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Synthetic BSA-conjugated
disaccharide related to the
Streptococcus pneumoniae
serotype 3 capsular
polysaccharide increases
IL-17A Levels, gd T cells,
and B1 cells in mice
Nelli K. Akhmatova1, Ekaterina A. Kurbatova1*,
Anton E. Zaytsev1, Elina A. Akhmatova2, Natalya E. Yastrebova1,
Elena V. Sukhova2, Dmitriy V. Yashunsky2, Yury E. Tsvetkov2

and Nikolay E. Nifantiev2*

1Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera,
Moscow, Russia, 2Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic
Chemistry, Russian Academy of Science, Moscow, Russia
The disaccharide (b-D-glucopyranosyluronic acid)-(1→4)-b-D-glucopyranoside
represents a repeating unit of the capsular polysaccharide of Streptococcus

pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA

conjugate) adjuvanted with aluminum hydroxide induced — in contrast to the

non-adjuvanted conjugate — IgG1 antibody production and protected mice

against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost

immunization. Adjuvanted and non-adjuvanted conjugates induced production

of Th1 (IFNg, TNFa); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/

Th17 cytokines (IL-21) after immunization. The concentration of cytokines in

mice sera was higher in response to the adjuvanted conjugate, with the highest

level of IL-17A production after the prime and boost immunizations. In contrast,

the non-adjuvanted conjugate elicited only weak production of IL-17A, which

gradually decreased after the second immunization. After boost immunization of

mice with the adjuvanted di-BSA conjugate, there was a significant increase in

the number of CD45+/CD19+ B cells, TCR+ gd T cell, CD5+ В1 cells, and

activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR

+ gd T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal

infection, but can also contribute to autoimmune diseases. Immunization with

the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit

autoantibodies against double-stranded DNA targeting cell nuclei in mice.
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Thus, the molecular and cellular markers associated with antibody production

and protective activity in response to immunization with the di-BSA conjugate

adjuvanted with aluminum hydroxide are IL-17A, TCR+ gd T cells, and CD5+ В1
cells against the background of increasing MHC II+ expression.
KEYWORDS

Streptococcus pneumoniae serotype 3, synthetic disaccharide, cytokine, gd T cells, B1
Cells, interleukin 17A, antibody, mice immunoprotection
1 Introduction

Streptococcus pneumoniae (pneumococcus) cause pneumonia,

bacteremia, septic arthritis, meningitis, sinusitis, otitis media and

some other diseases in humans (1, 2). The incidence of community-

acquired pneumonia is one per one thousand adults. The mortality

rate for pneumococcal pneumonia among hospitalized patients is

5–7% (3–7). Symptoms of pneumococcal infection depend on the

localization of the infection. These may include fever, cough, chest

pain, a stiff neck, chills, ear pain and others.

Pneumococcal polysaccharide and conjugate vaccines, which

contain capsular polysaccharides (CPs) from clinically significant S.

pneumoniae serotypes, are available (8). S. pneumoniae serotype 3 is

predominant among other serotypes in various countries (9–12).

Epidemiological data suggests a high incidence of disease caused by

S. pneumoniae serotype 3 (13–15). However, the widespread use of

pneumococcal vaccines should help to reduce the incidence of this

disease (16–19). Improving the quality of S. pneumoniae type 3 in

the composition of pneumococcal vaccines is essential.

Bacterial CPs contain a diverse mixture of oligosaccharides with

varying chain lengths and frame shifts (20). Although their

chemical preparation is practically possible (see, for example

(21),), synthetic oligosaccharide derivatives represent more

convenient antigenic components for the design of conjugate

carbohydrate vaccines (22–25). Currently, a number of

semisynthetic vaccines are under development, including those

against Staphylococcus, Clostridium, Klebsiella, Shigella, and

Enterococcus (25–33). The semi-synthetic glycoconjugate vaccine,

Quimi-Hib, for the prevention of H. influenzae type b infection is

licensed for use in Cuba (34). Optimization of the composition of

pneumococcal vaccines using synthetic oligosaccharides conjugated

with a protein carrier is a priority in contemporary vaccinology (25,

35–38).
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Moreover, synthetic oligosaccharides with precisely defined

chemical structures enable the study of the effect of bacterial

antigens (39, 40), yielding a better understanding of the innate

and cellular immunity, the antibody (Ab) response, and protective

activity of CPs.

Immunization with glycoconjugate vaccines partially mimics

the development of natural infection without actually causing the

disease. In a mouse model, gd T cells and natural killer T cells

(NKT) have been shown to play a crucial role in anti-pneumococcal

immunity by producing Th1 and/or Th17-related cytokines (41).

