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Suppression of interferon a and g
response by Huwe1-mediated
Miz1 degradation promotes
SARS-CoV-2 replication
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Indrani Biswas1, Sujan Vahora1, Riddhi Deshpande1,
Khushi H. Gopani1, Guochang Hu3, Justin M. Richner2,
Lijun Rong2* and Jing Liu1*

1Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago,
Chicago, IL, United States, 2Department of Microbiology and Immunology, College of Medicine,
University of Illinois at Chicago, Chicago, IL, United States, 3Departments of Anesthesiology and
Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois at Chicago,
Chicago, IL, United States
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been

demonstrated to limit the host interferon response; however, the underlying

mechanism remains unclear. Here, we found that SARS-CoV-2 infection

upregulated the E3 ubiquitin ligase Huwe1, which in turn facilitated the

degradation of the transcription factor Miz1. The degradation of Miz1

hampered interferon alpha and gamma responses, consequently fostering viral

replication and impeding viral clearance. Conversely, silencing or inhibiting

Huwe1 enhanced the interferon responses, effectively curbing viral replication.

Consistently, overexpressing Miz1 augmented the interferon responses and

limited viral replication, whereas silencing Miz1 had the opposite effect.

Targeting Huwe1 or overexpressing Miz1 elicited transcriptomic alterations

characterized by enriched functions associated with bolstered antiviral

response and diminished virus replication. Further study revealed Miz1 exerted

epigenetic control over the transcription of specific interferon signaling

molecules, which acted as common upstream regulators responsible for the

observed transcriptomic changes following Huwe1 or Miz1 targeting. These

findings underscore the critical role of the Huwe1-Miz1 axis in governing the

host antiviral response, with its dysregulation contributing to the impaired

interferon response observed during COVID-19.
KEYWORDS
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Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) is responsible for the ongoing coronavirus disease 2019

(COVID-19) pandemic, which has exerted substantial global

impacts on both public health and the economy (1, 2). Despite

the advancement of vaccines and antiviral drugs, the virus remains a

formidable threat due to its propensity for mutation and the

emergence of new variants (3). Consequently, a better

understanding of the mechanisms underlying SARS-CoV-2

pathogenesis and host immunity is imperative for the

development of more efficacious therapeutic interventions and

control strategies.

A crucial facet of the host immune response to viral infections

centers on the interferon (IFN) response. IFNs are a group of

cytokines that play a critical role in the innate immune response

against viral infections by inducing the expression of various

interferon-stimulated genes (ISGs). These ISGs actively participate

in various antiviral defense mechanisms, including viral

recognition, clearance, and immunomodulation. However,

emerging evidence has shown that SARS-CoV-2 has developed

strategies to circumvent and suppress the host IFN response,

thereby curtailing IFN production and signaling (4–10).

Several molecular mechanisms have been proposed to elucidate the

limited IFN response during SARS-CoV-2 infection (10). One theory

posits that the virus directly targets and inhibits critical components of

the IFN signaling pathway. For example, the papain-like protease of

SARS-CoV-2 (PLpro), an indispensable viral enzyme necessary for

processing viral polyproteins to generate a functional replicase complex

and enable viral spread (11, 12), has been shown to attenuate the IFN

response. This attenuation occurs through direct cleavage of IFN

regulatory factor 3 (IRF3) or indirect inhibition via deISGylation or

deubiquitination (13–15). Additionally, PLpro dysregulates the

stimulator of interferon genes (STING) by deubiquitination (16),

deISGylates melanoma differentiation-associated protein 5 (MDA5)

(17), or deubiquitinates components of the retinoic acid-inducible gene

I (RIG-I)-like receptors (RLRs) signaling pathway, including RIG-I,

mitochondrial antiviral signaling protein (MAVS), TANK-binding

kinase 1 (TBK1), TNF receptor-associated factor 3 (TRAF3), and

TRAF6 (15, 18). Another hypothesis suggests that the virus interferes

with the production and secretion of IFNs themselves, possibly by

targeting IFN-producing cells or disrupting the trafficking of IFNs to

the cell surface (6, 7). However, the specificmechanisms responsible for

the restricted IFN response during SARS-CoV-2 infection remain

incompletely elucidated.

Myc-interacting zinc finger protein 1 (Miz1), also known as

zinc finger and BTB domain-containing protein 17 (Zbtb17), is a

member of the poxvirus and zinc-finger (POZ) domain/zinc finger

transcription factor family. It contains an amino-terminal POZ

domain, which is essential for its transcriptional activity, and 13

zinc fingers at its carboxyl terminus (19, 20). Miz1 preferentially

binds at the initiation region of a gene and can either activate gene

transcription directly or repress gene transcription by interacting

with other regulatory factors, such as Myc, Myc associated factor X

(Max), and B-cell lymphoma 6 protein (BCL-6) (21). Miz1 plays
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critical roles in cell proliferation, differentiation, cell-cycle

progression, and apoptosis (22–24). Moreover, recent studies have

indicated that Miz1 also participates in the regulation of the

immune response (25–28), including negative regulation of the

interferon signaling pathway during tumorigenesis (27, 28).

However, its specific contribution to the antiviral response

remains unclear.

In a previous study, we identified the HECT, UBA, and WWE

domain-containing protein 1 (Huwe1), also known as Mcl-1

ubiquitin ligase E3 (Mule), URE-binding protein 1 (Ureb1), Large

structure of UREB1 (LASU1), ARF-binding protein 1 (ARF-BP1),

or Homologous to E6AP carboxyl terminus homologous protein 9

(HectH9), as the E3 ubiquitin ligase responsible for targeting Miz1

(29). Huwe1 is a highly conserved member of the HECT E3

ubiquitin ligase family and is involved in the ubiquitination and

degradation of various proteins, including Histone H2A (30), p53

(31), N-Myc (32), Mcl-1 (33) and Cdc6 (34). It contains two

Armadillo (ARM) repeat-like domains, a ubiquitin-associated

(UBA) domain, a WWE domain, and a well-conserved BH3

domain at its N terminus, as well as a catalytic HECT domain at

its C terminus (29, 33, 35, 36). Huwe1 serves as a sizable regulatory

factor involved in numerous cellular processes, including cell cycle,

DNA damage response, and apoptosis. However, the specific role of

HUWE1 in the antiviral immune response to SARS-CoV-2 is

currently unknown.

