevated IL-6 but reduced expression of Foxp3 in response

to congenital toxoplasmosis infection when compared to the

infection-resistant Balb/c models (114). In vitro activation of

purified mouse CD4+ CD25+ Foxp3+ T cells caused their

differentiation into Th17 in the presence of IL-6 (47, 115, 116).

Therefore, IL-6 is the key factor determining whether naïve CD4+ T

cells differentiate into Treg or Th17 cells (117). The deletion of IL-6

and TGF-b in mice contributes to the depletion of Th17 cells, which

leads to the failure of EAE modeling (118–120). When IL-6 is

present at inflammatory sites, such as sites of mucosal

inflammation, it can cause phosphorylation of the downstream

STAT3 through tyrosine (121). Hyperactivity of p-STAT3 can

increase the expression of the transcription factor RORgt in T

cells, followed by a decrease in Foxp3 expression, thus causing

CD4+ T cells to differentiate into Th17 cells instead of Tregs (120,

122). Another study reported that when co-cultured with multiple

myeloma (MM) cells, bone marrow stromal cells could secrete IL-6

and thereby transform Tregs into Th17 cells, a finding further

verified in animal models (123, 124). In preclinical studies, IL-6

monoclonal antibodies demonstrated positive drug synergies (e.g.,

between bortezomib, melphalan, and dexamethasone), thereby

enhancing the effectiveness of MM treatment. This improvement

may be attributed to the Treg/Th17 ratio (125, 126). Interestingly,

retinoic acid, a metabolite of vitamin A, could regulate TGF-b–
dependent immune responses and prevent IL-6 from inducing pro-

inflammatory Th17 cells and promoting the differentiation of anti-

inflammatory Tregs (127), indicating the complexity of the balance

of Th17 cells and Tregs.
3.2 TNF-a

TNF-a is an inflammatory cytokine that mediates

inflammation and may cause tissue damage. It is secreted by

macrophages, monocytes, neutrophils, CD4+ T cells, and natural

killer (NK) cells. While TNF-a is typically known for enhancing

immune responses and promoting inflammation, it has also been

shown to inhibit Treg function (128). TNF-a suppresses the

differentiation and development of Tregs, leading to a reduction

in their numbers (129). During Treg differentiation, the presence of

TNF-a interferes with the TGF-b signaling pathways. This involves
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disruption of the activation and transduction of downstream

signaling molecules, such as the phosphorylation and nuclear

translocation of the SMAD protein family, subsequently affecting

Foxp3 expression and Treg differentiation (129). Previous studies

have reported that TNF-a, through tumor necrosis factor receptor 2

(TNFR2) activation, played a role in the expansion and

amplification of Tregs (130). Approximately 30–40% of peripheral

blood Tregs express TNFR2, which can be upregulated by TNF-a
(131). Interestingly, only Tregs that express TNFR2 exhibit strong

immunosuppressive activity, while Tregs lacking TNFR2 display

minimal to no immunosuppressive activity. Therefore, the TNF–

TNFR2 signaling pathway is necessary for maintaining the function

and phenotypic stability of Tregs in the body (132). When

compared to conventional CD4 single-positive cells, members of

the TNF receptor superfamily, including glucocorticoid-induced

TNFR-related (GITR), CD134, and TNFR2, are overexpressed on

Treg precursor cells. These receptors enhance T cell receptor (TCR)

signaling through TGF-b–activated kinase 1 (TAK1) and CD28-

dependent signaling pathways. Treg precursor cells lacking TAK1

and CD28 cannot express GITR, CD134, or TNFR2, resulting in the

inhibition of Foxp3+ Treg maturation (133).