The ability of semisynthetic glycoconjugates to stimulate cytokine

production in vivo and their influence on the activation of cellular

immunity remain unknown. Here, we report on the effect of a

conjugate of the synthetic disaccharide, which represents a

repeating unit of S. pneumoniae serotype 3 (42), on production of

Th1/Th2/Th17 cytokines in mice, changes in expression of surface

molecules on splenocytes, antibody response, and protection

against S. pneumoniae infection. We also investigated the

production of autoantibodies against double-stranded (ds) DNA.
2 Materials and methods

2.1 The synthetic disaccharide and
its conjugate

The synthetic disaccharide (35, 43) was coupled to BSA (Sigma-

Aldrich, St. Louis, MO, USA), as previously described (35, 44). The

structure of the conjugate is illustrated in Figure 1. BSA is often used
FIGURE 1

The structure of the BSA conjugate with the disaccharide that
corresponds to a repeating unit of the CP from S. pneumoniae
serotype 3.
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as a protein carrier in engineered immunogenic glycoconjugates

and other biological systems (45). Previous studies using MALDI-

TOF mass spectrometry have shown that the di-BSA conjugate

contains, on average, 19 oligosaccharide ligands per protein

molecule, which corresponds to a 9% carbohydrate content by

weight (43, 44). The lyophilized di-BSA conjugate remains stable at

+4°C, with no decrease in activity, for at least three years (i.e.,

observation period).
2.2 Bacterial capsular polysaccharide

Bacterial CP was isolated from the S. pneumoniae type 3

laboratory strain, #10196, which was isolated on June 30, 2011,

from the blood culture of a child suffering from bacteremia in the

microbiology department of the “Scientific Center for Children’s

Health” in Moscow, Russia. The strain had been grown in a semi-

synthetic growth medium. The isolation process for CP has been

previously described elsewhere (46). The presence of CP in the

preparation was confirmed by NMR spectrometry.
2.3 Animals

BALB/c male mice, aged 6–8 weeks (n=162), were purchased

from the Scientific and Production Centre for Biomedical

Technologies in Moscow, Russia, and kept in the vivarium at the

Mechnikov Institute for Vaccines and Sera. Housing, breeding,

blood collection, and euthanasia conditions followed European

Union guidelines for laboratory animal care and use.

Experimental designs were reviewed and approved (Protocol No.

2, dated February 12th, 2019) by the Ethics Committee at

the Institute.
2.4 Conjugated disaccharide-induced
cytokine production

Quantitative determination of cytokines was performed as

previously described (46). Male BALB/c mice (n=6) were

sacrificed, and serum was collected and stored at –20°C until

further quantification of cytokine levels. Using the Flow Cytomix

Mouse Th1/Th2 10-plex test system, cytokine levels were measured

by adding beads coated with monoclonal antibodies to IL-1a, IL-1b,
IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, IL-17A, IL-21 and IL-

22, as well as IFNg and TNFa, following the manufacturer’s

instructions (eBioscience, San Diego, USA) using a Cytomix FC-

500 flow cytometer (Beckman Coulter, Brea, USA).
2.5 Immunization

Mice were intraperitoneally immunized with the di-BSA

conjugate, either adjuvanted or not, with aluminum hydroxide

(Sigma-Aldrich). The amount of carbohydrate in 0.5 mL of the
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experimental semisynthetic vaccine was 20 mg, BSA ~200 mg;
aluminum hydroxide, as an adjuvant, standardized for aluminum,

was added in an amount of 250 mg. The single immunizing dose per

mice was 0.5 mL of the di-BSA conjugate. Animals were given the

vaccine twice, on days 0 and 14 of the study.

Similar immunization schedules were used for the

pneumococcal conjugate vaccine Prevnar 13 (Pfizer, New York,

NY, USA), which contains aluminum phosphate as an adjuvant. A

0.5 mL dose contains 2.2 mg of polysaccharides from serotypes 1, 3,

4, 5, 6A, 7F, 9V, 14, 18C, 19A, 19F, and 23F, as well as 4.4 mg of the
polysaccharide from serotype 6B. The vaccine also contains 32 mg of
the carrier protein, CRM197, and 125 mg of aluminum as aluminum

phosphate. Mice were immunized twice with a single dose of 1.1 mg
of CP from S. pneumoniae type 3 per inoculation (equivalent to half

of the recommended human dose). Control mice were injected

with saline.
2.6 Content of bacterial endotoxins
in glycoconjugates

Detection of bacterial endotoxin impurities in the di-BSA

conjugate was performed using the Limulus amebocyte lysate

ENDOCHROME ™ (Charles River Endosafe Div. of Charles

River Laboratories, Inc., Charleston, US) test obtained from the

Collective Usage Center of the Mechnikov Research Institute for

Vaccine and Sera (Moscow, Russia), in accordance with the

manufacturer’s instructions. The di-BSA conjugate contained

0.08–0.11 EU/mL of endotoxin (LAL-Center, Moscow, Russia).
2.7 Measurement of antibody response to
the disaccharide conjugate

