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Introduction: Hemophagocytic lymphohistiocytosis (HLH) is a rare, complicated

and life threatening hyperinflammatory syndrome that maybe triggered by

various infectious agents, malignancies and rheumatologic disorders. Early

diagnosis and identification of the cause is essential to initiate appropriate

treatment and improve the quality of life and survival of patients. The recently

developed Onco-mNGS technology can be successfully used for simultaneous

detection of infections and tumors.

Methods: In the present study, 92 patients with clinically confirmed HLH were

etiologically subtyped for infection, tumor and autoimmunity based on CNV and

microbial data generated by Onco-mNGS technology, and a predictive model

was developed and validated for the differential diagnosis of the underlying

disease leading to secondary HLH. Furthermore, the treatment outcomes of

patients with HLH triggered by EBV infection and non-EBV infection were

evaluated, respectively.

Results: The current study demonstrated that the novel Onco-mNGS can

identify the infection and malignancy- related triggers among patients with

secondary HLH. A random forest classification model based on CNV profile,

infectious pathogen spectrum and bloodmicrobial community was developed to

better identify the different HLH subtypes and determine the underlying triggers.
Abbreviations: HLH, hemophagocytic lymphohistiocytosis; mNGS, metagenomic next-generation

sequencing; CNV, copy number variation; CNVs, copy number variations; EBV, Epstein-Barr virus; CMV,

Cytomegalovirus; NTC, no template control; RPM, reads per million; PCoA, principal coordinate analysis;

PERMANOVA, permutational multivariate analysis of variation; LEfSe, linear discriminant analysis effect

size; LDA, linear discriminant analysis; CR, complete remission; PR, partial remission; NR, non-remission;

BALF, bronchoalveolar lavage fluid; CSF, cerebrospinal fluid; AMP, amplification; DEL, deletion; NS., no

significant difference; ROC curve, receiver operating characteristic curve; WBC, white blood cells.
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The prognosis for treatment of HLH patients is not only associated with CNV, but

also with the presence of pathogens and non- pathogens in peripheral blood.

Higher CNV burden along with frequent deletions on chromosome 19, higher

pathogen burden and lower non-pathogenic microbes were prognosis factors

that significantly related with unfavorable treatment outcomes.

Discussion: Our study provided comprehensive knowledge in the triggers and

prognostic predictors of patients with secondary HLH, which may help early

diagnosis and appropriate targeted therapy, thus improving the survival and

prognosis of the patients.
KEYWORDS

hemophagocytic lymphohistiocytosis, etiological stratification, prognostic assessment,
onco-mNGS, machine learning
Introduction

Hemophagocytic lymphohistiocytosis (HLH), also known as a

hemophagocytic syndrome, is a life-threatening hyperinflammatory

syndrome caused by aberrantly activation of cytotoxic T

lymphocytes, natural killer cells, and macrophages, resulting in

hypercytokinemia and immune-mediated injury in multiple

organs (1). As a syndrome, the clinical manifestations of HLH

vary, including fever, organomegaly, cytopenia, consumptive

coagulopathy, hypertriglyceridemia, and elevation of acute-phase

reactants. Subspecialists in different fields, such as hematology/

oncology, infectious diseases, rheumatology/clinical immunology

are challenged by this rare multifaceted syndrome since patients

often suffer from recurrent fever, cytopenia, liver dysfunction, and a

sepsis-like syndrome that may rapidly progress to terminal multiple

organ failure. Therefore, although HLH is a rare disease, clinical

physicians should be aware of HLH, because early recognition may

prevent irreversible organ damage and subsequent death (2, 3).

HLH is generally classified as primary (genetic) or secondary

(reactive), in which primary HLH is the predominant subtype in

children and the secondary HLH is the most common type in adults

patients (1, 4). Secondary HLH is commonly triggered by infections

or malignancies, but also be induced by autoimmune disease and

medications (5). Although HLH can occur at any age, but most

clinical guidelines, prospective studies, and treatment trials have

focused on paediatric patients. The treatment protocols HLH-94

and HLH-2004 have been established as scientific cornerstones for

diagnosis, classification, and treatment of HLH in patients younger

than 18 years (6, 7). In the year 2019, the HLH Steering Committee

of the Histiocyte Society developed these recommendations for

diagnosis and treatment of HLH in adults (1). Infections are the

most prevalent triggers of HLH, and a variety of infective pathogens

are associated with HLH, mainly viruses such as Epstein-Barr virus

(EBV) and Cytomegalovirus (CMV), but also bacteria, parasites, and

fungi. It is reported that viral infection is the most frequent trigger,

either as a primary infection in healthy people or after reactivation
02
in immunosuppressed patients, of which Herpes viruses account for