The systemic injection of an anti–TNF-a neutralizing antibody,

such as infliximab, can induce IL-10 in CD4+ T cells and Th17 cells,

as well as Aiolos binding of conserved regions of IL-10. However, in

the treatment of Crohn’s disease with anti–TNF-a therapy, IL-17+

cells in the intestines of patients decreased significantly after 3

months of treatment, and Foxp3+ cells were unstable. However, the

IL-17+/CD4+ and IL-17+/Foxp3+ ratios were both decreased,

suggesting that TNF-a and a balanced relationship between Th17

cells and Tregs are key factors in the treatment of the disease (134–

136). TNF-a can damage the function of T cells by enhancing the

dephosphorylation of Foxp3; and their function can be restored by

TNF-a antagonist therapy, thereby indirectly regulating the

interaction between T cells and Th17 and Th1 cells, which affects

autoimmune inflammation in RA (137). It is important to note that

the inhibitory effects of TNF-a on Tregs may be beneficial in certain

contexts, such as enhancing anti-tumor immune responses by
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reducing the suppressive effects of Tregs (138). The accumulation

of Tregs in the TME has been identified as one of the major factors

in the initiation and development of immune checkpoint inhibitor

resistance (139). The CC motif chemokine receptor 8 (CCR8) is a

marker of activated inhibitory Tregs and has a significant impact on

the function of Tregs in the TME (140). High levels of TNF-a in the

colorectal cancer (CRC) TME upregulate CCR8 expression in Tregs

via the TNFR2/NF-kB signaling pathway and Foxp3 transcription

factor. Depletion or blockade of TNFR2 inhibits gastrointestinal

tumor progression by reducing CCR8+ Treg infiltration, thereby

enhancing the efficacy of anti–PD-1 therapy (140, 141).
4 Co-stimulatory molecules

Co-stimulatory molecules, such as CTLA-4 and PD-1 are also

crucial for Treg cell activation and function (Figure 2). The B7

family is composed of a group of cell-surface molecules primarily

found on antigen-presenting cells (APCs), such as DCs,

macrophages, and B cells (142). These molecules provide co-

stimulatory or co-inhibitory signals that are crucial for the

activation, differentiation, and survival of T cells, thereby playing

an essential role in the regulation of T cell–mediated immune

responses, especially in the field of immuno-oncology (143).

CTLA-4, PD-1, and PD-L1 are the most extensively studied and

clinically applied immune checkpoint molecules to date (144).

Some clinical trials and studies have shown that the combined

use of nivolumab (a PD-1 inhibitor) and ipilimumab (a CTLA-4

blocker) is more effective for patients with advanced melanoma

(145). The use of immune checkpoints has ushered in a new era in

tumor treatment.
4.1 CTLA-4

CTLA-4 is a co-stimulatory molecule expressed on the surface

of effector T cells (146). Interestingly, Treg cells also constitutively
FIGURE 2

The role of co-stimulatory molecules in Treg cells, namely CTLA-4 and PD-1. The T cell receptor (TCR) engages the major histocompatibility
complex (MHC)-peptide complex on APCs. The interaction between CD28 on T cells and B7 on APCs triggers costimulatory signaling, which is vital
for T cell activation. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) mitigates this activation by outcompeting CD28 for its ligands B7, thus
attenuating the costimulatory signal. Concurrently, the interaction of programmed cell death protein 1 (PD-1) on T cells with its ligands PD-L1 or
PD-L2 also transmitted by APCs, further modulates immune responses, generally by dampening T cell activity. The arrows represent positive
regulation of the Tregs response, and the horizontal lines represent negative regulation.
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express CTLA-4 for fine tuning T cell activation through the

obstruction of co-stimulatory signals (147). CTLA-4 exhibits

higher binding affinity for the co-stimulatory molecules CD80/

CD86 than CD28, thereby effectively outcompeting it (148).

Additionally, CTLA-4 is involved in the ‘trans-endocytosis’ of

CD80 and CD86 from APCs, further inhibiting their availability

for co-stimulatory interactions (147). These actions are crucial for

Treg cells to exert control over T cell activation and to prevent

autoimmune responses (149). The absence of CTLA-4 disrupts Treg

cell function, leading to unchecked proliferation and activation of

Tconvs, which can result in autoimmune pathology (150).