Antibody titers for CP in post-immunization sera were

measured using ELISA. Briefly, plates coated with S. pneumoniae

type 3 CP were incubated with antisera from 6 immunized mice

(42). Wells were washed and secondary antibody was added,

followed by incubation and washing. The results were then

analyzed. Enzyme substrate aliquots (100 mL) were added,

followed by incubation for 20 minutes at 22°C. The reactions

were quenched with 1 M H2SO4. Optical densities (ODs) were

determined using an iMark microplate absorbance reader (Bio-Rad,

Osaka, Japan) at a wavelength of 450 nm. Antibody titers are

expressed as the dilution of serum in which the antibody

was detected.
2.8 Expression of surface molecules on
splenic mononuclear cells

Splenocytes were isolated from mice that had been vaccinated

with the glyconjugate either in the absence of or in the presence of

aluminum hydroxide, one and seven days after primary and booster

immunizations. Single-cell suspensions of splenocytes were
frontiersin.org
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prepared by manually mashing the spleens using the plunger from a

disposable syringe. The ground spleen was then passed through a

nylon mesh and the cells were suspended in PBS. Splenic single-cell

suspensions were then stained with antibodies conjugated to

phycoerythrin (PE) or fluorescein isothiocyanate (FITC) to detect

specific proteins in the cells: CD3e-FITC (clone 145–2C11), CD4-

FITC (clone GK1.5), CD8a-FITC (clone 53–6.7), CD19-FITC

(eBio1D3), CD5-PE (clone 53–7.3), NK.1.1 (clone PK136), CD3/

CD16/CD32 (NKT), CD25-PE (PC61.5), CD4/CD25/Foxp3 (Treg),

gdT (clone gd TCR-PE, eBioGL3), and MHCII-PE (I-EK) (clone

14–4-45). Treg cells were stained with CD4-FITC (clone GK1.5),

together with CD25-PE (PC61.5), and after fixation with the

fixation/permeabilization buffer, with Foxp3- APC (clone FJK-

16s). Splenocytes were incubated with 50 µL of appropriate

monoclonal antibodies (eBioscience, US) at 4°C for 30 minutes.

Erythrocytes were then lysed using red blood cell lysis buffer

(BioLegend, US). After washing with phosphate-buffered saline

(PBS), the samples were fixed using a fixation solution

(BioLegend, US) and analyzed by flow cytometry (Cytomix FC-

500, Beckman Coulter, USA, with the CXP software). The cell

population gate was determined based on forward and side scatter

and cell size. 10,000 cells were recorded per gate.
2.9 Di-BSA-induced active protection in
immunized mice

BALB/c mice were intraperitoneally immunized with the di-

BSA conjugate adsorbed or non-adsorbed on aluminum hydroxide

on days 0 and 14 (twenty animals per conjugate). The same animals

were intraperitoneally challenged after 2 weeks with 105 colony-

forming units of S. pneumoniae type 3/0.5 mL. Non-immunized

control mice (twenty animals per conjugate) were also exposed to

the bacteria. Mortality rates were determined at seven days

post-infection.
2.10 Antibodies against double-
stranded DNA

The analysis of antibodies against ds DNA in the immune sera

of mice was conducted using ELISA. Salmon sperm DNA

(Behringer GmbH, Germany), dissolved in a carbohydrate buffer

solution at a concentration of 20 g/mL, was adsorbed onto the

bottom of the wells. The plates were incubated for 2 hours at 37°C

and then for additional 18 hours at 6°C. The serums were analyzed

using dilutions of 1:10 to 1:1280. As secondary antibodies,

secondary rabbit anti-mouse peroxidase conjugated IgG

(Rockland Immunochemicals Inc., Pottstown, PA) was utilized

(100 mL). After adding tetramethylbenzidine for 15 minutes, the

reaction was terminated with 1 M sulfuric acid. Results were

obtained utilizing a multi-channel automatic photometer

(TiterTek Multiscan MC from Flow Laboratories, England), with

excitation at 490nm. Serums from non-immunized mice, as well as

mice immunized with either Prevnar-13 or BSA adjuvanted or non-

adjuvanted with aluminum hydroxide, were used as controls.
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2.11 Statistical analysis

Between-group comparisons were performed using Mann-

Whitney rank sum tests for independent samples. Fisher exact

tests were conducted to evaluate survival of mice after

pneumococcal challenge. P values ≤0.05 were considered to

indicate statistical significance. Statistical analyses were performed

using the Statistical data analysis software system version 10

(StatSoft Inc., Tulsa, OK, USA).
3 Results

3.1 Antibodies induced by the di-
BSA conjugate

Although the di-BSA conjugate adjuvanted with aluminum

hydroxide was found to be less immunogenic than adjuvanted tri-

and tetra-BSA conjugates, it was still able to induce the production

of opsonizing antibodies and was sufficient for the development of

serotype 3-protective immunity in mice (42).

In this study, we explored the ability of the di-BSA conjugate to

induce antibodies capable of binding to the CP of S. pneumoniae

serotype 3 in ELISA after primary and booster immunization with

and without the adjuvant (Figure 2). The di-BSA conjugate without

adjuvant did not induce Ab production after the prime and boost

immunizations and no difference was observed relative to the control.

