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Objective: The aim of this study was to identify the molecular subtypes of breast

cancer based on chromatin regulator-related genes.

Methods: The RNA sequencing data of The Cancer Genome Atlas–Breast

Cancer cohort were obtained from the official website, while the single-cell

data were downloaded from the Gene Expression Omnibus database

(GSE176078). Validation was performed using the Molecular Taxonomy of

Breast Cancer International Consortium dataset. Furthermore, the immune

characteristics, tumor stemness, heterogeneity, and clinical characteristics of

these molecular subtypes were analyzed. The correlation between chromatin

regulators and chemotherapy resistance was examined in vitro using the

quantitative real-time polymerase chain reaction (qRT-PCR) and Cell Counting

Kit-8 (CCK8) assays.

Results: This study identified three stable molecular subtypes with different

prognostic and pathological features. Gene Ontology, Kyoto Encyclopedia of

Genes and Genomes, and protein–protein interaction analyses revealed that the

differentially expressed genes were associated with disease processes, such as

mitotic nuclear division, chromosome segregation, condensed chromosome,

and specific chromosome region. The T stage and subtypes were correlated with

the clinical features. Tumor heterogeneity (mutant-allele tumor heterogeneity,

tumor mutational burden, purity, and homologous recombination deficiency)

and tumor stemness (RNA expression-based stemness score, epigenetically

regulated RNA expression-based stemness score, DNA methylation-based

stemness score, and epigenetically regulated DNA methylation-based

stemness score) significantly varied between the three subtypes. Furthermore,

Western blotting, qRT-PCR, and CCK8 assays demonstrated that the expression
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of ASCL1 was positively correlated with chemotherapy resistance in

breast cancer.

Conclusion: This study identified the subtypes of breast cancer based on

chromatin regulators and analyzed their clinical features, gene mutation status,

immunophenotype, and drug sensitivity. The results of this study provide

effective strategies for assessing clinical prognosis and developing personalized

treatment strategies.
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Introduction

Recently, breast cancer (BC) has become a major health concern

among women worldwide. According to the Global Burden of

Disease report, BC accounts for 30% of all cancers in women (1).

The cancer statistics published in the CA journal revealed that BC is

the most prevalent cancer in women and that its incidence continues

to increase (2). Molecular biology studies have demonstrated that BC

can be divided into the following four subtypes based on the

expression of specific molecular markers: luminal A, luminal B,

human epidermal growth factor receptor 2 (HER2)-positive, and

triple-negative BC subtypes (3). The prognosis of patients with BC

has not improved although several novel tumor markers have been

identified and various innovative treatment modalities have been

developed. Previous studies have demonstrated that patients with

metastatic BC are associated with poor prognosis with a median

overall survival (OS) of approximately 10 months (4). Therefore,

there is an urgent need to identify novel specific tumor biomarkers

that can accurately predict the prognosis of BC.

Epigenetic alterations play a major role in the development and

progression of cancer (5). Previous studies have suggested that

epigenetic changes, including DNA methylation, histone

modification, and chromatin remodeling, are potential targets for

the precision treatment of BC (5–7). Furthermore, chromatin

regulators (CRs) play an indispensable role in regulating

epigenetic processes (8). CRs epigenetically modulate gene

expression and chromatin structure in response to both

endogenous and exogenous cues. Epigenetic studies have

suggested that the dysregulation of CRs can reprogram the

epigenetic map of chromatin, contributing to the occurrence of

various diseases, including cancer. Based on their epigenetic roles,

CRs can be primarily categorized into the following three groups:

DNA methylation factors, histone modifiers, and chromatin

remodeling factors (9). These three groups of CRs interact with

each other and are correlated with biological processes. The

dysregulation of CRs is reported to be associated with diverse

biological processes, such as inflammation, apoptosis, autophagy,

and cell proliferation (10). In BC, CRs induce post-translational
02
modification to activate estrogen receptor (ER), modulating the

development and progression of ER-positive BC (11).

CR-related genes are closely associated with drug sensitivity.

The CR-mediated alterations in the plasticity of chromatin promote

tumor heterogeneity, resulting in the development of drug

resistance in tumors (12). The effects of CRs on drug sensitivity

in BC and the underlying mechanisms are unclear and must

be elucidated.

In this study, the CRs associated with the prognosis of BC were

identified using differential analysis and Cox analysis. Based on

consistent clustering results, stable molecular subtypes with diverse

prognostic and pathological features were identified. Furthermore, the

immune characteristics, tumor stemness and heterogeneity, clinical

characteristics, and functional pathways of different molecular subtypes

were analyzed. Differential analysis was performed to identify the most

significant differentially expressed genes (DEGs) in different molecular

subtypes and explore their relationship with drug sensitivity. Finally,

the core gene ASCL1 was selected for in vitro validation.
Materials and methods

Data collection and identification of CR-
related genes

The RNA sequencing data of The Cancer Genome Atlas–Breast

Cancer (TCGA-BRCA) cohort were obtained from the official

website (https://portal.gdc.cancer.gov/) and converted into

transcripts per million formats. Additionally, the clinical follow-

up, survival, and staging data were downloaded. To reduce bias in

the statistical analysis, the data of patients with BC whose OS data

were missing or had a follow-up time of <30 days and male patients

with BC were excluded. Tumor mutational burden (TMB) and

mutant-allele tumor heterogeneity (MATH) scores were calculated.