Researchers have shown that introducing the extracellular domain

of CTLA-4 (cdCTLA-4) into mice lacking CTLA-4 fully restores

Treg activity, suggesting that cdCTLA-4 is sufficient to provide

inhibitory function (151). This implies that CTLA-4 function may

not necessarily involve a signal transduction process. In another

study, the expression of CTLA-4 in CD4+ CD25+ Foxp3+ Treg cells

was elevated both in the blood of patients with pulmonary

tuberculosis and in the pleural cavity of individuals with

tuberculosis pleurisy. Blocking CTLA-4 weakened the ability of

Foxp3+ Tregs to suppress the IFN-g T effector response to the effect

of purified protein derivative (PPD) stimulation, and this reversal

effect was not consistent with the decrease in IL-10. Blocking

CTLA-4 reversed the ability of Tregs to inhibit PPD-driven IFN-g
and IL-2 responses at the mRNA level, while IL-10 and TGF-b did

not show significant changes. Blocking CTLA-4 significantly

eliminated the inhibitory effect of Foxp3+ Tregs on the PPD-

specific T cell proliferation response (152). Therefore, CTLA-4

is a promising new target for immunotherapy for active

tuberculosis (153).

Research on CTLA-4 is still in the stage of determining its

physical activity. However, although the mechanism is currently

obscure, it does not affect the positive clinical effects of anti–CTLA-

4 drugs in arousing an immune response and treating

tumorigenicity. CTLA-4-targeting agents serve various

immunomodulatory roles. Abatacept (Orencia), which includes

the CTLA-4 domain, is employed for treating RA and is used to

prevent organ transplant rejection, as seen with belatacept

(Nulojix). Distinct from ipilimumab (Yervoy), an FDA-approved

melanoma treatment that blocks CTLA-4 to stimulate the immune

response, abatacept mimics CTLA-4 on T cells. It competes with

CD28 for binding to B7 molecules on APCs, thereby blocking the

co-stimulatory signal required for T cell activation (154).

Belatacept, a derivative of abatacept, with an alteration of merely

two amino acids, exhibits a tenfold increase in activity compared to

its precursor, more effectively inhibiting the CD28-mediated co-

stimulatory signaling of T cells (155). The idea of CTLA-4 target

druggability is mainly based on the high-affinity binding of anti-

CTLA-4 antibodies to CTLA-4 molecules, mediating Treg depletion

or functional blockade, thereby enhancing T cell activation and the

immune response to cancer (156). CTLA-4 is involved in

maintaining tolerance to autoimmune diseases, such as diabetes,

as well as spontaneous abortion tendencies (157–159). Single

nucleotide polymorphisms in exon 1 of CTLA-4 have been linked

to susceptibility to several autoimmune diseases, including multiple
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sclerosis (160). The antibody-mediated blocking of CTLA-4

prevents the development of tolerance, enhances the anti-tumor

response, and exacerbates autoimmune disease (161). In clinical

trials, CTLA-4 development is mainly divided into two treatment

modalities: monoclonal antibody or combined with PD-1/PD-L1

monoclonal antibody. Bispecific antibodies have also been

constructed by association with other popular targets (162).
4.2 PD-1

PD-1 is a co-inhibitory receptor primarily expressed on

activated T cells, B cells, and APCs. PD-1, through binding to its

ligands PD-L1 and PD-L2, inhibits T cell activation and function to

prevent excessive immune responses (163). Tregs express higher

levels of PD-1 on their surfaces compared to CD4+ Th cells (164).

This indicates that PD-1 plays an important role in the regulation of

Tregs. When PD-1 binds to its ligands, PD-L1 or PD-L2, it exerts

inhibitory effects (163). PD-1 activation suppresses signal

transduction pathways that activate T cells, leading to reduced

cell proliferation and cytokine production, thereby limiting the

intensity and duration of immune responses (165). The PD-1

signaling pathway in Tregs can regulate their suppressive function

and immune regulatory roles. Evidence from multiple studies

indicates that PD-1 inhibits the suppressive abilities of Tregs

(166). Isolation of PD-1hi and PD-1− cells from the peripheral

blood of healthy individuals has revealed that Tregs with higher

levels of PD-1 show diminished suppressive function and elevate

production of IFN-g (167). Mouse model experiments further

demonstrate that Tregs lacking PD-1, or those from mice treated

with PD-1 blocking antibodies, exhibit enhanced suppressive

capabilities (168). In tumor environments, blocking PD-1 not

only improves the function of PD-1+ CD8+ T cells but also

intensifies the immunosuppressive effects of PD-1+ Tregs (169).