The glycoconjugate adjuvanted with aluminum hydroxide induced

no Ab production after prime immunization; however, after booster

injection, the level of Abs increased in seven days (21 d) and was

significantly elevated up to 28 d (14 d after boost). Prevnar 13 (1.1 µg/
FIGURE 2

IgG1 antibody production induced by the adjuvanted and non-
adjuvanted di-BSA conjugate. BALB/c mice (n = 6 per conjugate)
were intraperitoneally injected with the di-BSA conjugate (20 µg/
dose of carbohydrate) adjuvanted and non-adjuvanted with
aluminum hydroxide, on days 0 and 14. The IgG1 Ab titer in the
blood of mice was determined on days 0 (before prime
immunization), days 7, 14, 21, and 28 (7 and 14 days after booster
immunization, respectively), by ELISA, using CP of S. pneumoniae
serotype 3 as the well-coating antigen. Mice (n=6) injected with
saline at the same time served as a control group. AL - aluminum
hydroxide. The data are presented as mean ± standard deviation (M
± SD). The Mann–Whitney rank sum test was used to determine
significance, *P < 0.05.
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dose of carbohydrate of CP of S. pneumoniae serotype 3) induced IgG

Ab production on day 14 after boost immunization (the time of the

study) at a titer of 1:800 (data not shown).
3.2 Active protection upon challenge of
mice immunized with the di-BSA conjugate

Mice immunized with the di-BSA conjugate and di-BSA

conjugate adjuvanted with aluminum hydroxide were challenged

with S. pneumoniae serotype 3 on day 28 (14 d after booster

immunization). All control mice injected with saline and 18 out

of 20 mice immunized with the non-adjuvanted di-BSA conjugate

died on the second day after the challenge (Figure 3).

The non-adjuvanted di-BSA conjugate that failed to induce Ab

production also did not elicit any protection against challenge with S.

pneumoniae serotype 3. However, the same conjugate administered

to mice with aluminum hydroxide induced protection against S.

pneumoniae serotype 3. Thus, aluminum hydroxide is indispensable

for inducing protective immunity to the disaccharide conjugate.

Prevnar 13 (1.1 µg/dose of carbohydrate of CP of S. pneumoniae

serotype 3) protected all mice (n = 6) from the challenge (42).
3.3 Cytokine production in mice

To evaluate cytokine production, mice were intraperitoneally

injected with the di-BSA conjugate adjuvanted or non-adjuvanted

with aluminum hydroxide at a single dose of 20 µg (carbohydrate

content). Serum cytokine levels were determined before injection of

the glycoconjugate (d 0) and on days 1, 7, 15, and 21 (1 and 7 days

after boost immunization, respectively) (Figure 4).

After prime immunization, the non-adjuvanted di-BSA conjugate

induced an increase in the levels of IL-1a, IL-1b, IL-6, IL-13, IL-17A,
IL-21, IFNg, and TNFa compared with that in the control (0 d). After
Frontiers in Immunology 05
booster immunization with the conjugate, IL-5, IL-10, and IL-22

production was induced in addition to these cytokines. The

concentration of IL-4 did not increase in any of the study periods.

After prime immunization, the di-BSA conjugate adjuvanted

with aluminum hydroxide stimulated higher production of IL-1a,
IL-1b, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-21, IL-22, IFNg, and
TNFa compared with the conjugate without the adjuvant. After

booster immunization, all cytokines were found to be produced at

high levels. When the conjugate was administered with the

adjuvant, a very high level of IL-17A production was noted at all

time points. In contrast, when mice were immunized with the

conjugate without the adjuvant, the IL-17A level gradually

decreased even after booster immunization. Regardless of the

presence of the adjuvant, the levels of IL-2 and IL-12p70 did not

increase during all follow-up periods. Free CP of S. pneumoniae

serotype 3 (5 µg/mouse) elevated only the level of IFNg (from 23.1

to 50.8 pg) after double immunization (data not shown). CP-

CRM197 (Prevnar 13) is able to induce the production of IL-1, IL-

2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-17, IFNg, and TNFa (47, 48).

Free aluminum hydroxide did not elicit cytokine production when

administered at the same time points (data not shown).
3.4 Expression of cell-surface molecules
on splenic mononuclear cells

After first immunization with the di-BSA conjugate adjuvanted

and non-adjuvanted with aluminum hydroxide, the number of

CD45+/CD3+ T cells and CD45+/CD4+ T helper cells increased

compared with that in the control. After booster immunization,

regardless of the presence of adjuvant, there was no difference

relative to the control (Figure 5).

After primary and booster immunization with the adjuvanted

di-BSA conjugate, the number of CD45+/CD8+ cytotoxic T cells

(CTLs) increased compared with that in the control. The non-

adjuvanted conjugate did not induce any change in the number of

CTLs during the entire observation period. An interesting result

was revealed in relation to gd T cells. One day after prime

immunization of mice with the adjuvanted and non-adjuvanted

di-BSA conjugate, the number of gd T cells increased compared

with that in the control and decreased to the initial levels on day 7.

However, after booster immunization with the adjuvanted

conjugate, the number of TCR+ gd T cells increased on day 15

(1 d after boost), reaching high values on day 21 (7 d after boost).