62% of reported viral cases of HLH in adults, and 43% of the viral

cases are due to EBV and 9% to CMV (4). Bacterial infections are

reported in 9% of adult HLH cases, of which 38% were due to

tuberculosis. Parasites and fungi are rare triggers of HLH, with

histoplasma, leishmania, plasmodium, and toxoplasma being the

most frequently reported. Though the list of infections that have

been reported to occur with HLH is extensive, some cases are

influenced by geographic region (leishmaniasis and tick-borne

illnesses), season (influenza viruses, tick-borne illnesses), and

socioeconomic status (tuberculosis). Adult HLH has also been

associated with a variety of malignancies, including T-cell or

natural killer cell lymphomas, B-cell lymphomas, leukemias,

Hodgkin lymphoma, other hematologic neoplasms, solid tumors,

and other non-specified neoplasms (4). Besides, HLH can also occur

during chemotherapy and is often associated with an infection (8).

A comprehensive evaluation and systematic diagnosis of patients

with suspected HLH is required due to the complex etiology of HLH.

In the clinical practice, several simultaneous assessments should

begin once the patient was suspected with HLH. Laboratory and

imaging studies should be performed to gather supportive evidence of

a diagnosis of the syndrome of HLH and assess which organ systems

are involved and the severity of involvement, and evaluations for

infections and malignancies should be performed in all patients,

including laboratory studies, bone marrow evaluation, general

imaging, and biopsy of any suspicious findings (9). As HLH is an

aggressive and fatal syndrome, early diagnosis and identification of

the cause are essential to initiate appropriate treatment and improve

the quality of life and survival of patients. However rapid

identification of the underlying infectious cause of HLH is

challenging because traditional etiological diagnostics are time-

consuming and sometimes fail to identify the pathogens (10).

Besides, traditional diagnosis of malignant tumors is also time-

consuming with a low positive rate, and it greatly increases the

psychological and economic burden on patients due to invasive

measures. The newly emerging metagenomic next-generation
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sequencing (mNGS) may be a potential optimal solution, which may

help improve the clinical diagnosis of underlying infections in

hematological diseases. Owing to its unbiased, rapid and broad-

range detection capability, mNGS has been applied in many

complicated infection cases related HLH and successfully identified

the underlying pathogenic microorganisms (11–19). However,

conventional mNGS was only designed for rapid identification of

pathogens associated with infectious diseases. Previous studies have

demonstrated that the recently developed Onco-mNGS technology

can be successfully used for simultaneous detection of infections and

tumors (20–22). This is because it not only allows for the precise

identification of pathogenic microorganisms in clinical samples based

on microbial data from mNGS, but also provides information on

human chromosome copy number variations (CNVs) in patients

withmalignancy by analysis of human-derived genomic data (23, 24).

Nevertheless, the clinical value of Onco-mNGS technology for HLH

patients remains to be further explored.

Herein, we attempted to evaluate the diagnostic performance of

Onco-mNGS in patients with HLH to further improve the efficiency

of HLH etiologic screening. In the present study, 92 patients with

clinically confirmed HLH were etiologically subtyped for infection,

tumor and autoimmunity based on CNVs and microbial data
Frontiers in Immunology 03
generated by Onco-mNGS technology, and a predictive model

was developed and validated for the differential diagnosis of the

underlying disease leading to secondary HLH. Furthermore, the

treatment outcomes of patients with HLH triggered by EBV

infection and non-EBV infection were evaluated, respectively.
Methods

Study design and patients

The present study was conducted using the remaining samples

routinely collected at Department of Haematology, Beijing

Friendship Hospital, Capital Medical University between September

2021 and August 2022 from patients diagnosed with HLH based on

HLH-2004 diagnostic criteria (Figure 1). Since the causative factors of

secondary HLH are similar in both paediatric and adult populations

(mainly complex infections, tumours and autoimmune diseases, etc.),

and since there is an urgent need for studies related to stratified

diagnosis and prognostic assessment in both paediatric and adult

patient populations, the age range of the patients included in the

present study was 1-76 years (with a median age of 35 years), with a
FIGURE 1

Overall design and flowchart of this study. A total of 118 samples were finally enrolled in this study after excluding samples that failed pass the quality
control and without complete clinical information. Blood samples were selected for further microbes identification and chromosomal copy number
variations analysis in this study. Abbreviations: HLH, hemophagocytic lymphohistiocytosis; mNGS, metagenomic next-generation sequencing.
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male/female ratio of 44.57%:55.43% (Table 1). As a single-centre