In this study, we aimed to investigate the molecular

mechanisms responsible for the restricted IFN response observed

during SARS-CoV-2 infection. We found that dysregulation of the

Huwe1-Miz1 axis contributed to diminished IFN response in

COVID-19. Significantly, our findings suggest that targeting

either Huwe1 or Miz1 could potentially bolster host immune

responses and enhance viral clearance. These insights offer a fresh

perspective on the molecular mechanisms underlying SARS-CoV-2

pathogenesis and host immunity, which may pave the way for the

development of innovative therapies and control strategies for

managing COVID-19.
Results

SARS-CoV-2 infection upregulates Huwe1
leading to degradation of Miz1

To investigate the effect of SARS-CoV-2 infection on the

expression of Huwe1, we inoculated A549/hACE2 cells (a human

lung epithelial cell line that overexpresses the SARS-CoV-2

receptor, human angiotensin converting enzyme 2 (hACE2)

under the control of human cytomegalovirus immediate early

promoter) with SARS-CoV-2 (USA/WA1/2020). We observed an

increase in both Huwe1 protein and mRNA expression at 24 h post-

infection (Figures 1A, B). Similarly, we found an increase in Huwe1

expression in SARS-CoV-2-infected Vero E6 cells (Figure 1C), a

monkey kidney epithelial cell line that is highly susceptible to SARS-

CoV-2 (37). We previously reported that Huwe1 targets Miz1 for

ubiquitination and proteasomal degradation (29). Accordingly, we
frontiersin.org
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FIGURE 1

SARS-CoV-2 infection upregulates Huwe1 leading to the degradation of Miz1 protein. (A) Huwe1 protein expression and (B) Huwe1 mRNA
expression in mock- or SARS-CoV-2 infected A549/hACE2 cells at 24 h post-infection. (C) Huwe1 protein expression in mock- or SARS-CoV-2
infected Vero E6 cells at 24 h post-infection. Miz1 protein expression in mock- or SARS-CoV-2 infected (D) A549/hACE2 cell and (E) Vero E6 cells at
24 h post-infection. (F) Miz1 protein expression in mock- or SARS-CoV-2 infected A549/hACE2 cells without or with BI8622 at 24 h post-infection.
(G) Huwe1 protein expression in A549/hACE2 cells expressing shRNAs targeting Huwe1 at three different sites. (H) Viral titers in the cell culture
supernatants from mock- or SARS-CoV-2 infected A549/hACE2 cells expressing shRNAs targeting Huwe1 at three different sites at 48 h post-
infection. (I) Viral titers in the cell culture supernatants from mock- or SARS-CoV-2 infected A549/hACE2 cells without or with different doses of
BI8622 at 48 h post-infection. +, 10 mM; ++, 20 mM. (J) Viral titers in the cell culture supernatants from mock- or SARS-CoV-2 infected Vero E6 cells
without or with BI8622 at 48 h post-infection. (K) Huwe1 mRNA expression in untreated or SARS-CoV-2 infected K18-hACE2 mice. (L, M) Miz1
protein expression in untreated or SARS-CoV-2 infected K18-hACE2 mice at 2 d post-infection (L) or BALB/c mice at 3 d post-infection (M). In
(B, H–J, K), values represent the mean ± SEM. n=3. Unpaired Student’s t-test was used. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
Frontiers in Immunology frontiersin.org03

https://doi.org/10.3389/fimmu.2024.1388517
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Arunagiri et al. 10.3389/fimmu.2024.1388517
observed a decrease in Miz1 protein levels in SARS-CoV-2-infected

A549/hACE2 or Vero E6 cells (Figures 1D, E). We also found that

Miz1 mRNA expression was indeed increased after SARS-CoV-2

infection in A549/hACE2 and Vero E6 cells (Supplementary

Figures 1A, B), further supporting our conclusion that the

decrease in Miz1 protein levels is a result of post-translational

regulation. The upregulation of Miz1 mRNA expression is likely a

feedback response to the downregulation of the protein. A specific

small molecule inhibitor of Huwe1, BI8622 (MedChemExpress),

has been developed, and our previous studies have demonstrated

that it effectively inhibits Huwe1 activity, resulting in the

stabilization of Miz1. We found that BI8622 prevented SARS-

CoV-2-induced degradation of Miz1 (Figure 1F). Taken together,

these findings suggest that SARS-CoV-2 infection upregulates

Huwe1, which leads to the degradation of Miz1.

As SARS-CoV-2 infection leads to dysregulation of Huwe1, we

explored whether Huwe1 affects the replication of SARS-CoV-2. To

do so, we generated stable A549/hACE2 cells expressing lentiviral

small hairpin RNAs (shRNAs) targeting Huwe1 at three different

sites (Figure 1G). Our results showed that the silencing of Huwe1

significantly reduced viral titers in the cell culture supernatants at 48

h post-infection with SARS-CoV-2 (Figure 1H). We also found that

the inhibition of Huwe1 using BI8622 in A549/hACE2 and Vero E6

cells led to similar outcomes (Figures 1I, J).

To ascertain whether the regulatory patterns of Huwe1 and

Miz1 that we observed in vitro are likewise evident in vivo, we

administered SARS-CoV-2 (WA1) to K18-hACE2 mice. These

mice are genetically engineered to express the human ACE2

protein under the control of the keratin 18 promoter, leading to

its expression in epithelial cells. In line with the findings from our

cell culture experiments, SARS-CoV-2 infection resulted in an

increase in Huwe1 mRNA expression and a decrease in Miz1

protein levels in the lungs of K18-hACE2 mice (Figures 1K, L).

Similarly, a reduction in Miz1 protein expression was also observed

in BALB/c mice infected with the mouse-adapted SARS-CoV-2

MA10 (Figure 1M).
Silencing of Huwe1 augments the
interferon signaling during SARS-CoV-
2 infection

To gain insight into the mechanism by which Huwe1 promotes

SARS-CoV-2 replication, we conducted RNA-seq analysis on both

control and Huwe1 knock-down (KD) A549/hACE2 cells to explore

the impact of Huwe1 on the transcriptomics of SARS-CoV-2 infection.