In contrast, in the absence of aluminum hydroxide, their values

did not differ from the control level. After booster immunization

with the di-BSA conjugate, the number of CD45+/CD19+ B cells

increased only following booster immunization in the presence of

aluminum hydroxide. After injection of the non-adjuvanted

conjugate, the level of CD45+/CD19+ B cells did not differ from

that in the control. The number of CD5+ B1 increased on day 1

after the first immunization with adjuvanted and non-adjuvanted

conjugate compared with that in the control and then decreased

on day 7. Booster immunization with the adjuvanted di-BSA

conjugate led to an increase of number of CD5+ B1 cells on day

15 (1 d after boost) compared with that in the control, and on day
FIGURE 3

Protective activity of the adjuvanted and non-adjuvanted di-BSA
conjugate. BALB/c mice (n = 20 per conjugate and control group)
intraperitoneally injected with the di-BSA conjugate (20 µg/dose of
carbohydrate) adjuvanted and non-adjuvanted with aluminum
hydroxide on days 0 and 14 were challenged with 105 colony-
forming units of S. pneumoniae serotype 3 on day 28. Mice injected
with saline were used as a control. AL - aluminum hydroxide. The
results of two experiments are summarized. The difference between
mice immunized with the adjuvanted di-BSA conjugate and non-
adjuvanted/non-immunized mice (control) is shown. Fisher exact
test; ***P < 0.001.
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21 (7 d after boost) relative to the non-adjuvanted conjugate.

The administration of the adjuvanted and non-adjuvanted

conjugate increased the number of CD16+/CD32+ natural killer

cells (NK) and CD3+/CD16+/CD32+ natural killer T cells (NKT)

after primary and booster immunization. The adjuvanted and

non-adjuvanted di-BSA conjugate led to increase in the number of

cells expressing CD25+ and the IL-2 receptor and CD4+/CD25+/

Foxp3+ T regulatory cells (Treg). The number of cells expressing

MHC II+ increased only after booster immunization—to a greater

extent on day 21 (7 d after boost)—and was higher than that in the

case of conjugate administration without aluminum hydroxide.

Prevnar 13, containing a CRM197-CP of S. pneumoniae serotype

3 conjugate, induced similar changes on day 28 (14 d after booster

immunization) in the number of cells expressing cell-surface

molecules. Specifically, there was an increased number of (TCR+)

gd T cells, CD45+/CD8+ CTLs, CD5+ B1 cells, CD45+/CD19+ B

cells, CD4+/CD25+/Foxp3+ Tregs, cells expressing CD25+, and cells

expressing MHC II+. The number of NK- and NKT-cells did not

differ from that in the control.

An elevation in Ab production and protection against S.

pneumoniae serotype 3 was detected only after double

immunization with the adjuvanted di-BSA conjugate. This finding

suggests that the cells whose number showed a large increase after

booster immunization (TCR+ gdT cells and CD5+ B1 cells), against
Frontiers in Immunology 06
the background of an increase in the number of activated cells

expressing MHC II+, play a crucial role in the protective activity of

the conjugate.
3.5 Antibodies against
double-stranded DNA

No difference was observed in the level of Abs against ds DNA

relative to the control at the dilution of 1:80 in sera of mice

immunized with the di-BSA conjugate adsorbed and non-

adsorbed on aluminum hydroxide, Prevnar 13, BSA, and free

aluminum hydroxide (Figure 6).
4 Discussion

In contrast to the conjugate without adjuvant, the di-BSA

conjugate adjuvanted with aluminum hydroxide, induced

production of IgG1 antibodies and protected mice against S.

pneumoniae serotype 3 after prime-boost immunization. The role

of adjuvants in enhancing the adaptive immune response to

antigens, including semisynthetic glycoconjugates corresponds to

the data of other authors (49–51).
FIGURE 4

Cytokine production in mice induced by the adjuvanted and non-adjuvanted di-BSA conjugate. BALB/c mice were immunized with the di-BSA
conjugate (20 mg of carbohydrate per mouse) adjuvanted or non-adjuvanted with aluminum hydroxide (n = 24 for each conjugate). Control mice (n = 6)
were injected with saline 24 hours before the start of immunization (0 d). Serum was collected from mice (n=6 for each time point) after immunization.
Cytokine levels were analyzed using flow cytometry. No increase in IL-2 or IL-12 p70 levels was observed in any of the time points (data not shown).
The data is presented as the mean ± SD. Mann-Whitney rank sum tests were used to determine significant differences between control and other
experimental groups; *P <0.05.
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The concentrations of IL-1a, IL-1b, IL-4, IL-5, IL-6, IL-10, IL-
13, IL-17A, IL-21, IL-22, IFNg, and TNFa in mice sera in response
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to the di-BSA conjugate adjuvanted with aluminum hydroxide were

higher compared with those in response to the non-adjuvanted

glycoconjugate. Free aluminum hydroxide is known to stimulate the

production of IL-1b and IL-18, and, when administered with

antigens, the spectrum of cytokines expands (52–58). IFNg, IL-
17A, and IL-22 (a member of the Th17 cytokine family) plays a role

in the early stages of controlling S. pneumoniae infections (59–67).