retrospective clinical study, we firstly completed the random

enrolment of patients based on the definitive diagnosis of

secondary HLH, then completed the clinical grouping of the

etiology of each patient with secondary HLH after clinical

diagnostic data retrieval and clinical confirmation, and further

completed the Onco-mNGS testing of peripheral blood samples of

each patient. Finally, based on the CNV parameters and characteristic

microorganisms obtained and combined with the clinical indicators,

we completed the construction and efficacy assessment of random

forest binary or ternary classifiers for secondary HLH etiological

stratification diagnosis and treatment prognosis assessment.

The study was approved by the Ethics Committee of Beijing

Friendship Hospital, Capital Medical University, and all data were

anonymized prior to analysis. The study was conducted in
Frontiers in Immunology 04
accordance with the Declaration of Helsinki and the study data

were obtained from Department of Haematology, Beijing

Friendship Hospital, Capital Medical University. Informed

consent was obtained from all participants or their legal guardians.
DNA extraction, library preparation
and NGS

Body fluid samples and other types of specimens from the

residual specimens in the clinical laboratory were collected. DNA

extraction and library preparation from clinical samples were

performed by using an NGS Automatic Library Preparation

System (MatriDx Biotech Corp. Hangzhou). The quality of DNAs

was assessed using a BioAnalyzer 2100 (Agilent Technologies; Santa

Clara, CA, United States) combined with quantitative PCR to

measure the adapters before sequencing. The libraries were then

adjusted (aiming for 20 million (M) reads) and pooled for NGS on

an Illumina NextSeq550Dx system using the sequencing strategy of

single-end (SE) 50 base pairs (bp). For contamination control,

irrelevant cell line-based control samples were used in parallel

throughout the process.
Pathogen determination and analysis of
abnormal CNV signatures

A total of 10-20 million reads were obtained for each sample.

Clean reads obtained after raw data demultiplexing and adapter

trimming were subjected to microbial identification based on a

reference database containing over 20000 microorganisms. All

microorganisms detected in clinical samples based on Onco-mNGS

are first filtered with those detected in the parallel NTC (no template

control) (background microorganisms), and remained microbes with

a ratio of unique reads per million (RPM) above 10 or if the organism

was not detected in the parallel NTC. All the microorganisms

authentically present in clinical samples were defined as

microbiota. Substantially, all species of microbiota were looked up

in PubMed to determine whether the organisms cause infection, and

the positive pathogenic microorganisms were defined as pathogens.

Simultaneously, sequencing reads were mapped to the human

reference genome (hg19) from the NCBI database, and only

uniquely positioned reads were selected for subsequent analysis.

The reference genome was fragmented into contiguous windows of

fixed length, and read depths were calculated for each window and

then normalized to the total number of reads per sample. The copy

number ratio for each window was obtained by dividing the

normalized read depth by the average read depth in the reference

dataset. The copy number was then taken as log2 and adjacent

windows with similar ratios are combined into fragments annotated

with chromosome position and average ratio. The copy number of

each fragment was calculated based on the mean ratio and normal

copy number of the corresponding chromosome and then

compared to a preset threshold to validate the CNV.

The results of the etiological screening of the enrolled patients

were evaluated by a panel of clinical experts (including three
TABLE 1 Patient and sample characteristics.

Characteristics Value

Patient demographics (n = 92)

Age (years)

Median (IQR) 35 (25.5-52)

Range 1-76

Gender, n (%)

Female 41 (44.57)

Male 51 (55.43)

Clinical characteristics, n (%)

EBV infected IC-HLH 43 (46.74)

non-EBV infected IC-HLH 25 (27.17)

M-HLH 13 (14.13)

Rh-HLH 11 (11.96)

Treatment, n (%)

On antibiotics treatment 78 (84.78)

Treatment outcomes

CR/PRa 70 (76.09)

NRb 22 (23.91)

Sample characteristics (n = 118)

Sample type, n (%)

Peripheral blood 99 (83.90)

Sputum 11 (9.32)

Pleural fluid 3 (2.54)

BALFc 2 (1.69)