CR-related genes were retrieved from the literature (10).

Differentially expressed CRs were identified using the limma

package in R software based on the following criteria: |log fold

change (logFC)| >1 and false discovery rate (FDR) < 0.05 (13).
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Prognostic and enrichment analysis

The enrichment of differentially expressed CRs in the followingGene

Ontology (GO) terms was determined: molecular functions, biological

processes, and cellular components. Additionally, the enrichment of

differentially expressed CRs inmolecular pathways was determined using

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The

“clusterProfiler” package was used to perform GO and KEGG analyses

(14). The GeneMANIA website (http://genemania.org/) was used to

construct the protein–protein interaction (PPI) network. The prognostic

values of DEGs were determined using univariate Cox regression

analysis. The “Survminer” and “Survival” packages were used to

perform survival analysis.
Genotyping analysis and characterization
of CR-related genes

Based on the expression of CR-related prognostic mRNA, a

dimensional reduction of mRNA genotypes was performed using

K-means clustering analysis with the “ConsensusClusterPlus” R

package (15). Samples were divided into k clusters in which each

sample belonged to the cluster with the most similar mean. To

determine the construct validity of the genotyping clusters, the

Kaplan–Meier log-rank test was used to compare survival between

the clusters. Gene expression in different clusters was presented as

a heatmap.
Analysis of the correlation between
immune characteristics among
different clusters

Lists of genes encoding immune checkpoints and

immunomodulators were downloaded from an integrated

repository portal for tumor-immune system interactions (TISIDB,

http://cis.hku.hk/TISIDB/download.php). Tracking Tumor

Immuno-phenotype (http://biocc.hrbmu.edu.cn/TIP/) was used to

calculate the immunoactivity score in different clusters. The

pathway activity score was downloaded from the Gene Set Cancer

Analysis website (GSCA, http://bioinfo.life.hust.edu.cn/GSCA/#/).

The “CIBERSORT” package was used to evaluate the degree of

tumor immune cell infiltration in different clusters. Gene

expression, immune checkpoints, immunomodulators, and

pathway activity scores in different subtypes were compared using

the Kruskal–Wallis test. All results were visualized using the

“ggplot2” and “ggpubr” packages.
Analysis of gene mutation, tumor
stemness, tumor heterogeneity, and
clinical features of different clusters

TMB and MATH were used to predict the efficacy of tumor

immunotherapy and tumor heterogeneity, respectively. The
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“maftools” package was used for calculating TMB and MATH

scores and visualizing gene mutation in BC (16). The

microsatellite instability (MSI), Neo, and purity scores were

retrieved from the literature (17, 18). Six tumor stemness scores

[RNA expression-based stemness score (RNAss), epigenetically

regulated RNA expression-based stemness score (EREG-EXPss),

DNA methylation-based stemness score (DNAss), epigenetically

regulated DNA methylation-based stemness score (EREG-

METHss), differentially methylated probe-based stemness score

(DMPss), and enhancer element stemness score (ENHss)] were

retrieved from the literature (19). Tumor stemness scores in

different clusters were compared using the Kruskal–Wallis test.

The chi-square method was used to analyze the clinicopathological

characteristics of different clusters All results were visualized using

the “ggplot2,” “ggpubr,” and “ggalluvial” packages.
Identification of DEGs and the related
pathways between three clusters

The following three pairs of clusters were analyzed to identify the

DEGs: C3 and non-C3, C2 and non-C2, and C1 and non-C1. The R

software gene set variance analysis package was used to examine the

pathway score with the parameter set as method = “ssgsea” (20).

“Estimate” and “ssgsea” methods were used to perform immune-

related analysis. Correlation analysis was used to analyze the

relationship between DEGs and pathway scores. The most significant

DEGs were selected for the subsequent experiment. The correlation

between immune cell infiltration and clinical characteristics was

performed to explore the relationship between gene expression,

immune cell infiltration, and clinical characteristics.
Analysis of DEGs among three clusters
using single-cell data

The single-cell data used in this study were exclusively obtained

from tumor tissues. Furthermore, the Seurat R toolkit (v4.0.6) was

used for processing single-cell data for dimensionality reduction,

clustering of cell subspecies, and visualization (21). The data of cells

were excluded based on the following criteria: (I) cells with >10% of

mitochondrial genes; (II) cells with <500 transcripts per cell. The

data were log-transformed, and the top 2,000 variable genes were

selected as the input features of the principal component analysis

(PCA). The dimensionality reduction was performed using a PCA

matrix with 50 components using the RunPCA function of Seurat.