IL-17 has an important function in protecting against bacterial

carriage and lung infection (59, 65, 68–71). The di-BSA conjugate

adjuvanted with aluminum hydroxide induced a very high level of

IL-17A after the prime and boost immunizations, while the

conjugate without adjuvant caused a weak production of IL-17A

that gradually decreased after the booster injection. A high level of

Th2 cytokines (IL-4 and IL-5) was revealed in mice immunized with

the adjuvanted di-BSA conjugate. Th2 cytokines promote switching

from IgM to IgG, which is associated with high production of IgG1

antibodies (72). The conjugate without adjuvant did not elicit IL-4

production, only weakly stimulated the production of IL-5 even

after boost immunization, and did not induce the antibody

response. Prevnar 13 is known to induce the production of Th1/
FIGURE 6

IgG antibodies to double-stranded DNA in immunized mice,
analyzed by ELISA. ds DNA was used as the well-coating antigen.
Sera to each conjugate, BSA, aluminum hydroxide, and control
(non-immunized mice) (n = 6 for each antigen) was added to each
well in dilutions from 1:10 to 1:1280. AL - aluminum hydroxide;
control - mice injected with saline. After prime-boost immunization,
autoantibodies to ds DNA, which target the cell nuclei, were
not detected.
FIGURE 5

The number of splenocytes expressing membrane molecules in mice immunized with the di-BSA conjugate with and without adjuvant. BALB/c mice
were immunized with the di-BSA conjugate (20 mg/dose of carbohydrate per mouse) adjuvanted or non-adjuvanted with aluminum hydroxide and with
Prevnar 13 (1.1 mg/dose of carbohydrate of CP S. pneumoniae serotype 3 per mouse) adjuvanted with aluminum phosphate. Splenocytes were isolated
from mice (n = 6 for each conjugate and each time point) on the indicated days after immunization. Control mice (n = 6) were injected with saline 24
hours before the start of immunization (0 d). Spleen cell suspensions were stained using antibodies against mouse CD3e-FITC (clone 145–2C11), CD4-
FITC (clone GK1.5), CD8a-FITC (clone 53–6.7), gdT (clone gd TCR-PE, eBioGL3), CD19-FITC (eBio1D3), CD5-PE (clone 53–7.3), NK.1.1 (clone PK136)
CD25-PE (PC61.5), and MHCII-PE (I-EK) (clone 14–4-45). Treg: FITC anti-mouse CD4 (clone GK1.5). Staining with anti-Foxp3-APCconjugated Ab (clone
FJK-16s) was performed according to the manufacturer’s protocol. The results were determined using flow cytometry. The data are shown as the mean
± SD. Mann-Whitney rank sum tests were used to calculate significant differences between control and other experimental groups; *P < 0.05.
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Th2 and Th17 cytokines (47, 48). In our previous studies, we have

shown that Prevnar 13 induced anti-CP S. pneumoniae type 3 IgG1-

antibodies and protected immunized mice from the challenge with

S. pneumoniae type 3 (42).

The di-BSA conjugate and CPs, including that of S. pneumoniae

serotype 3, are not Toll-like receptor (TLR) ligands (46). Purified

CP from S. pneumoniae can bind to macrophages through the

carbohydrate-recognition domains on the mannose receptor,

leading to the production of proinflammatory cytokines such as

IL-1, IL-6, and TNFa, as well as chemokines (73). Another receptor,

the C-type lectin, also known as carbohydrate-binding protein,

SIGN-R1, is expressed by macrophages, particularly in the

marginal zone of the mouse spleen. This receptor is able to bind

carbohydrates from several different serotypes of S. pneumoniae

(73). Other carbohydrate-recognition receptors of macrophages

remain to be identified (74). It is likely that macrophages play a

significant role in the initial stage of the immune response to the di-

BSA conjugate (36, 59, 74–77).

Regardless of the presence of the adjuvant, the number of CD4+

T helper cells involved in the adaptive immune response to the

antigen increased only after the first immunization with the di-BSA

conjugate. The number of CD4+ T cells after booster immunization

with the BSA-conjugated synthetic hexasaccharide related to S.

pneumoniae serotype 14 CP adsorbed on aluminum hydroxide did

not differ from that in the control either (46). However, the number

of CD4+ T helper cells increased on day 14 after booster

immunization in mice immunized with CP of S. pneumoniae

serotype 3 conjugated to CRM197 and adsorbed on aluminum

phosphate (Prevnar 13). This result may be attributable to the

multicomponent composition of the vaccine and the presence of a

small amount of bacterial impurities remaining even after

purification of CPs. The number of CD8+ cytotoxic cells (CTL) in

response to the disaccharide conjugate and Prevnar 13 increased.