Gene set enrichment analysis (GSEA) of differentially expressed genes

identified interferon alpha and gamma responses as the top two

significantly enriched gene sets in the Huwe1 KD group compared

to the control group in response to SARS-CoV-2 infection (false

discovery rate (FDR) <0.25, Figures 2A–C). Note, normalized

enrichment score (NES): 2.210 for interferon alpha response and

2.184 for interferon gamma response (Figure 2A). Enrichment plots

of interferon alpha response (Figure 2B) and interferon gamma

response (Figure 2C) show significant upregulation in the Huwe1
Frontiers in Immunology 04
KD group compared to control group during virus infection. Silencing

of Huwe1 upregulated various molecules involved in interferon alpha

and gamma signaling, such as interferon regulatory factors (IRFs),

interferon-stimulated genes (ISGs), human leukocyte antigens (HLAs)

in major histocompatibility complexes (MHC), and signal transducer

and activator of transcription (STATs), among others (Figure 2D,

Supplementary Figures 2A, B). Additionally, we observed upregulated

gene sets of inflammatory response and interleukin (IL) 6 signaling in

the Huwe1 KD group compared to the control group during SARS-

CoV-2 infection (Figures 2A, Supplementary Figures 2C–F). While an

exuberant inflammatory response, also known as cytokine storm, can

contribute to severe COVID-19, a well-regulated and controlled

inflammatory response coordinates the recruitment of specific

subsets of leukocytes involved in the antiviral response, helping to

clear the virus (38). Therefore, the enhanced inflammatory response

and IL6 signaling, in addition to the upregulated interferon signaling,

may contribute to the observed increased viral clearance by Huwe1 KD

(Figure 1H). It’s worth noting that the RNA-seq findings were validated

by qRT-PCR analysis of randomly selected genes, including interferon

lambda-1 (IFNL3), interferon-induced protein with tetratricopeptide

repeats 3 (IFIT3), interferon-stimulated gene 15 (ISG15), and C-C

motif chemokine ligand 5 (CCL5) (Figure 2E).

We used Ingenuity Pathway Analysis (IPA) to investigate the

relationship between highly significant genes (adjusted P value

<0.05 and absolute fold-change ≥2) in SARS-CoV-2-infected

Huwe1 KD cells compared to virus-infected control cells. Our

analysis revealed the most significant canonical pathways and

biological networks linked to interferon signaling and antiviral

response (Figure 3A), which is consistent with the results of GSEA

(Figures 2A–C). Note that in the visualization, upregulation is

depicted by orange nodes, while downregulation is represented by

blue nodes. It is evident that Huwe1 KD leads to upregulation of

interferon signaling and antiviral response pathways, alongside

downregulation of viral replication pathways (Figure 3A). To

predict the key upstream regulators responsible for the observed

changes in gene expression by Huwe1 KD during SARS-CoV-2

infection, we performed IPA upstream functional analysis. This

analysis is based on the literature compiled in the Ingenuity

Pathway Knowledge Base (IPKB). The analysis examined the

presence of known targets of the upstream regulators among

those highly significant genes by Huwe1 KD during SARS-CoV-

2 infection and computed an overlap P value based on significant

overlap between genes in our dataset and known targets regulated

by the regulator. The activation z-score algorithm was used to

make predictions. Our IPA analysis identified several top

upstream regulators that were activated in our dataset and are

known to play a role in the antiviral response. These include

interferon lambda-1 (IFNL1; Activation Z-score: 7.125; p=5.6E-

69), interferon alpha gene cluster (Activation Z-score: 7.949;

p=1.68E-60), interferon alpha-2 (IFNA2; Activation Z-score:

8.314; p=2.18E-60), interferon regulatory factor 7 (IRF7;

Activation Z-score: 7.797; p=7.49E-58), signal transducer and

activator of transcription 1 (STAT1; Activation Z-score: 7.018;

p=1.15E-57), and Non-POU domain-containing octamer-binding

protein (NONO; Activation Z-score: 8.314; p=2.18E-60)
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FIGURE 2

Silencing Huwe1 augments interferon signaling during SARS-CoV-2 infection. (A) GSEA showing enriched gene sets (FDR <0.25) by Huwe1 KD in
SARS-CoV-2-infected A549/hACE2 cells at 24 h post-infection. (B, C) GSEA showing enrichment plots of the gene sets of “Interferon alpha
response” (B) and “Interferon gamma response” (C) by Huwe1 KD in SARS-CoV-2 infected A549/hACE2 cells at 24 h post-infection. (D) Volcano
plots showing fold change and p-values of the top differentially expressed genes enriched in the interferon pathways by Huwe1 KD in SARS-CoV-2
infected A549/hACE2 cells at 24 h post-infection. The horizontal line represents the q-value threshold of 0.05, while vertical lines indicate log fold
change (log2FC) thresholds at 0.5 and -0.5. (E) mRNA expression of IFNL3, IFIT3, ISG15, and CCL5 by Huwe1 KD in mock- or SARS-CoV-2-infected
A549/hACE2 cells at 24 h post-infection as analyzed by qRT-PCR. Values represent the mean ± SEM. n=3. Unpaired Student’s t-test was used.
*p < 0.05; **p < 0.01.
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(Figures 3B–D, Supplementary Table 1). Previous studies have

shown that these proteins are involved in various cellular

processes such as DNA repair, RNA processing, and gene

regulation, and have been reported to play a role in antiviral

responses (39–46). IPA also predicted top upstream regulators

that were inhibited in our dataset, such as three prime repair

exonuclease 1 (TREX1; Activation Z-score: -6.205; p= 1.19E-63),

ETS Variant Transcription Factor 3 (ETV3; Activation Z-score:

-6.782; p=1.27E-62) and ETV6 (Activation Z-score: -6.608;
Frontiers in Immunology 06
p=2.46E-56; Supplementary Table 1), which have been reported

to inhibit IFN-stimulated genes (47, 48). In IPA, causal networks

are generated by predicting the upstream regulators that are most

likely responsible for the changes in gene expression observed in a

given experimental dataset. These upstream regulators are

inferred from prior knowledge in IPKB, and the downstream

targets of these regulators are analyzed to identify key regulatory

nodes that drive the observed changes in gene expression. Using

this approach, Causal Network Analysis in IPA identified several
A

B C D

FIGURE 3

Silencing Huwe1 enhances the antiviral response during SARS-CoV-2 infection. (A) Using IPA core analysis, a visual representation of the most
significant canonical pathways and biological networks resulting from Huwe1 KD in A549/hACE2 cells at 24 h post SARS-CoV-2 infection revealed
interferon signaling and antiviral response. IPA upstream analysis revealed (B) IFNL1, (C) IFNA2, and (D) Interferon alpha gene cluster among the top
upstream regulators responsible for the gene expression changes by Huwe1 KD in A549/hACE2 cells at 24 h post SARS-CoV-2 infection.
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important regulatory nodes in the resulting causal networks,

including IFNL1, IFNA2, interferon-a/b receptor (IFNAR),

ETV3, IRF7, NONO, and ETV6 (Supplementary Figures 3A–D,

Supplementary Table 2). Finally, Using the Diseases and

Functions Analysis feature in IPA, the submitted experimental

dataset was analyzed to predict the most relevant biological

functions and pathways by comparing the input gene list to the

IPA Knowledge Base. The analysis revealed decreased coronavirus

replication function (Z-score=-2.798; overlap p-value=1.07E-12;

Supplementary Table 3), consistent with the observed decrease in

viral replication caused by Huwe1 KD during SARS-CoV-2

infection (Figures 1H, I).
Frontiers in Immunology 07
Inhibition of Huwe1 using the BI8622
inhibitor recapitulates the effects of Huwe1
knockdown during SARS-CoV-2 infection

GSEA analysis of differentially expressed genes revealed that

inhibition of Huwe1 using the BI8622 inhibitor resulted in an

enhanced interferon response to SARS-CoV-2 infection, similar to

the effect observed with Huwe1 KD (Figures 4A–C). The RNA-seq

results were validated by qRT-PCR of randomly selected genes,

including IL6, CCL5, GCSF, and IL8 (Figure 4D). Additionally, IPA

analysis identified the most significant canonical pathways and

biological networks associated with interferon signaling and
A

B C

D

FIGURE 4

Inhibition of Huwe1 with BI8622 recapitulates the effects of HUWE1 silencing on interferon signaling and antiviral response during SARS-CoV-2
infection. (A) GSEA showing enriched gene sets (FDR <0.25) by inhibition of Huwe1 with BI8622 in SARS-CoV-2 infected A549/hACE2 cells at 24 h
post-infection. (B, C) GSEA showing enrichment plots of the gene sets of “Interferon alpha response” and “Interferon gamma response” by inhibition
of Huwe1 with BI8622 in SARS-CoV-2-infected A549/hACE2 cells at 24 h post-infection. (D) mRNA expression of IL6, CCL5, GCSF, and IL8 by
inhibition of Huwe1 with BI8622 in mock- or SARS-CoV-2-infected A549/hACE2 cells at 24 h post-infection. Values represent the mean ± SEM.
N=3. Unpaired Student’s t-test was used. *p < 0.05; **p < 0.01.
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antiviral response (Supplementary Figure 4A), along with top

upstream regulators, such as IFNL1, TREX1, NONO, interferon

alpha gene cluster, ETV3, and ETV6 (Supplementary Figures 4B, C,

Supplementary Table 4). Causal Network Analysis in IPA further

revealed crucial regulatory nodes, including interferon alpha or

IFNAR gene cluster, IFNL1, NONO, and ETV3 (Supplementary

Figures 4D–F, Supplementary Table 5). Furthermore, Diseases and

Functions Analysis in IPA predicted a decrease in virus replication

(Z-score=-2.851; overlap p-value=5.99E-20; Supplementary

Table 6). These results are consistent with the effects observed

from Huwe1 KD. Overall, these findings suggest that BI8622-

mediated inhibition of Huwe1 has a similar effect to Huwe1 KD

in enhancing the interferon response to SARS-CoV-2 infection.
Miz1 overexpression enhances antiviral
response against SARS-CoV-2 infection

Our data indicate that inhibition or knockdown of Huwe1

enhances the antiviral response during SARS-CoV-2 infection.

This phenomenon is likely attributed to the upregulation of Miz1,

as Huwe1 targets Miz1 for degradation. To test this hypothesis, we

generated stable A549/hACE2 cells that overexpressed exogenous

green fluorescence protein (GFP)-tagged Miz1 using a lentiviral

vector (Figure 5A). We found that Miz1 overexpression (OE)

resulted in decreased viral titers in the cell culture supernatants at

48 hours post-infection with SARS-CoV-2 (Figure 5B). These

findings align with the results obtained from the experiments

involving Huwe1 KD or Huwe1 inhibition.

Furthermore, the GSEA of RNA-seq data from control or Miz1

overexpressing cells treated with SARS-CoV-2 showed enriched

functions in interferon alpha and gamma, inflammatory response,

TNF, and IL6 signaling by Miz1 OE (Figures 5C–H). The RNA-seq

results were validated by qRT-PCR of randomly selected genes,

including IFIT3, ISG15, and IL6 (Figures 5I–K). Additionally, IPA

revealed significant canonical pathways and biological networks

involved in interferon signaling and antiviral response (Figure 5L),

with molecules such as interferon alpha gene cluster, STAT1,

IFNA2, IFNL1, and TREX1 identified as top upstream regulators

(Figure 5M). These findings suggest that Miz1 overexpression

mimics the effects of Huwe1 KD or Huwe1 inhibition in

enhancing the antiviral response to SARS-CoV-2 infection.
Knockdown of Miz1 impairs antiviral
response to SARS-CoV-2 infection

In contrast to the effects of Miz1 OE, Miz1 KD reduces

interferon alpha and gamma response, TNF signaling,

inflammatory response, and IL-6 signaling during SARS-CoV-2

infection, as demonstrated by the GSEA of RNA-seq data from

A549/hACE2 cells that stably express lentiviral shRNA for Miz1

(Figures 6A, B, Supplementary Figures 5A–E). The RNA-seq results

were validated by qRT-PCR of randomly selected genes, including

interferon alpha 1 (IFNA1), IFIT3, ISG15, interferon gamma

(IFNG), granulocyte colony-stimulating factor (GCSF), and
Frontiers in Immunology 08
interleukin-8 (IL8) (Figure 6C). Furthermore, IPA analysis

identified significant canonical pathways and biological networks

involved in inhibited interferon signaling and antiviral response by

Miz1 KD (Supplementary Figure 5F). Upstream regulator analysis

identified IRF7, IFNL1, IFNA2, NONO, and ETV3 as top upstream

regulators inhibited by Miz1 KD (Figure 6D) and present in the

causal networks (Figure 6E). Notably, these molecules are also

observed as top upstream regulators and in the causal networks

in the case of Miz1 OE (Figure 5M) or Huwe1 KD (Supplementary

Tables 1, 2) or inhibition (Supplementary Tables 4, 5), but with an

opposite activation direction.