The Uniform Manifold Approximation and Projection (UMAP)

algorithm was used to further perform dimensionality reduction of

the data, while the RunUMAP function was used to visualize the

cluster. The function FindAllMarkers was used to identify

unique marker genes for different cell types and label different

cell types using classical cell markers. The dotplot displayed the

section dedicated to the marker gene section. The expression of

DEGs between three clusters was examined using the

Featureplot function.
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Experimental materials

The Cell Counting Kit-8 (CCK8) detection kit was purchased

from MedChemExpress, USA. The CellTiter 96® Aqueous One

Solution Reagent Kit for cell viability detection was obtained from

Promega Co. (Madison, WI, USA). Lipofectamine 3000 was

purchased from Invitrogen Co. (Carlsbad, CA, USA). The ASCL1

expression plasmid with the green fluorescent protein tag (pGensil-

1-ASCL1) was designed by Sangon Biotech Co. Anti-ASCL1, anti-

b-actin, anti-ABCC1, and anti-ABCG2 antibodies were purchased

from Hua’an Biologic Co.
Cell culture

MCF7 cells were purchased from the Cell Resource Center,

Institute of Basic Medicine, Chinese Academy of Medical Sciences

and Peking Union Medical College and cultured in Dulbecco’s

modified Eagle’s medium (DMEM) (4.5 g glucose, GIBCO)

supplemented with 10% fetal bovine serum (GIBCO) and 1%

penicillin/streptomycin (GIBCO). MCF7-ADR and MCF7-Taxol

cells were purchased from Bena Culture Collection Co. and Ya’an

Biology Co. (Guangzhou, China), respectively, and cultured in

Roswell Park Memorial Institute-1640 (RPMI-1640) medium

(GIBCO) supplemented with 10% fetal bovine serum (GIBCO)

and 1% penicillin/streptomycin (GIBCO). All cells were cultured at

37 °C in a 5% CO2 humidified incubator.
Cell transfection

MCF7, MCF7-ADR, and MCF7-Taxol cells were seeded in six-well

plates and cultured to achieve 90% confluency. The cells were transfected

with the indicated plasmid using Lipofectamine 3000, following the

manufacturer’s instructions. Briefly, 2.5 mg of plasmid was mixed with 5

mL of P3000 in 125 mL of serum-free DMEM or RPMI-1640 medium.

Meanwhile, 5 mL of Lipofectamine 3000 was mixed in 125 mL of serum-

free DMEM or RPMI-1640 medium. These two mixtures were

combined and incubated for 15 min at room temperature before

addition to cells. The transfection efficiency was evaluated at 48 h

post-transfection under an inverted fluorescence microscope.
Quantitative real-time polymerase chain
reaction analysis

Total RNA was extracted fromMCF7, MCF7-ADR, and MCF7-

Taxol cells using TRIzol reagent (Takara, Dalian, China). The

isolated RNA was reverse-transcribed into complementary DNA

(cDNA) using the reverse transcription kit (Takara), following the

manufacturer’s instructions. Specific primers were used for

amplification with cDNA as a template. The specific primers were

as follows: Forward: CAAGCAAGTC AAGCGACAGC; Reverse:

TTGACCAACTTGACGCGGTT. Based on the Ct value, the

expression of the target gene was calculated using the

2−DDCT method.
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Western blotting analysis

Cells were lysed in radioimmunoprecipitation assay lysis

buffer on ice. Equal amounts (20 mg) of proteins were subjected

to sodium dodecyl sulfate-polyacrylamide gel electrophoresis using

a 10% gel. The resolved proteins were transferred to 0.2-mm and

0.45-mm polyvinylidene difluoride membranes. The membranes

were blocked with 5% skim milk powder for 1 h and incubated

with primary antibodies (diluted 1:1,000) overnight at 4°C. The

membranes were washed thrice with Tris-buffered saline containing

0.05% Tween-20 (TBST) (10 min/step). Immunoreactive signals

were developed using a chemiluminescence solution. The protein

gray values were analyzed using ImageJ software. The expression

of the target protein was calculated using ACTB as the

reference protein.
CCK8 assay

Cells in the logarithmic phase were selected to prepare cell

suspension. MCF7-ADR (5×103 cells/100 µL) and MCF7-Taxol

cells (5×103 cells/100 µL) were seeded in 96-well cell culture

plates and cultured for 24 h at 37°C. Next, the MCF7-ADR cells

were incubated with drugs at concentrations of 0, 5, 30, 50, 80, and

100 mg/L, while the MCF7-Taxol cells were incubated with drugs at

concentrations of 0, 5, 10, 20, 25, and 50 mg/L. At 48 h post-

treatment, cells were incubated with 10 µL of CCK8 reagent for 2 h.