As a result, the effectiveness of PD-1 inhibitors in treating patients is

determined by their complex interplay with both effector T cells

and Tregs, which highlights the crucial role of the PD-1 in

controlling Tregs.

An in vivo mouse MC38 (CRC cell line) subcutaneous

transplantation tumor model and an azoxymethane (AOM)/

dextran sodium sulfate (DSS)–induced spontaneous CRC model

both confirmed that gallic acid can affect Foxp3 protein levels by

targeting the expression of ubiquitin specific peptidase 21 (Usp21)

in Tregs, inducing the formation of Th1-like Tregs and reducing

their immunosuppressive function (170). Simultaneously, gallic

acid can enhance the anti-tumor effect of anti–PD-1 immune

checkpoint blocking and downregulate the expression of PD-L1

protein in Tregs, indicating that the deubiquitinating enzyme

Usp21 can deubiquitinate and stabilize the PD-L1 protein. PD-1

was also expressed on CD4+ Foxp3+ CXCR5− Tregs and inhibited

the activity of lymphocytes by downregulating then maintaining the

expression level of Foxp3 protein (171). Neuropilin-1 (NRP-1)

plays an essential role in maintaining the stability and function of

Tregs within tumors (172). On the one hand, an increase in the

NRP-1 phenotype induces the production of IFN-g in the tumor,
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which increases the vulnerability of Tregs, weakens tumor

immunosuppression, and enhances antitumor immunity, which is

related to the prognosis of melanoma (173) and head and neck

squamous cell carcinoma (174). On the other hand, the

susceptibility of Treg cells to IFN-g, which is induced by anti–

PD-1 therapy, is a potential mechanism underlying the effectiveness

of anti–PD-1 drugs. These drugs stimulate the production of

significant quantities of IFN-g (175). Recently, several studies

have reported correlations between tumor PD-L1 expression,

objective response rate, and PD-1/PD-L1 inhibitors, suggesting

that PD-L1 may become an effective biomarker (176, 177).
5 Potential of Treg-
based immunotherapy

The overall outcome of these interactions between Treg

subpopulations, cytokines, and co-stimulatory molecules is a

finely-tuned immune system that can respond to pathogens

aggressively. Based on the characteristics of different subsets of

Tregs, different strategies can be utilized to treat autoimmune

diseases (178, 179). To date, early clinical trials using Treg cell

therapy have shown great promise in the fields of transplantation

rejection (180), GvHD (181), and autoimmune diseases (179).

However, one of the main challenges in these studies is the

isolation of pure Tregs and their expansion to a sufficient clinical

dose. The principle of Treg cell therapy is to restore the balance

between Teffs and immune regulatory cells by injecting an effective

dose of Tregs into the patient ’s body, thus promoting

immunological tolerance (182).
5.1 Autoimmune diseases

Tregs play a pivotal role in upholding immune tolerance to self-

antigens, thereby preventing the activation and proliferation of self-

reactive T cells that may not be eliminated during thymic selection.

They also inhibit APCs, such as DCs, which are instrumental in

triggering immune responses (183). Furthermore, Tregs interact

with other immune cells, including B cells and NK cells, establishing

a balanced immune system (184).