Both the adjuvanted di-BSA conjugate and Prevnar 13 significantly

increased the number of (TCR+) gd T cells among the splenocytes after

booster immunization. gd T cells play a crucial role in prevention of

pneumococcal infection owing to their ability to recognize unprocessed

non-peptide antigens (41). A large number of gd T cell ligands remain

unknown to date (78, 79). In mice, most gd T cells are found in the

body’s barrier tissues, with a small proportion in the blood and spleen

(46, 80–83). The activation of gd T cells through TCRs can be mediated

by non-classical MHC molecules (e.g., T10/T22 and members of the

CD1 family) and MHC-unrelated molecules (e.g., viral glycoproteins

and butyrophilin 3A1) (79, 84–87). Putatively, gd T cells bind the

oligosaccharide portion of the glycoconjugate without processing in

antigen-presenting cells (APCs) in combination with MHC-like

molecules activate cytokine production. gd T cells produce a large

variety of cytokines and exhibit potent cytotoxic activity against

pathogens through apoptosis-inducing receptors (FAS and TRAIL),

as well as cytolytic proteins such as perforin and granzyme (88, 89).

Furthermore, gd T cells can function as professional APCs that require

surface interactions with opsonized cells (90). The di-BSA conjugate

has been shown to induce the formation of opsonizing antibodies (42).

Certain subsets of gdT cells express CD4. These cells have a Th1 or Th2

phenotype and produce IL-2, IL-4, IL-17A, IFNg, and TNF (70). The
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di-BSA conjugate induced the production of IFNg and TNFa (Th1

cytokines); IL-4, IL-5, and IL-13 (Th2 cytokines); IL-17A (Th17

cytokines); IL-21 (Th2 and Th17 subsets); and IL-22 (Th1 and Th17

subsets). gd T cells play a crucial role in immune protection against

extracellular respiratory bacteria (41, 91, 92). The potential role of gd T
cells in pneumococcal infection has only been investigated in animal

models using S. pneumoniae serotype 3 (41). During infection, the

number of gd T cells can significantly increase, accounting for up to

50% of all peripheral lymphocytes (93, 94). In the mouse model, gd T
cells accumulate and become activated in the lungs during S.

pneumoniae infection (95, 96). Mice with a lack of gd T cells exhibit

a higher bacterial load in their lungs and lower survival rates compared

to control mice (66, 95, 97). The absence of gd T cells is associated with

impaired secretion of MIP-2, TNFa, and IL-17, as well as a poor

recruitment of neutrophils (66, 95, 97). In addition, gd T cells produce

IFNg during S. pneumoniae infections of serotypes 3 and 1. Along with

their early role in defense against S. pneumoniae, gd T cells participate

in the resolution stage of pneumococcal pneumonia, eliminating

inflammatory mononuclear phagocytes (98). Therefore, gd T cells are

essential for the host’s defense against S. pneumoniae (66, 95).

The di-BSA conjugate adjuvanted with aluminum hydroxide

and Prevnar 13 adsorbed on aluminum phosphate induced a

significant increase CD5+ B1 cells after booster immunization.

CD5+ B1 cells are mainly located in the peritoneal and pleural

cavities, but very small amounts were also found in the spleen (99,

100). CD5+ В1 cells are activated primarily by T-independent

antigens (101, 102) and play an important role in protecting

against pneumococcal infections (103) This role may be

attributed to their production of natural antibodies as well as

possible participation in the T-dependent immune response (102,

104–109). The B cell receptor (BCR) is involved in the phagocytosis

of bacteria by B1 cells (110). CD5+ B1, isolated from the spleens of

mice, primarily induce IL-17 production by T cells (111). B1 cells

present antigen to antigen-specific T cells and induce more efficient

proliferation than conventional CD19+ B cells (107, 108). After

immunization with the di-BSA conjugate, the number of CD19+ B

cells in the blood increased, regardless the presence of the adjuvant.

The number of CD19+ B cells increased during all observation

periods. Ovalbumin-presenting B1 cells were found to express a

higher level of MHC class II compared to naïve B1 cells.

Immunization with either the adjuvanted or the non-

adjuvanted di-BSA conjugate increases the number of natural

killer (NK) cells and natural killer T (NKT) cells. NK cells,

through the production of IFNg, participate in the early immune

response to pulmonary S. pneumoniae infection. NKT cells have a

key role in protecting against pneumococcal infection. When mice

lacking NKT cells were infected with S. pneumoniae serotype 3, they

exhibited a higher mortality rate and bacterial load in their lungs

compared to wild-type mice. It has been suggested that IFNg
derived from NKT cells has a critical function in protecting mice

against pneumococcal pneumonia. Using S. pneumoniae serotype 1,

it has also been found that NKT cells are an important innate

immune effector in clearing pneumococci from the body. NKT cells

can indirectly or directly assist B cells in mounting antibody

responses and have a crucial role in the production of antibodies
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against pneumococcus and in the switch of classes in response to

the administration of pneumococcal vaccines (112–114).