The absorbance of the samples at 450 nm was measured. The

inhibition rate was calculated as follows: inhibition rate = (1 −

experimental group absorbance value/control group absorbance

value). The half-maximal inhibitory concentration (IC50) value

was calculated.
Statistical analysis

Means between two groups were compared using the t-test, while

those between more than two groups were compared using the

Wilcoxon rank-sum and Kruskal–Wallis tests. Univariate Cox

regression and chi-squared tests were used to assess the differences

between count data. The log-rank test was used to evaluate the

prognosis of cancer. Differences were considered significant at p < 0.05.
Results

DEGs and potential function of CRs in BC

In total, 65 differentially expressed CRs (14 downregulated CRs

and 51 upregulated CRs) were identified between healthy breast

tissues and BC tissues in the TCGA-BRCA cohort (Supplementary

Figure S1). GO and KEGG enrichment analyses revealed that most

upregulated CRs were closely related to methylation, histone

modification, nuclear chromosome segregation, chromatin

assembly, DNA modification chromosome segregation, chromatin

remodeling, lysine degradation, and cell cycle (Figure 1A).
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Meanwhile, the downregulated CRs were associated with

methylation, histone modification, chromatin remodeling, lysine

degradation, and cell cycle (Figure 1A). PPI network analysis

demonstrated that DEGs were associated with chromatin

assembly or disassembly, methylation, chromatin remodeling, and

chromatin organization involved in the regulation of transcription

(Figure 1B). Univariate Cox analysis was performed to identify

DEGs related to the prognosis of BC. The following 10 genes

exhibited prognostic significance in patients with BC: ASCL1,

BRCA2, CBX2, ERCC6L, PRDM12, PRDM16, PRMT8, RAD51,

RAD54B, and UBE2T (Figure 1C). These genes were selected for

subsequent analyses.
Frontiers in Immunology 05
Identification and validation of different
molecular subtypes

To identify the subtypes, a consensus clustering analysis was

performed to categorize TCGA-BRCA samples based on the

expression profiles of 10 CR-related genes. The METABRIC

dataset was used for validation. The cumulative distributive

function (CDF) delta area analysis indicated that a relatively

stable clustering effect was achieved when k was equal to 3 in

TCGA-BRCA (Figures 2A, C) and METABRIC cohorts (Figures 2B,

D). Thus, three subtypes were identified in TCGA-BRCA

(Figure 2E) and METABRIC cohorts (Figure 2F). The Kaplan–

Meier curves demonstrated that the survival outcomes significantly
A

B

C

FIGURE 1

Identification of DEGs and potential function of chromatin regulators in breast cancer. (A) GO terms and KEGG pathways in which the DEGs are
enriched. (B) PPI network of DEGs. (C) Prognosis-related genes were screened using univariate Cox analysis. DEGs, differentially expressed genes;
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein–protein interaction.
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varied between the three subtypes with cluster 1 exhibiting the most

favorable prognosis in TCGA (p = 0.0016, Figure 2G) and

METABRIC cohorts (p = 0.00054, Figure 2H). The DEGs

between the three subtypes in two cohorts were represented using

heatmaps (Supplementary Figure 2).
Immune characteristics and potential
functions of different subtypes

Next, the immune characteristics and potential functions of

different subtypes were examined. The stromal, immune, and

estimate scores varied between the subtypes. Compared with those in

cluster 1, the stromal, immune, and estimate scores were significantly

lower in cluster 3 (Figures 3A–C). Analysis of the correlation between

immune activity and different subtypes demonstrated that the immune

activity scores in cluster 3 were lower than those in clusters 1 and 2,

especially in terms of immune cell recruitment activities (Figure 3D).

Additionally, the proportions of B cells, CD4 cells, CD8 cells, T helper

(Th) cells, dendritic cells (DCs), natural killer (NK) cells, and plasma

were varied between the subtypes (Figure 3E). Analysis of the activity of

pathways in different subtypes revealed that apoptosis, cell cycle, DNA

damage, epithelial-to-mesenchymal transition (EMT), ER and AR,

PI3K-AKT, RAS-MAPK, RTK, and TSC-mTOR varied between the

subtypes (Figure 3F).

The expression of immune checkpoint and immunomodulators

in different subtypes was analyzed (Supplementary Figure S3A).

Immunomodulator inhibitor-related (Supplementary Figure S3B),

major histocompatibility complex (MHC)-related (Supplementary

Figure S3C), receptor-related (Supplementary Figure S3D),

immunomodulator stimulator-related (Supplementary Figure

S3E), and chemokine-related genes (Supplementary Figure S3F)

were differentially expressed in the three clusters. Furthermore,

immune checkpoint pathway-related genes exhibited differential

expression in the three clusters (Supplementary Figures S3G, H).
Tumor heterogeneity, stemness, and
mutation in different subtypes

To examine the tumor heterogeneity and mutation profiles in

different subtypes, the indicators DMPss, DNAss, ENHss, EREG-

EXPss, EREG-METHss, and RNAss (Figures 4A–F), as well as

MATH, MSI, TMB, Neo, purity, and homologous recombination

deficiency (HRD) scores (Figures 4G–L), were analyzed. The

RNAss, EREG-EXPss, DNAss, and EREG-METHss were

significantly different between the three subtypes. Additionally,

the MATH, TMB, purity, and HRD scores varied between the

three subtypes. TP53, PI3KCA, TTN, GATA3, and MUC16 were

significantly mutated in the three subtypes (Figure 4M).
Clinical characteristics of the
three subtypes