Finally, The RNA-seq data from Huwe1 KD or inhibitor, Miz1

OE, and Miz1 KD were subjected to IPA analysis for a parallel

comparison. The Diseases and Functions Analysis revealed the

most relevant biological functions and pathways related to

enhanced antimicrobial and antiviral responses with reduced

virus replication by Huwe1 KD or inhibitor or Miz1 OE.

Conversely, Miz1 KD had the opposite effects (Figure 7A). The

upstream regulator analysis showed that IFNA2, interferon alpha

gene cluster, and IFNL1 were among the top upstream regulators

(Figure 7B) and were present in the causal networks (Figure 7C).

These regulators were activated by Huwe1 KD or inhibitor and

Miz1 OE but inhibited by Miz1 KD (Figures 7B, C). Taken together,

these data suggest that Huwe1 KD or inhibition phenocopies the

effects of Miz1 OE, which can be reversed by Miz1 KD. These

findings imply that Huwe1 plays a role in evading and dampening

the host antiviral response during SARS-CoV-2 infection by

downregulating Miz1.
Miz1 epigenetically regulates the interferon
signaling molecules

Transcription factors regulate gene expression by binding to

various regions of the DNA surrounding the target gene, including

the proximal promoter region upstream of the transcription start

site, as well as regions within introns, exons, and downstream

regions of the gene. To understand the mechanism by which

Miz1 regulates interferon signaling molecules, we queried our

data from chromatin immunoprecipitation followed by

sequencing (ChIP-seq) in stable murine type II-like lung

epithelial cells (MLE-12) expressing shRNA against endogenous

Miz1 and exogenous shRNA-resistant Miz1 mutant with the POZ

domain deletion (DPOZ) or wild-type (WT) Miz1, as we previously

reported (26). Our Miz1 ChIP-seq analysis revealed that Miz1 binds

to the regulatory elements of certain interferon signaling molecules

that are identified as upstream regulators of Miz1 or Huwe1

targeting. Notably, Miz1 was found to bind to the proximal

promoter region upstream of the transcription start site of Ifna1,

Ifna2, and Irf1 (Figure 8A), the intronic region of Ifnar2 and Ifnar1

(Figure 8B), and downstream of Ifnl2 (Figure 8C). The POZ domain

deletion reduced Miz1 binding to these regulatory elements

(Figures 8A–C). Depending on binding partners and cellular

context, Miz1 can mediate transcriptional activation or repression

(20, 49–51). We have previously reported that Miz1 is involved in

epigenetic regulation through histone deacetylation (26, 52, 53).
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FIGURE 5

Miz1 overexpression enhances interferon signaling and antiviral response during SARS-CoV-2 infection. (A) Western blot analysis of exogenous GFP-
Miz1 in stable A549/hACE2 cells overexpressing lentiviral GFP-tagged Miz1 (Miz1 OE cells). (B) Viral titers in the cell culture supernatants from SARS-
CoV-2-treated A549/hACE2 cells expressing control lentiviral vector or lentiviral vector containing GFP-Miz1 at 48 h post infection. (C) GSEA
showing enriched gene sets (FDR <0.25) by Miz1 overexpression in SARS-CoV-2-infected A549/hACE2 cells at 24 h post infection. (D-H) GSEA
showing enrichment plots of the gene sets of “Interferon alpha response”, “Interferon gamma response”, “Inflammatory response”, “TNF signaling via
NF-kB”, and “IL6 signaling” by Miz1 overexpression in SARS-CoV-2-infected A549/hACE2 cells at 24 h post infection. (I-K) mRNA expression of IFIT3,
ISG15, and IL6 in mock- or SARS-CoV-2-infected control and Miz1 OE cells at 24 h post infection. (L) IPA core analysis identified interferon signaling
and antiviral response as the most significant canonical pathways and biological networks affected by Miz1 overexpression in SARS-CoV-2-infected
A549/hACE2 cells at 24 h post infection. (M) IPA upstream analysis revealed the top ten upstream regulators responsible for the gene expression
changes by Miz1 overexpression in SARS-CoV-2-infected A549/hACE2 cells at 24 h post infection. In (B, I-K), Values represent the mean ± SEM.
n=3. Unpaired Student’s t-test was used. **p < 0.01; ***p < 0.001.
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Histone acetylation is a crucial post-translational modification of

histones that regulates chromatin organization and gene expression

(54). Histone acetylation, catalyzed by histone acetyltransferases

(HATs), increases accessibility of transcription factors to DNA,

resulting in transcriptional activation. Conversely, histone

deacetylation, catalyzed by histone deacetylases (HDACs), has the

opposite effect and is generally associated with transcriptional

repression (54). Our ChIP-seq analysis revealed increased histone

H3 acetyl lysine 9 or 14 (H3K9/14ac), which are representative

acetylation marks associated with active promoters, gene
Frontiers in Immunology 10
expression, and transcription factor binding (55, 56), on the

promoter region of the upstream regulators of Miz1 or Huwe1

targeting, including Ifnar1, Ifnar2, Irf1, Irf7, Stat1, and Nono in

Miz1(WT) cells as compared to Miz1(DPOZ) cells (Figure 8D).