CSFd 2 (1.69)

Bone marrow 1 (0.85)
aCR/PR, Complete remission/Partial remission.
bNR, non-remission.
cBALF, bronchoalveolar lavage fluid.
dCSF, cerebrospinal fluid.
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experienced physicians). Onco-mNGS results were interpreted

according to MatriDx Biotechnology Co., Ltd.’s own pathogen

data filtering principles. Infectious diseases are diagnosed based

on microbiological tests, Onco-mNGS results and clinical review

results. Tumors are judged based on Onco-mNGS results in

addition to histopathology, cytological examination and

microscopic examination and other validation tests.
Treatments

Treatment strategies were based on the HLH-94/04 protocol,

and included dexamethasone, etoposide, and cyclosporine (7, 25).

Treatment response and dynamic changes during the 8 weeks of

treatment were evaluated. Complete response was defined as

resolution of all clinical signs and symptoms, CBC recovery, and

normalization of abnormal laboratory findings associated with

HLH. Partial response was defined as either CBC recovery or

normalization of laboratory findings. Progressive disease was

defined as persistence of cytopenia and abnormal laboratory

findings. No response means those whose disease continues to

progress, die or without any response during therapy. Treatment

responses were then divided into two groups, the remission group

with complete and partial response, the non-remission group with

no response.
Statistical analysis

All collected data were statistically analyzed using R packages.

Categorical variables, shown as frequencies and percentages, were

compared using Fisher’s exact test. Continuous measurement data

following normal distribution were shown as mean (standard

deviation) or mean (standard error), and non-normal distribution

was shown by median (range). Differences and significance between

groups were calculated using Student’s t-test (for a normal

distribution data) and Wilcoxon rank sum test or Kruskal-Walli’s

test (for non-normal distribution data). Data visualization was

performed in R (Version 4.2.3). Alpha diversity indices were

characterized by Shannon, Richness, Simpson and Inverse

Simpson. The t-test was used to assess the differences among

groups. Beta diversity was described by Unconstrained PCoA

(principal coordinate analysis) and the Analysis of similarities

(Anosim) was used to examine differences between groups. Linear

discriminant analysis effect size (LEfSe) analysis was conducted to

determine microorganisms that were significantly different in

abundance between groups, with thresholds of log10 LDA (linear

discriminant analysis) Score≥2 and P value ≤ 0.05. RPM values of

microbes were log-transformed before their relative abundance was

analyzed. In this study, two-sided P values < 0.05 were considered

statistically significant. The random forest method was used to

construct a predictive model to assess whether the specific microbes

and clinical indicators could be used as biomarkers to distinguish

different patient groups, using ten-fold cross-validation. The

predictive performance of the classifiers was analyzed by

ROC curves.
Frontiers in Immunology 05
Results

Demographics and clinical characteristics
of patients

A total of 138 body fluid samples from 92 patients were

collected between September 2021 and August 2022 from Beijing

Friendship Hospital, Capital Medical University (Figure 1). After

excluding samples that failed pass the quality control and without

complete clinical information, 118 samples were finally enrolled in

this study. Clinical characteristics of all patients and samples

enrolled are summarized in Table 1. The median age of the

enrolled patients was 35 years old, however the age distribution

was not uniform, ranging from 1 to 76 years old. Most patients

(84.78%) underwent antibiotic treatment during sample collection.

About 76% of patients received improved outcomes (CR/PR), while

the rest had no remission (23.91%). All the patients were diagnosed

with HLH based on HLH-2004 diagnostic criteria, and divided into

four subtypes, including EBV (n=43, 46.74%) or other pathogen

(n=25, 27.17%) triggered HLH (EBV-HLH and nEBV-HLH), and

malignant (n=13, 14.13%) or rheumatologic disorders (n=11,

11.96%) associated HLH (M-HLH and Rh-HLH) (Figures 1, 2A).