Next, the clinical characteristics of the three different subtypes

were examined. A Sankey diagram was used to visualize the total
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characteristics of the three clusters (Supplementary Figure S4A). T

and tumor stages were closely related to the three subtypes. T1,

stage 1, and luminal A subtypes were enriched in cluster 1

(Supplementary Figures S4C, F, G). However, other clinical

characteristics (N, M, and age) were not significantly different

between the three clusters (Supplementary Figures S4B, D, E).
Enrichment of DEGs between the three
clusters in pathways

The following three subtype pairs were compared to identify

DEGs: C1 and non-C1 groups, C2 and non-C2 groups, and C3 and

non-C3 groups. Compared with those in the non-C1 group, the

CBX2 expression levels were significantly downregulated and the

TFF1 expression levels were upregulated in the C1 group

(Figure 5A). Meanwhile, compared with those in the non-C2

group, the TFF1 express ion levels were significantly

downregulated and the CBX2 expression levels were significantly

upregulated in the C2 group (Figure 5B). Additionally, compared

with those in the non-C3 group, the PADI2 expression levels were

significantly downregulated and the ASCL1 expression levels were

significantly upregulated in the C3 group (Figure 5C). The most

significant gene (ASCL1) was selected for subsequent analyses.

Correlation analysis revealed a significant correlation of AURKA,

AURKB, BUB1, HJURP, TOP2A, and TTK with tumor proliferation,

G2M checkpoint, MYC targets, and DNA replication (Figure 5D).
Single-cell data analysis of the distribution
and expression of DEGs in various clusters

Single-cell data were used to show the distribution of different

cell types (Figure 6A), molecular subtypes (Figure 6B), and cell

statuses (Figure 6C). The distribution of various cell types in

different samples was also examined (Figure 6D). Additionally,

the expression of various cell markers was analyzed (Figure 6E).

Analysis of gene expression and distribution at the single-cell

level (Figure 6F) revealed that ERBB4, FOXA1, TFF1, CBX2, PADI2,

ASCL1, BUB1, HJURP, and TTK were expressed in tumor cells.

Meanwhile, BUB1, HJURP, and TTK were expressed in T cells or

NK cells. These DEGs can potentially contribute to the functions of

tumor cells, T cells, or NK cells.
ASCL1 is significantly correlated with the
clinical characteristics and immune
cell infiltration

The expression of ASCL1 was significantly correlated with

clinical characteristics and immune cell infiltration. Analysis of

the correlation between ASCL1 expression and clinical

characteristics revealed that factors, such as pathological T stage

(Figure 7A), pathological N stage (Figure 7B), pathological M stage

(Figure 7C), ER status (Figure 7D), progesterone receptor (PR)

status (Figure 7E), HER2 status (Figure 7F), menopause status
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(Figure 7G), and age (Figure 7H), were associated with ASCL1

expression. Compared with other clinical factors, ASCL expression

was closely related to ER status and PR status. Therefore, ER status

and PR status were used for stratified OS analysis. In ER-positive
Frontiers in Immunology 07
and PR-positive BC, ASCL1 expression predicted poor prognosis

(Figures 7J, K). However, ASCL1 expression was not significantly

correlated with the OS rate in ER-negative and PR-negative BC

(Figure 7I, L).
A B

D

E F

G H

C

FIGURE 2

Identification and validation of different molecular subtypes. The consensus matrix revealed patients with three distinct CRG-related subtypes in (A)
TCGA and (B) METABRIC datasets. Relative change in area under the CDF curve in (C) TCGA and (D) METABRIC datasets. Area under the CDF curve
of a consensus matrix in (E) TCGA and (F) METABRIC datasets. Kaplan–Meier overall survival curves of patients with different subtypes determined
based on CRGs (log-rank test) in (G) TCGA and (H) METABRIC datasets. DEGs, differentially expressed genes; CRGs, chromatin regulator-related
genes; TCGA, The Cancer Genome Atlas; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium; CDF, cumulative
distribution function.
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Next, the correlation between the expression levels of genes and

immune cell infiltration was examined. ASCL1 expression was

negatively correlated with the estimate (Supplementary Figure

S5A), immune (Supplementary Figure S5B), and stromal scores

(Supplementary Figure S5C). Analysis of the correlation between

immune cell proportion and ASCL1 expression revealed that

ASCL1 expression was positively correlated with the proportion

of eosinophils, Th2 cells, and NK CD56bright cells (Supplementary

Figures S5D–F) and negatively correlated with the proportion of
Frontiers in Immunology 08
neutrophils, macrophages, DCs, NK CD56dim cells, B cells, and

plasmacytoid DCs (pDCs) (Supplementary Figures S5G–L).
ASCL1 contributes to chemotherapy
resistance in BC