These findings indicate that Miz1 plays a role in driving the

increased transcription of these genes. These data are consistent

with predicted activation of these molecules by Miz1 OE and

Huwe1 KD or inhibition, while predicted inhibition of these

molecules by Miz1 KD (Figure 7B). We further validated Miz1

binding on the promoter region of IFNA1 and IFNA2 in A549 or
A B
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E

FIGURE 6

Miz1 silencing suppresses interferon response during SARS-CoV-2 infection. (A) Protein expression of Miz1 in stable A549/hACE2 cells expressing
shRNAs targeting Miz1 at three different sites. (B) GSEA showing downregulated enriched gene sets (FDR <0.25) in SARS-CoV-2-infected A549/
hACE2 cells with Miz1 KD at 24 h post infection. (C) mRNA expression of IFNA1, IFIT3, ISG15, IFNG, GCSF, IL8 in mock- or SARS-CoV-2-infected
A549/hACE2 cells with Miz1 KD at 24 h post infection. Values represent the mean ± SEM. N=3. Unpaired Student’s t-test was used. *p < 0.05;
**p < 0.01; ***p < 0.001. (D) IPA upstream analysis revealing the top ten upstream regulators responsible for the gene expression changes by Miz1
KD in SARS-CoV-2-infected A549/hACE2 cells at 24 h post infection. (E) Causal Network Analysis in IPA identifying the top ten master regulators in
the resulting causal networks.
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human lung epithelial NCI-H23 cells, which stably express

exogenous green fluorescent protein (GFP)-tagged Miz1 as we

previously reported (52, 53) (Figure 8E). Overall, these results

suggest that Miz1 epigenetically regulates interferon signaling

molecules by directly or indirectly binding to target genes and

regulating histone acetylation. Taken together, our data underscores

the crucial role of the Huwe1-Miz1 axis in orchestrating the host

antiviral response during SARS-CoV-2 infection (Figure 9).
Discussion

The COVID-19 pandemic has left an indelible mark on global

public health, posing a formidable challenge to healthcare systems

worldwide. The immune system plays a crucial role in controlling

SARS-CoV-2 infection, and its dysregulation is associated with

disease severity. The interferon response is a critical component

of the innate immune response that controls viral replication and

spread. However, SARS-CoV-2 has been shown to limit the host
Frontiers in Immunology 11
interferon response, but the underlying mechanism is not

fully understood.

In our study, we aimed to investigate the mechanism underlying

the limited host interferon response during SARS-CoV-2 infection.

Our results revealed that SARS-CoV-2 infection increases the

expression of the E3 ubiquitin ligase Huwe1, which then targets

its substrate, the transcription factor Miz1, for degradation. This

degradation of Miz1 results in the inhibition of interferon alpha and

gamma response, which promotes viral replication and hampers

viral clearance. Our study highlights the crucial role of the Huwe1-

Miz1 axis in regulating the host antiviral response and indicates its

dysregulation as a potential contributor to the limited interferon

response during COVID-19. The upregulation of Huwe1 is likely to

be a result of viral manipulation of the host’s machinery to evade the

host immune response. Our findings offer new mechanistic insights

into how SARS-CoV-2 can evade the host immune response by

suppressing interferon signaling. Our study adds to the growing

body of evidence indicating that the host immune response plays a

critical role in SARS-CoV-2 pathogenesis.
A B C

FIGURE 7

Comparison analysis of RNA-seq data from Huwe1 KD or inhibitor, Miz1 OE, and Miz1 KD during SARS-CoV-2 infection using IPA. (A) Diseases and
Functions Analysis of the RNA-seq data showing the top biological functions and diseases affected by Huwe1 KD or inhibition, Miz1 OE, and Miz1 KD
in SARS-CoV-2-infected A549/hACE2 cells at 24 h post infection. (B) Upstream Regulator Analysis of the RNA-seq data showing the top upstream
regulators responsible for the gene expression changes in each condition. (C) Causal Network Analysis of the RNA-seq data showing the top master
regulators and their interactions in the resulting causal networks for each condition.
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Our study identified several common upstream regulators

enriched in interferon signaling molecules through IPA analysis of

Huwe1 or Miz1 targeting, including interferon alpha or IFNAR gene

cluster, IFNL1, IFNA2, IRF1, IRF7, STAT1, NONO, TREX1, ETV3,

and ETV6. Targeting these upstream regulators could potentially

enhance the host antiviral response and reduce virus replication,
Frontiers in Immunology 12
highlighting their potential as therapeutic targets. Furthermore, our

study found that Miz1 regulates the expression of some of these genes

through histone acetylation, by binding to their regulatory elements

or other mechanisms. Specifically, Miz1 increases histone acetylation

on the promoter regions of interferon signaling molecules, leading to

their transcriptional activation. In the current study, Miz1 activates
A

B

C

D

E

FIGURE 8

Miz1 epigenetically regulates interferon signaling molecules. (A-C) ChIP-seq tracks showing Miz1 binding on the promoter region (A), intronic region
(B), or downstream (C) of the interferon signaling molecules as indicated. (D) ChIP-seq tracks showing H3K9/14ac on the promoter region of the
interferon signaling molecules in MLE-12/Miz1(WT) and MLE-12/Miz1(DPOZ) as indicated. (E) ChIP-qPCR showing enrichment of Miz1 binding on the
promoters of IFNA1 and IFNA2 in comparison to the no antibody (no Ab) control in A549 and NCI-H23 cells stably expressing GFP-Miz1 as indicated.
Values represent the mean ± SEM. N=3. Unpaired Student’s t-test was used. **p < 0.01; ****p < 0.0001. In cases where the “no Ab” control yielded
undetectable results, quantification cycle (Cq) values are presented instead of “Fold over no-Ab”.
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the transcription of interferon signaling molecules by increasing

histone acetylation on their promoter regions. Our previous

research has shown that Miz1 represses angiotensin converting

enzyme 2 (Ace2), protocadherin 10 (Pcdh10), interleukin 12A

(Il12a), and cyclin-dependent kinase inhibitor 1A (Cdkn1a, p21

gene) by inducing histone deacetylation through the recruitment of

histone deacetylase 1 (HDAC1) (26, 52, 53). These findings highlight

the versatility of Miz1 in regulating gene expression through different

binding partners and cellular contexts.

Our findings suggest that targeting the Huwe1-Miz1 axis could

serve as a potential therapeutic approach to bolster the host antiviral

response and reduce virus replication. The Huwe1 specific inhibitor

BI8622 could represent a viable therapeutic approach to enhance

interferon response and limit viral replication. In addition, the

overexpression of Miz1 or the inhibition of its degradation may

represent an alternative approach to amplify interferon signaling

and promote viral clearance. Our study provides a foundation for

future investigations into the development of antiviral therapies

targeting the Huwe1-Miz1 axis.