IL-17A, gd T, and CD5+ В1 cells can also contribute to

autoimmune diseases (115). In response to infection or

immunization, autoreactive clones of B1 cells can be produced in

the body’s own tissues (109, 116–118). The expansion of

autoreactive clones of B cells is controlled by IL-10, leaving the

BCR in a state of anergy. After booster immunization, there was an

increase in the number of CD4+/CD25+/FoxP3+ T regulatory cells

(Tregs) on the background of interleukin-10 (IL-10) production,

which regulates the development of the immune response. After

prime-boost immunization with the di-BSA conjugate or Prevnar

13, no formation of autoantibodies against ds DNA targeting cell

nuclei was detected.

5 Conclusion

The key effectors of the immune response in mice following

immunization with aluminum hydroxide adjuvanted di-BSA

conjugate, associated with antibody response and protection from

infection by S. pneumoniae serotype 3, were IL-17A, gd T, and CD5+

B1 cells, with an increase in the number of MHC II-expressing cells

after booster immunization. The roles of non-conventional gd T

cells, B1 cells, and production of IL-17A upon pneumococcal

immunization with the semisynthetic glycoconjugate may provide

an in-depth understanding of post-vaccination defense

mechanisms, enabling the development of novel efficient therapies

and improvement of existing vaccine formulations.
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56. Franchi L, Núñez G. The NLRP3 inflammasome is critical for alum-mediated IL-
1b secretion but dispensable for adjuvant activity. Eur J Immunol. (2008) 38:2085–9.
doi: 10.1002/eji.200838549

57. Li H, Nookala S, Re F. Aluminum hydroxide adjuvants activate caspase-1 and
induce IL-1beta and IL-18 release. J Immunol. (2007) 178:5271–6. doi: 10.4049/
jimmunol.178.8.5271

58. Li H, Willingham SB, Ting JP-Y, Re F, Edge C. Inflammasome activation by
Alum and Alum’s adjuvant effect are mediated by NLRP3. J Immunol. (2008) 181:17–
21. doi: 10.4049/jimmunol.181.1.17

59. Zhang Z, Clarke TB, Weiser JN. Cellular effectors mediating Th17- dependent
clearance of pneumococcal colonization in mice. J Clin Invest. (2009) 119:1899–909.
doi: 10.1172/JCI36731

60. Yamamoto N, Kawakami K, Kinjo Y, Miyagi K, Kinjo T, Uezu K, et al. Essential
role for the p40 subunit of interleukin-12 in neutrophil-mediated early host defense
against pulmonary infection with Streptococcus pneumoniae: involvement of
interferon-gamma. Microbes Infect. (2004) 6:1241–9. doi: 10.1016/j.micinf.2004.08.007

61. Sun K, Salmon SL, Lotz SA, Metzger DW. Interleukin-12 promotes gamma
interferon-dependent neutrophil recruitment in the lung and improves protection
against respiratory Streptococcus pneumoniae infection. Infect Immun. (2007) 75:1196–
202. doi: 10.1128/IAI.01403-06

62. Nakamatsu M, Yamamoto N, Hatta M, Nakasone C, Kinjo T, Miyagi K, et al.
Role of interferon-gamma in Valpha14+ natural killer T cell-mediated host defense
against Streptococcus pneumoniae infection in murine lungs. Microbes Infect. (2007)
9:364–74. doi: 10.1016/j.micinf.2006.12.003

63. Yamada M, Gomez JC, Chugh PE, Lowell CA, Dinauer MC, Dittmer DP, et al.
Interferon-gamma production by neutrophils during bacterial pneumonia in mice. Am
J Respir Crit Care Med. (2011) 183:1391–401. doi: 10.1164/rccm.201004-0592OC

64. Weber SE, Tian H. Pirofski LA CD8+ cells enhance resistance to pulmonary
serotype 3 Streptococcus pneumoniae infection in mice. J Immunol. (2011) 186:432–42.
doi: 10.4049/jimmunol.1001963

65. Lu YJ, Gross J, Bogaert D, Finn A, Bagrade L, Zhang Q, et al. Interleukin-17A
mediates acquired immunity to pneumococcal colonization. PLoS Pathog. (2008) 4:
e1000159. doi: 10.1371/journal.ppat.1000159

66. Ma J, Wang J, Wan J, Charboneau R, Chang Y, Barke RA, et al. Morphine
disrupts interleukin-23 (IL-23)/IL-17-mediated pulmonary mucosal host defense
against Streptococcus pneumoniae infection. Infect Immun. (2010) 78:830–7.
doi: 10.1128/IAI.00914-09

67. van Maele L, Carnoy C, Cayet D, Ivanov S, Porte R, Deruy E, et al. Activation of
type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during
Streptococcus pneumoniae infection. J Infect Dis. (2014) 210:493–503. doi: 10.1093/
infdis/jiu106

68. Kadioglu A, Coward W, Colston MJ, Hewitt CR. Andrew PW CD4-T
lymphocyte interactions with pneumolysin and pneumococci suggest a crucial
protective role in the host response to pneumococcal infection. Infect Immun. (2004)
72:2689–97. doi: 10.1128/IAI.72.5.2689-2697.2004

69. Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M,
et al. CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal
colonization. Proc Natl Acad Sci USA. (2005) 102:4848–53. doi: 10.1073/
pnas.0501254102
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