Autoimmune diseases include systemic autoimmune diseases

and organ-specific autoimmune diseases. Representative diseases of

the former type include systemic lupus erythematosus, SS, and RA

(185), and the latter include, for example, type 1 diabetes (186),

pemphigus (187), and Hashimoto thyroiditis (188). Treg therapy

can alleviate arthritis symptoms by suppressing inflammatory

responses and regulating the immune system. In addition, It can

regulate intestinal immune balance and reduce intestinal

inflammation and tissue damage, thus alleviating inflammatory

bowel diseases (such as Crohn’s disease and ulcerative colitis)

(189, 190). Treg therapy can also alleviate autoimmune hepatitis

and improve liver function (191) and systemic lupus erythematosus

(192). Finally, Treg therapy can be used for other autoimmune

diseases, such as multiple sclerosis (193), myasthenia gravis (194),

and autoimmune thyroid diseases (195).
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Our recent studies revealed that the intravitreal injection of

Tregs resolved ocular inflammation in experimental autoimmune

uveitis (116). In patients with RA, synovial Tregs lose their

suppressive functions. They fail to inhibit the production of pro-

inflammatory cytokines, such as TNF-a and IFN-g, by other CD4+

T cells and monocytes and to inhibit the proliferation of Teffs (196).

In animal models, the adoptive transfer of Tregs significantly

reduces disease severity, highlighting the importance of Tregs in

controlling abnormal joint inflammatory responses (197). Tregs can

also suppress the activity of other immune cells through

immunoregulatory molecules, for example, TGF-b and IL–10

produced by Tr1 cells, to inhibit inflammatory reactions and

reduce self-attack on joint tissues, thereby alleviating symptoms

of RA (198). Other autoimmune diseases, such as inflammatory

bowel disease (199), systemic lupus erythematosus (200), and

autoimmune thyroid diseases (201), including thyroid nodules,

thyroiditis, Graves’ disease, and autoimmune hypothyroidism, can

all be alleviated by enhancing the immunosuppressive function of

Tregs. Today, adoptive Treg therapy has been widely used and

tested in autoimmune diseases (Table 2).
5.2 Transplantation

In transplantation, Tregs are critical for promoting graft

tolerance and reducing transplant rejection rates. In a study of

immune rejection therapy for kidney transplantation, 11 patients

were followed for 60 weeks after transplantation to assess immune

response, rejection, and renal function. Of these patients, eight were

successfully maintained on monotherapy immunosuppression.

Additionally, 10 patients who received Tregs treatment could be

weaned off immunosuppression to low dose tacrolimus

monotherapy within 48 weeks, although eight patients later

experienced failure of tacrolimus monotherapy. Despite the need

for additional immunosuppressive treatments, all 11 patients in the

trial maintained good graft function at the 3-year follow-up time

point. The study’s authors successfully developed a method for

isolating and expanding autologous polyclonal Tregs from a small

blood sample and demonstrated the feasibility of this

treatment (211).

Graft rejection reactions may occur after bone marrow

transplantation, leading to transplant failure. Treg therapy can

regulate the immune response after transplantation, reducing the

occurrence of graft rejection (212). Amarnath et al. (213) found that

Tregs could promote the generation of bone marrow DCs and

reduce their ability to stimulate the generation of efficient T cells in

GvHD. Tregs have high surface expression levels of PD-L1, which

can bind to PD-L1 of DCs, thus inhibiting the activation of T cells

and alleviating GvHD (214, 215). In addition, Tregs can express

inhibitory molecules (e.g. CTLA-4, LAG-3, and NRP-1) to inhibit T

cell activation (216). Tregs can also express CD62L and CCR5,

maintain in vivo homing characteristics, inhibit the activation of

early Teffs, and induce transplantation immune tolerance (217).

The development of CAR-T technology has promoted the

development of clinical trials using CAR Tregs to treat

transplantation immune rejection (218). HLA-A2 is the main
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molecular target that causes immune rejection (219). CAR HLA-A2

Tregs can significantly reduce the inflammation and rejection

caused by grafts, can promote the immune tolerance of grafts,

and are superior to polyclonal Tregs in preventing GvHD caused by

donor T cells (220). CAR Treg cell therapy likely has the advantage

of avoiding transplant rejection. Early treatment may help prevent

the occurrence of rejection reactions, while later treatment may be

more suitable for the management of existing rejection reactions.
5.3 Cancer treatment