This study only focused on the role of Huwe1 and Miz1 in the

immune response to SARS-CoV-2 infection, and future studies may

need to investigate their potential roles in other aspects of the

infection, such as viral replication and pathogenesis. Other factors,

such as viral proteins or host immune molecules, may also

contribute to the dysregulation of the interferon response. Future

studies should aim to investigate the interaction between the

Huwe1-Miz1 axis and other host-virus factors in regulating the
Frontiers in Immunology 13
immune response to SARS-CoV-2 and the results need to be

validated in animal models and human samples. Our previous

report indicated that Miz1 suppressed ACE2 transcription

through epigenetic repression of the ACE2 promoter. However, in

the present study, we utilized A549/hACE2 cells, which exhibit an

overexpression of exogenous hACE2 not controlled by the

endogenous physiological promoter. Consequently, the regulatory

impact and functional implications of Miz1 on ACE2 are minimal

in this context. In other words, the regulatory influence of Miz1 on

the immune response to SARS-CoV-2 infection appears to be

independent of its role in ACE2 expression regulation.

In conclusion, our study provides new insights into the

molecular mechanisms underlying SARS-CoV-2 evasion of the

host immune response. We have identified a novel mechanism by

which the virus upregulates Huwe1, leading to the degradation of

Miz1 and inhibition of interferon alpha and gamma response,

promoting viral replication and hindering viral clearance.

Targeting the Huwe1-Miz1 axis could provide a promising

approach to developing new antiviral therapies against COVID-19.
Methods

Mice

We utilized 6–8-week-old K18-hACE2 mice in our study. These

mice are genetically engineered to express the human ACE2 protein
FIGURE 9

Illustration of suppression of the interferon response by Huwe1-mediated degradation of Miz1. Upon SARS-CoV-2 infection, the RIG-I pathway
activates the downstream IRF3/7 pathways. Concurrently, Huwe1 is upregulated, resulting in the ubiquitination and degradation of Miz1. In the
absence of degradation, Miz1 facilitates the epigenetic upregulation of interferon signaling molecules through histone acetylation, effectively
inhibiting viral replication.
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under the control of the keratin 18 promoter, thereby directing its

expression in epithelial cells. These mice were procured from

Jackson Laboratories (Stock No: 034860). We also used BALB/c

mice (JAX; Strain #:000651).
SARS-CoV-2 source

The SARS-Related Coronavirus 2, Isolate USA-WA1/2020

(NR-52281) was provided by the Centers for Disease Control and

Prevention and acquired through BEI Resources, NIAID, NIH. The

SARS-Related Coronavirus 2 Mouse Adapted (MA10) virus was

obtained from the Baric Lab at UNC. The viruses were cultured and

quantified on Vero-E6 cells (ATCC). In brief, Vero cells were

maintained in DMEM with 10% Fetal Bovine Serum (FBS) and

Glutamax, with cells having fewer than 20 passages used for all

experiments. Virus stocks were amplified in Vero-E6 cells after

initial inoculation with a low MOI (0.01) and harvested four days

later. Viral titers were determined using a plaque assay on Vero-E6

cells. To prevent genetic drift, viral stocks were used after a single

expansion (passage = 1).
SARS-CoV-2 infection of mice

K18-hACE2 mice and BALB/c mice were anesthetized with

isoflurane and intranasally challenged with 5x104 PFU of the SARS-

CoV-2 WA1 or MA10 respectively. For intranasal infection, mice

were inoculated with the virus in a 50 µL droplet administered to

both the left and right nostrils of each mouse. Inhalation of the

droplet was confirmed for each mouse. Mouse infections were

conducted at the University of Illinois at Chicago (UIC) in

accordance with biosafety level 3 (BSL3) guidelines. All animal

care and experimental procedures were conducted in compliance

with institutional and U.S. National Institutes of Health (NIH)

guidelines and were approved by the UIC Institutional Animal Care

and Use Committee (IACUC).

At 2-, 3-, and 5-dpi, tissues were harvested and homogenized in

PBS. To isolate protein, tissue homogenates were prepared with 1%

triton X-100 and incubated for one hour at room temperature for

inactivation. RNA was isolated using the RNeasy Mini Kit (Qiagen

Cat# 74104) protocol and eluted in a volume of 40 mL of nuclease

free water.
SARS-CoV-2 infection of cells

Cells were inoculated with SARS-CoV-2 (USA/WA1/2020; BEI

Resources) at MOI (multiplicity of infection) = 0.5, and at 2 h,

virus-containing media were removed and cells were washed with

PBS to remove unbound virus particles before being replenished

with fresh media. At 24 or 48 h, cell culture supernatants were

collected for viral quantification, and cells were lysed for Western

Blot or RNA-seq. All SARS-CoV-2 assays were performed in the

BSL-3 facility at UIC.
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Viral quantification

The viral RNA was extracted using TRIzol (ThermoFisher) and

RNA purification was performed using Invitrogen™ PureLink™

RNA Mini Kit (12183025, Invitrogen). Viral titers were quantified

by one step qRT-PCR using TaqMan™ Fast Virus 1-Step Master

Mix (Applied Biosystems™ 4444432) and SARS-CoV-2 RUO

qPCR Primer & Probe Kit (10006713, IDT).
Antibodies for western blot

Miz-1 Antibody (D7E8B, Cell Signaling Technology; 1:500), b-
actin antibody (A5441, Sigma-Aldrich; 1:20,000), Huwe1 antibody