CRs are often closely related to drug sensitivity. ASCL1 was the

most DEG among the three clusters. To examine the correlation
A B

D

E

F

C

FIGURE 3

Immune scores and pathway activities of the three subtypes. (A) Stromal score in the three subtypes. (B) Immune score in the three subtypes. (C) Estimate
score in the three subtypes. (D) Immune activity score in the three subtypes. (E) Immune cell infiltration score in the three subtypes. (F) Pathway score in the
three subtypes. ***p < 0.001; **p < 0.01; *p < 0.05.
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between ASCL1 and chemotherapy resistance, the IC50 values of

different drugs against different cell lines were obtained from the

Genomics of Drug Sensitivity in Cancer database to perform

correlation analysis. ASCL1 expression was significantly correlated

with resistance to paclitaxel and doxorubicin (Figures 8A, B). qRT-

PCR analysis revealed that ASCL1 expression in the MCF7-Taxol

(Figure 8C) and MCF7-ADR (Figure 8D) cell lines was significantly

higher than that in the MCF7 cell lines. Additionally, ASCL1 was

knocked down inMCF7-Taxol (Figure 8E) andMCF-ADR (Figure 8F)

cell lines, which was confirmed using qRT-PCR analysis. The results of
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the CCK8 assay demonstrated that ASCL1 knockdown significantly

decreased the IC50 values of Taxol drugs against MCF7-Taxol (Figure

8G) and doxorubicin against MCF7-ADR (Figure 8H).

In this study, western blotting and qRT-PCR analyses were

performed to examine the correlation between ASCL1 and multiple

drug resistance. Western blotting analysis demonstrated that

ASCL1 knockdown downregulated the protein expression levels

of ABCC1 and ABCG2 (Figures 8I, J). This indicates that ASCL1

expression was significantly correlated with chemotherapy

resistance in BC.
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FIGURE 4

Tumor heterogeneity, stemness, and mutation in different subtypes. (A) DMPss, (B) DNAss, (C) ENHss, (D) EREG-EXPss, (E) EREG-METHss, and (F)
RNAss in different subtypes. (G) MATH, (H) MSI, (I) TMB, (J) Neo, (K) purity, and (L) HRD scores in different subtypes. (M) Gene mutation in different
subtypes. ****p<0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns: no significance. DMPss: differentially methylated probe-based stemness score;
DNAss, DNA methylation-based stemness score; ENHss, enhancer element stemness score; EREG-EXPss, epigenetically regulated RNA expression-
based stemness score; EREG-METHss, epigenetically regulated DNA methylation-based stemness score; RNAss, RNA expression-based stemness
score. MATH, mutant-allele tumor heterogeneity; TMB, tumor mutational burden; MSI, microsatellite instability; HRD, homologous
recombination deficiency.
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Discussion

The identification of different tumor molecular subtypes is

crucial for developing precision treatment and identifying novel

therapeutic targets. Advances in molecular technology have

revealed the role of CRs in tumor initiation and progression (22).

However, limited studies have comprehensively analyzed the

functional implications of CRs in BC.

This study identified different tumor molecular subtypes using

differential analysis and Cox univariate analysis. Screening for

prognostic-related CRs revealed the following 10 prognosis-

related CRs: ASCL1, BRCA2, CBX2, ERCC6L, PRDM12, PRDM16,

PRMT8, RAD51, RAD54B, and UBE2T. Furthermore, functional

annotation using GO, KEGG, and PPI network analyses revealed

that these genes are primarily involved in mitotic nuclear division

processes and chromosome segregation and organization. To

investigate the mechanisms contributing to heterogeneity in CR-

related subtypes, different characteristics of the three clusters were

analyzed. Previous studies have demonstrated that the tumor

microenvironment (TME) encompasses stromal cells, immune

cells coexisting with tumor cells and their secreted factors,

vascular endothelial cells, and extracellular matrix (23). In the

initial stage of tumor colonization or growth, the TME hinders

the occurrence and development of tumors (24). However, the

continuous stimulation of tumor antigens and immune activation

responses results in the exhaustion or remodeling of the related

effector cells in the TME, rendering them unable to perform

physiologica l funct ions or promoting the mal ignant
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manifestations of tumors (25). The immune, stromal, and

estimate scores were analyzed to evaluate the immune status

of the three clusters. Cluster 3 exhibited the lowest immune,

stromal, and estimate scores and decreased immune cell

infiltration. These changes are associated with poor prognosis.

Additionally, the differential expression of immune checkpoints

and immunomodulatory factors between the three subtypes

was analyzed. The expression levels of immune checkpoints

and immunomodulatory factors varied between the three

clusters, indicating the contribution of these factors to

subtype heterogeneity.

Tumor heterogeneity, which is closely related to tumor

progression and prognosis, was analyzed based on MATH, MSI,

TMB, Neo, purity, and HRD scores (18). MATH effectively

represented the deviation in minor allele frequency value

distribution of specific mutation sites, demonstrating a positive

correlation with tumor heterogeneity. Furthermore, TMB exhibits a

strong correlation with the efficacy of PD-1/PD-L1 inhibitors. MSI,

which results from impaired DNA mismatch repair in tumor

tissues, serves as a crucial biomarker for identifying tumors with

deficient DNA mismatch repair. Neoantigens, which arise from

non-synonymous mutations and represent tumor-specific antigens,

are potential immunotherapy targets owing to their abundant

expression and enhanced immunogenicity in heterogeneous

tumor cells. Moreover, tumor purity is significantly correlated

with clinical characteristics, genomic expression, and biological

characteristics of patients with tumors. HRD status, which serves

as a crucial indicator for the treatment choice and prognosis of
A
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FIGURE 5

DEGs in the three clusters and their related pathways. DEGs between the following pairs: (A) C1 and non-C1 groups; (B) C2 and non-C2 groups; (C) C3 and
non-C3 groups. (D) Correlation analysis revealed the pathways in which DEGs are enriched. DEGs, differentially expressed genes.
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various tumors, is highly correlated with the sensitivity to platinum-

based chemotherapy drugs and PARP inhibitors. In this study,

MATH, TMB, purity, and HRD varied between the three subtypes.