Tregs, although vital for preserving immune tolerance and

preventing autoimmune diseases, can be counterproductive in

cancer by inhibiting anti-tumor responses and enabling cancer

cells to escape immune surveillance. Consequently, restricting

Treg activity is essential for enhancing the immune system’s

ability to combat cancer. Targeting Tregs also has potential

applications in cancer treatment. The goal of targeting Tregs for

cancer treatment is to enhance the tumor immune response and

suppress tumor growth by modulating the activity of the immune

system (221). Immune checkpoint inhibitors have become an

important strategy in cancer treatment (222). In this treatment

approach, the suppressive effects of Tregs may inhibit the efficacy of

immune checkpoint inhibitors. Therefore, reducing or modulating

the immunosuppressive effects of Tregs can enhance the efficacy of

immune checkpoint inhibitors (182). CpG combined with low-dose

anti-OX40/CTLA-4 triple immunotherapy can eliminate Tregs in a

tumor and has a curative effect on central nervous system

lymphoma in mice (223). In patients with tumors that did not
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respond to PD-1 monotherapy, the combination of the partial

deletion of CARD-containing MAGUK protein 1 (CARMA1) and

the sterol regulatory element binding protein (SREBP) inhibitor

fatostatin produced a strong antitumor effect (224). This is because,

upon the destruction of the CARMA1–BCL10–MALT1 semaphore

complex, most tumor-infiltrating Tregs inhibit IFN-g derived from

CD8+ T cells, which inhibits the growth of immunosuppressive M2-

like tumor-associated macrophages (TAMs) (225). Fatostatin

inhibits SREBP1-mediated fatty acid synthesis, inhibits the

occurrence and development of TAMs, and then controls

tumor growth.

Chemokine pathway blocking and specific target blocking have

also been used to suppress tumors (Table 3) (226). Blocking the

migration of Tregs to the TME is a new direction of tumor

immunotherapy (227). Tregs in a canine bladder cancer model

entered tumor tissue through the CCL17–CCR4 axis, and anti-

CCR4 treatment significantly inhibited tumor growth and

improved the survival rate. In addition, CCR4 was highly expressed

in tumor-infiltrating Tregs (TITRs) in human bladder cancer (228).

Another study showed that the number of TITRs in CD36−/− Treg

mice was decreased, the anti-tumor activity of tumor-infiltrating

lymphocytes was enhanced, and tumor growth was inhibited (229).

Neuropilin 1 (Nrp1)−/− Tregs in mice with a partial Nrp1 knockout

can prevent wild-type (Nrp1+/+) Tregs from performing their

immunosuppressive function by secreting IFN-g, thus promoting

the clearance of melanoma (10). New drugs are continuously being

developed to inhibit cancers. Some of the difficulties of tumor

immunotherapy include eliminating the immunosuppressive effect

of the TME and enhancing the specific anti-tumor response. Further

effective differentiation between TITRs and tissue-resident Treg
TABLE 2 Animal models of autoimmune disease and inflammation.

Disease Type Treg-based immunotherapeutic effects Influence

Connective tissue
autoimmune disease

Systemic lupus erythematosus (202) Activated Tregs IFN-g↓ IL-17↑

Rheumatoid arthritis (203) CD4+ CD25− T & mature tolerant DCs promote CD4+ CD25+ Tregs
TNF-a↓ IL-17↓ IL-6↓
IFN-g↑ IL-10↑ TGF-b↑

Neuromuscular
autoimmune disease

Experimental autoimmune
encephalomyelitis (204)

CCL1–Ig promotes CCR8+ Tregs CD39↑ GranB↑ IL-10↑

Experimental autoimmune myasthenia
gravis (205)

EAMG CD4+ & marrow DCs promote DC EAMG Tregs Clinical score↓ AChR↓

Endocrine
autoimmune disease

Type 1 diabetes (206) Antigen-specific Tregs
IL-10↑ TGF-b↑ CD8+

T↓ CD8+/CD4+ T↓

Premature ovarian insufficiency (207) Activated Tregs

Follicle-stimulating
hormone↓ Luteinizing
hormone↓ Anti-zona
pellucida antibody↓
Estradiol↑ Anti-