(ab70161, abcam; 1:500), Vinculin antibody (MA5–11690,

Invitrogen; 1;500), GFP antibody (3E6, ThermoFisher; 1:500)

were used for Western Blot.
Stable KD cell lines

StableMiz1 KD cell lines were generated in A549/hACE2 cells with

SMARTvector Lentiviral shRNAs targeting human Miz1

(V3SVHS02_8619648 with target sequence AGTTCACG

CACACGGGGAA, V3SVHS02_4756503 with target sequence

CGGCCCTTCTGACTGTTTA, V3SVHS02_10078083 with target

sequence AGCGCTGCGGCAAGAGATT; Horizon Discovery) or

non-targeting control (Cat #S02–005000–01; Horizon Discovery)

according to the manufacturer’s instructions and selected with

puromycin (0.5 m g/mL). Stable Huwe1 KD cell lines were generated

in A549/hACE2 cells with SMARTvector Lentiviral shRNAs targeting

human Huwe1 (V3SVHS09_5138611 with target sequence

AGCATTGCGTTCTTTCGAT, V3SVHS09_6205369 with target

sequence TTGGTGAGGTCCTATGTTG, V3SVHS09_7079440 with

target sequence CCAGCTAGGCATTCGTCCA; Horizon Discovery)

according to the manufacturer’s instructions and selected with

puromycin (0.5 m g/mL).
RNA-seq

The RNA-seq was conducted by the University of Chicago

Genomics Facility. Briefly, Total RNA was extracted and purified

using NucleoSpin RNA kit. The quality and quantity of RNA were

evaluated using the Agilent Bio-analyzer. The generation of stranded

oligo-dT-based NGS libraries was performed using the Illumina

stranded mRNA library kit. Indexed sequence libraries were pooled

for multiplexing, and paired-end sequencing (100 bp) was carried out

on NovaSEQ6000 with dual-index sequencing primers (Illumina).

The alignment of reads to the hg19 reference genome was performed

using TopHat2, and the evaluation of differential expression was

performed using edgeR, which was carried out by the Research

Informatics Core at the Research Resources Center of the

University of Illinois at Chicago. The enrichment analysis was

performed using curated databases such as GSEA and IPA.
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GSEA analysis of differentially
expressed genes

The GSEA analysis utilized version 4.2.2 of the GSEA software

and the Molecular Signatures Database (MSigDB), which contains

predefined gene sets sharing pathways, functions, chromosomal

localization, or other features. Specifically, the H collection sets,

which comprise hallmark gene sets in MSigDB, were used in this

study. Gene sets containing 15 to 500 genes were selected based on

minimum and maximum criteria, respectively. Significantly

enriched gene sets were determined based on a false discovery

rate (FDR) of less than 0.25.
IPA

The list of differentially expressed genes targeting Huwe1 or

Miz1, containing gene identifiers and corresponding expression

values (log ratio), was uploaded into the IPA software (Qiagen).

Subsequently, the differentially expressed data was analyzed using the

“core analysis” function included in the software, which covered

biological processes, canonical pathways, upstream regulators, and

gene networks. The parameters for the core analysis were set to an

adjusted P value of less than 0.05 and an absolute fold-change greater

than or equal to 2. To identify significant pathways associated with

the differentially expressed genes, a pathway analysis was performed.

Furthermore, an upstream regulator analysis was conducted to

identify regulators that may be responsible for the observed gene

expression changes. A significance threshold of a p-value less than

0.05 and a predicted activation z-score greater than 2 or less than -2

was set for this analysis. To understand the relationships between

genes and pathways, a causal network analysis was conducted.

Moreover, a disease and function analysis was performed to

identify the biological functions and diseases that were most

significantly associated with the differentially expressed genes.

Finally, a comparison analysis was performed using the “Compare

Analysis” function in IPA to compare groups targeting Huwe1 and

Miz1, and to identify the biological differences between them. This

analysis utilizes various statistical methods such as t-tests, ANOVA,

or non-parametric tests to identify the differentially expressed genes

between the groups.
Quantitative PCR, ChIP assay, and
ChIP-seq

For quantitative PCR (qPCR), we used iQ™ SYBR® Green

Supermix (Bio-Rad) and a CFX Connect™ Real-Time PCR

Detection System (Bio-Rad). To obtain mRNA expression levels of a

specific gene, we normalized the data to hypoxanthine-guanine

phosphoribosyltransferase (HPRT) and the primer sequences are

provided in Supplementary Table 7. For qRT-PCR, total RNA was

extracted from lung tissues or isolated cells using NucleoSpin RNA kit

(Macherey-Nagel) and cDNA was synthesized with M-MuLV Reverse

Transcriptase (NEB) following the manufacturer’s instructions.
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For ChIP assays, cells were treated with 25 mM EGS for 20 min

and then fixed with 1% formaldehyde for 10 min. 1 M glycine

(dissolved in PBS) was used to quench the fixation. Cells were then

lysed with ChIP SDS Lysis Buffer (Millipore, Catalog # 20–163) with

protease inhibitors (100 mM PMSF, 10 mM PNPP, 1 mMNa3VO4, 1

mM DTT, 1 mg/ml aprotinin). Lysates were subjected to sonication

on ice to shear DNA to fragments between 200 and 500 bp in size.

Sonication efficiency was determined by analyzing samples by 1%

agarose gel electrophoresis. Sonicated DNA (50 mg) was subjected to

immunoprecipitation with the appropriate antibody (1 to 2 mg).
Precipitated DNA-bead complexes were washed once with Low Salt

Immune Complex Wash Buffer (Catalog # 20–154), once with High

Salt Immune Complex Wash Buffer (Catalog # 20–155), and twice

each with LiCl Immune Complex Wash Buffer (Catalog # 20–156)

and TE Buffer (Catalog # 20–157). Eluted DNA was purified and

subjected to qPCR with primers spanning the gene promoter regions

(Supplementary Table 8).

ChIP-seq was performed and analyzed as we previously reported

(53), using the following antibodies for immunoprecipitation: anti-

Miz1 (H-190 X, Santa Cruz Biotechnology) and anti-acetyl-histone H3

(06–599; MilliporeSigma). Briefly, we quantitated DNA samples with

Qubit and prepared libraries using Illumina TruSEQ, which were then

sequenced on an Illumina NovaSEQ6000 (100 bp, paired-end) at the

University of Chicago Genomics Facility. We demultiplexed raw

sequencing data using Illumina bcl2fastq and aligned sequencing

reads to the mouse genome mm10 using BWA MEM. To prevent

PCR duplication artifacts from affecting downstream results, we

removed PCR duplicates using Picard MarkDuplicates. We called

ChIP peaks relative to inputs with Macs2, produced normalized

bedgraph tracks with the –SPMR flag, and converted these to

bigWig tracks using the UCSC tool bedGraphToBigWig.
Statistical analysis

Statistical analysis was performed using an unpaired Student’s t-

test assuming normal distribution and equal variance. Adequate

power was ensured by selecting sample sizes based on preliminary

results. A p value < 0.05 was considered statistically significant.
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