This indicated the presence of tumor heterogeneity, contributing to

BC progression.

Advances in molecular and cancer biology have enabled the

identification of various genomic, epigenomic, transcriptomic, and

proteomic signatures that are correlated with cancer stemness.

These molecular signatures were frequently linked to specific

oncogenic signaling pathways that regulate transcriptional

networks, which maintain cancer cell growth and proliferation

(26). Transcriptional and epigenetic dysregulation of cancer cells

promotes the acquisition of oncogenic dedifferentiation and

stemness traits by altering signaling pathways involved in

maintaining the physiological stem cell phenotype (27).

Furthermore, the tumor stemness and mutation profiles of the

three molecular subtypes were examined. The RNAss, EREG-

EXPss, DNAss, and EREG-METHss varied between the three

subtypes. Gene mutation in different clusters was analyzed. TP53,

PI3KCA, TTN, GATA3, and MUC16 were significantly mutated in

the three subtypes. Mutations in tumor suppressor genes result in

function loss and promote tumor progression.
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The clinical characteristics are also related to the progression of

cancer. Therefore, the clinical characteristics of the three clusters

were examined. T stage was significantly correlated with the tumor

molecular subtypes in the three subtypes. T1, stage 1, and luminal A

subtypes accounted for a large proportion of cluster 1, which was

correlated with a favorable prognosis. However, other clinical

characteristics (N, M, and age) were not significantly correlated

between the three clusters.

To further explore the differential gene expression patterns

between groups and the related pathway changes, the three subtypes

were subjected to pairwise differential analysis. ASCL1 was identified as

the most significantly upregulated gene and played a crucial role in

regulating chromatin and epigenetic regulation. Additionally, ASCL1 is

a key transcription factor (TF) in neuroendocrine tumors (28). ASCL1

is often enriched in transcriptionally active genomic regions of super-

enhancers, which are characterized by a high density of TF binding

sites and play a crucial role in modulating chromatin interactions with

TFs during reprogramming (29). In this study, analysis of the

correlation between CR and drug sensitivity demonstrated that

chromatin status was correlated with anthracycline sensitivity in both

ER-negative and ER-positive BC, as well as in both node-negative and

node-positive BC (30).
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FIGURE 6

The expression and distribution of DEGs among different clusters based on single-cell data analysis. The distribution of different cell types (A),
different molecular subtypes (B), and different cell statuses (C). (D) The proportion of different cell types in samples. (E) Cell markers were displayed
using “dotplot.” (F) The expression and distribution of DEGs among different clusters were analyzed using the “Featureplot” package. DEGs,
differentially expressed genes.
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Previous studies have demonstrated that ASCL1 reprograms prostate

cancer by remodeling chromatin. Targeting ASCL1 can effectively change

the phenotype of prostate cancer andmitigate drug resistance (31). ASCL1

confers osimertinib resistance to lung adenocarcinoma by initiating an

EMT-related gene expression program in a permissible cellular

environment (32). Additionally, ASCL1 plays a crucial role in

neuroblastoma pathogenesis by promoting cell proliferation and

differentiation (33). Mechanistic studies have revealed that ASCL1 can
Frontiers in Immunology 12
promote cAMP-response element binding protein (CREB) expression in

prostate cancer. The phosphorylation of CREB promotes GPX4

transcription, inhibiting ferroptosis and conferring prostate cancer cells

with resistance to androgen receptor antagonists (34). The CCK8 and

qRT-PCR assay results demonstrated that ASCL1 plays a major role in

conferring chemotherapy resistance to BC cells.

ABCC1, a multidrug resistance protein, increases drug efflux by

affecting the function of the ATP binding cassette (ABC) drug efflux
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FIGURE 7

Clinical characteristics and prognosis are associated with ASCL1 expression. The correlation between ASCL1 expression and (A) pathologic T stage,
(B) pathologic N stage, (C) pathologic M stage, (D) ER status, (E) PR status, (F) HER2 status, (G) menopause status, and (H) age. Overall survival was
analyzed based on ER status [(I) ER-positive; (J) ER-negative] and PR status [(K) PR-positive; (L) PR-negative]. ***p < 0.001; *p < 0.05. ER, estrogen
receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.
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pump, which is also named MRP1, contributing to multidrug

resistance development in cancer cells (35). ABCG2, which is one

of the members of ABC superfamily G, confers therapy resistance to

cancer cells by promoting drug efflux (36). As ABCG2 is closely

related to BC chemotherapy resistance, it is also called BC resistance

protein. The correlation between ASCL1, ABCC1, and ABCG2 was

examined using Western blotting. ASCL1 knockdown

downregulated the protein expression levels of ABCC1 and

ABCG2 in MCF7-ADR and MCF7-Taxol cell lines. This indicated

that ASCL1 is closely related to the chemosensitivity of BC.