Müllerian hormone↑

Autoimmune diseases of the
digestive system

Autoimmune hepatitis (208) CD4+ CD25+ Tregs & HSCs promote HSC Tregs
AST↓ ALT↓ Treg/

Th17 -

Ulcerative colitis (209) Activated Tregs
IL-1↓ TNF-a↓
NO↓ PGE2↓

Other autoimmune diseases Graft-versus-host disease (210) Tr1 cells promote Tregs Th2/Th1↑ Treg/Th17↑
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1387975
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zong et al. 10.3389/fimmu.2024.1387975
phenotypes or transcription levels, as well as a continuous reduction

in the dynamic differences in Tregs between preclinical models and

patient-derived samples, can provide more therapeutic bases for

immunotherapy based on Treg targets.

The exploration and deployment of therapeutics targeting Tregs

are extensive, chiefly because these cells express an array of

receptors on their surface. The most utilized are agonists of the

TNFR superfamily and antagonists of immune checkpoint

inhibitors (230, 231). These modulators alleviate autoimmune

conditions and bolster anti-tumor responses by influencing Treg

function. Next-generation Treg interventions focus on directing

Tregs to selectively recognize tissue or organ-specific antigens by

incorporating a chimeric antigen receptor (CAR) structure.

Engineered CAR-Tregs are also being designed to convert pro-

inflammatory cytokine signals into those of IL-2 or IL-10, which

intensifies the suppression of inflammation (232).
6 Conclusion

The study of Treg signaling pathways provides a theoretical

basis for immune balance and the treatment of autoimmune
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diseases. By modulating the quantity and function of Tregs,

immune system activity can be balanced, inflammation can be

alleviated, and the development and progression of autoimmune

diseases can be prevented and treated. Preliminary results from

clinical trials demonstrate the potential of Treg therapy in the fields

of transplant rejection, autoimmune diseases, and cancer. Although

the application of Treg therapy poses challenges, personalized

treatment strategies and the optimization and monitoring of

treatment processes will contribute to improving its safety and

efficacy and promoting its further clinical implementation.
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TABLE 3 Methods of Treg-targeted therapy for tumors and their
corresponding cytokines.

No. Therapeutic
effect

Drug Target

1 Treg depletion in
the TME

Kinase inhibitor,
cyclophosphamide, anti-CD25

IL-
2 signaling

2 Halting
Treg migration

Anti-CCR4, anti-CCR8 CCR4, CCR8

3 Sensitizing
intertumoral Tregs

to
checkpoint blockade

Anti-TIGIT, anti–LAG-3,
LAG-3–Ig fusion protein,

nonfucosylated anti–CTLA-4

LAG-3,
TIM3,
TIGIT,
CTLA-4

4 Targeting the co-
stimulation of Tregs

GITR agonist, OX40 agonist,
ICOS agonist and antagonist,

TNFR2 antagonist

GITR, ICOS,
OX40,
TNFR2,
NRP-1

5 Targeting
Treg cytokines

Anti–IL-10, anti-GARP, anti–
IL-35

IL-10, TGF-
b, IL-35

6 Altering
Treg fragility

PI3Kd inhibitor, anti–NRP-1 NRP-1,
IFN-g

7 Targeting
Treg metabolism

Meformin, IDO inhibitor,
A2AR inhibitor,
Orencia, Nulojix

IL-10,
CTLA-

4, FOXP3
*IL, Interleukin; CD, Cluster of differentiation; CCR, Hemokine (C-C motif) receptor; LAG,
Lymphocyte activation gene; TIM, T cell immunoglobulin domain and mucin domain; TIGIT,
T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM)
domains; CTLA, Cytotoxic T lymphocyte-associated antigen; GITR, Glucocorticoid-induced
tumor necrosis factor receptor; ICOS, Inducible synergistic co-stimulation molecules; OX40,
CD134 & TNF receptor superfamily member 4 (TNFRSF4); TNFR2, Tumor necrosis factor
receptor; NRP, Neuropilin; TGF, Transforming growth factor; IFN, Interferon; FOX,
Forkhead box protein.
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