This study identified the potential role of CRs in modulating the

immune, mutation, and prognosis profiles of BC by dividing BC into

different subtypes based on CRs. One study demonstrated that CRs

regulate anthracycline sensitivity by modulating DNA accessibility in BC

(30). Anthracycline and paclitaxel drugs are commonly used in BC

chemotherapy and have important implications for BC treatment.

Therefore, DEGs between different subtypes were analyzed to identify

the core gene (ASCL1). Additionally, the effect ofASCL1 on chemotherapy
Frontiers in Immunology 13
drug sensitivity was examined. The potential effects of CRs on the

treatment of BC were clarified to provide a reference for identifying

reliable targets and improving the clinical outcomes of patients with BC.

This study has some limitations that must be addressed in

future studies. The construction and validation of the signature

were dependent on the retrospective data from the TCGA database.

Prospective studies using real-world data must be performed to

assess the clinical feasibility of these molecular subtypes.

Additionally, this study focused only on verifying the effect of

ASCL1 on chemosensitivity. Further in vitro and in vivo

experiments must be performed to elucidate the potential

mechanism underlying the effect of ASCL1 on chemosensitivity.
Conclusions

This study identified CR-associated subtypes of BC and

comprehensively analyzed their clinical features, gene mutation
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FIGURE 8

ASCL1 confers chemotherapy resistance to breast cancer cells. Spearman’s analysis of the correlation between (A) ASCL1 and paclitaxel, as well as between
(B) ASCL1 and doxorubicin. qRT-PCR analysis of the expression of ASCL1 between the following pairs: (C) MCF7 and MCF7-Taxol cells; (D) MCF7 and MCF7-
ADR cells. The efficiency of ASCL1 knockdown in (E) MCF7-Taxol and (F) MCF7-ADR cells. The correlation between ASCL1 expression and taxol resistance in
(G) MCF7-Taxol and (H) MCF7-ADR cells was examined using the CCK8 assay. Western blotting analysis of the correlation between ASCL1 and
chemoresistance in (I) MCF7-Taxol and (J) MCF7-ADR cells. Ctrl, control group; KD, ASCL1 knockdown group; qRT-PCR, quantitative real-time polymerase
chain reaction; CCK8, cell counting kit-8. MRP1: Another name for ABCC1. ***p < 0.001; **p < 0.01; *p < 0.05.
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status, immunophenotype, and drug sensitivity. These results

provide a solid foundation for assessing clinical prognosis and

developing personalized treatment strategies.
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SUPPLEMENTARY FIGURE S1

Heatmap of chromatin regulator-related DEGs between tumor and healthy

tissues. DEGs, differentially expressed genes.

SUPPLEMENTARY FIGURE S2

Heatmap of chromatin regulator-related DEGs between different subtypes in
the (A) TCGA-BRCA and (B) METABRIC cohort. DEGs, differentially expressed

genes; TCGA-BRCA, The Cancer Genome Atlas–Breast Cancer; METABRIC,
Molecular Taxonomy of Breast Cancer International Consortium.

SUPPLEMENTARY FIGURE S3

Expression of immune checkpoint-related and immunomodulator-related genes
in different subtypes. (A) Summary of the expression of immune-checkpoint-

related and immunomodulator-related genes in different subtypes. (B) Expression
of immunomodulator inhibitor-related genes in the three subtypes. (C) Expression
of MHC-related genes in the three subtypes. (D) Expression of receptor-related

genes in the three subtypes. (E) Expression of immunomodulator stimulator-
related genes in the three subtypes. (F) Expression of chemokine-related genes in

the three subtypes. (G)Expressionof immune checkpoint (inhibitor)-related genes
in the three subtypes (H) Expression of immune checkpoint (stimulator)-related

genes in the three subtypes. ***p < 0.001; **p < 0.01; *p < 0.05. MHC, major

histocompatibility complex.

SUPPLEMENTARY FIGURE S4

Clinical characteristics of different subtypes. (A) Total clinical characteristics
of different subtypes. Chi-square test of the clinical characteristics of (B) age,
(C) T stage, (D) N stage, (E)M stage, (F) tumor stage, and (G) tumor subtype in

different subtypes. ***p < 0.001; **p < 0.01; *p < 0.05.

SUPPLEMENTARY FIGURE S5

ASCL1 expression is correlated with immune cell infiltration. The estimate
method was used to evaluate the correlation of ASCL1 expression with (A)
estimate, (B) immune, and (C) stromal scores. Single-sample gene set
enrichment analysis revealed that ASCL1 expression was significantly

correlated with the proportions of (D) eosinophils, (E) Th2 cells, (F) NK

CD56bright cells, (G) neutrophils, (H) macrophages, (I) DCs, (J) NK CD56dim

cells, (K) B cells, and (L) pDCs. Th2, T helper 2; NK, natural killer; DCs, dendritic

cells; pDCs, plasmacytoid DCs.
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