Body fluid samples from the residual specimens in the clinical

laboratory were collected, the majority of which are blood samples

(n=99) (Figure 2B). Other sample types included sputum (n=11),

pleural fluid (n=3), BALF (n=2), CSF (n=2) and bone marrow

(n=1). For further analysis, Onco-mNGS was performed using all

blood samples for microbe identification, meanwhile the sequences

of human DNA yield from Onco-mNGS were used for

chromosomal copy number analysis.
Differentiation of EBV-HLH and M-HLH to
other HLH subtypes by random forest
analysis on CNV characteristics

The sequences of human DNA derived from mNGS were used

for chromosomal copy number analysis. The positive rate of CNV

occurrence in each subtype was analyzed in Figure 3A. Two

subtypes emerge to be with the most unstable genome, which are

EBV-HLH (43.14%) and M-HLH (36.36%) subtypes. Both CNV

amplification and deletion were observed in different HLH

subtypes. However, the distribution of CNV on different

chromosomes are distinct in EBV-HLH subtype and M-HLH

(Figure 3B). M-HLH subtype exhibited relatively high incidence

of CNV on all chromosomes except chromosome 21, whereas CNV

on chromosome 19 was the most common genomic events in EBV-

HLH subtype. M-HLH subtype and EBV-HLH subtype also differed

in CNV types on some chromosomes. On chromosome 8 and 13,

only CNV deletion occurred in M-HLH subtype, whereas both

CNV deletion and duplication occurred in EBV-HLH subtype. The

reverse result was observed on chromosomes 16, 18 and 19. In

addition, the frequency of CNV deletions on chromosome 19 was

observed to be more than 40% in EBV-HLH, compared with 25% in

M-HLH subtype. Based on CNV parameters, a random forest

model was constructed to classify two groups including Group 1
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(partial subtype EBV-HLH and subgroup M-HLH) and Group 2

(partial subtype EBV-HLH, subtype nEBV-HLH and subtype Rh-

HLH) as the first level of aetiologically stratified diagnosis for

secondary HLH. The training and testing sets were 3:1, and ten-

fold cross-validation methods were performed to determine the

number of significant variables for classification. As shown in

Figure 3C, we accessed the diagnostic performance of the

classifiers by ROC curves and the current classifier displayed

satisfying diagnostic performances in typing subtypes EBV-HLH

plus M-HLH and subtypes nEBV-HLH plus Rh-HLH, with an

average AUC of 0.768. To sum up, a hierarchical diagnostic

schematic was drawn for illustrating that Group 1 and Group 2

can be better distinguished using the CNV-based Random Forest

Biclassifier model (Figure 3D).
Signatures of pathogens identified in
patients diagnosed with different HLH
subtypes by onco-mNGS

A total of 18 pathogens were detected in all blood samples,

including 11 viruses, 4 bacteria and 3 fungi species (Supplementary

Figure 1A). Two kind of viruses, Human gammaherpesvirus 4 and
Frontiers in Immunology 06
Human betaherpesvirus 5, were the most common species identified

in all samples. Besides, Staphylococcus aureus in the most frequent

bacterial species. Most samples were identified with at least one

pathogen based on Onco-mNGS sequencing. Among the EBV

subtypes, relatively high pathogen burdens were observed in each

sample. The stacked bar charts in Supplementary Figure 1B

presented the relative abundance of all pathogens in different

subtypes, as well as the dominated pathogenic species in each

subtype. As expected, Human gammaherpesvirus 4 was the most

abundant pathogens in EBV-HLH subtype, which barely detected in

nEBV-HLH and Rh-HLH subtypes. While Human betaherpesvirus

5 commonly existed among three HLH subtypes besides EBV-HLH

subtype. Besides the dominated Human betaherpesvirus 5, Human

alphaherpesvirus 1 and Torque teno virus were also commonly

found in nEBV-HLH subtype, Human gammaherpesvirus 4 and

Human betaherpesvirus 6B were also the dominated pathogens in

M-HLH subtype, and Human alphaherpesvirus 3 was also

commonly found in Rh-HLH subtype. Details of pathogen

composition in each sample collected from patient with different

HLH subtypes were shown in Supplementary Figures 2A-D.

Among four subtypes of HLH, the two subtypes triggered by

pathogen infection, EBV-HLH and nEBV-HLH, showed relatively

higher positive rate of mNGS sequencing, which complied with

clinical consensus (Supplementary Figure 3A). In the present study,

there are 144 microbial species were identified by mNGS sequencing

in blood samples of HLH patients, consisting of 79% of bacteria, 11%

of fungi and 10% of viruses (Supplementary Figure 3B). But for

further analysis, clinical physicians were involved and performed

adjudication on species identified by mNGS sequencing, aiming to

separate the pathogens from non-pathogenic microbes. Evaluation

the diagnostic performance of Onco-mNGS in identifying pathogens

for patients with unknown etiology were also conducted. Taking the

gold standard methods as comparison, the sensitivity of mNGS to

identify EBV-HLH and nEBV-HLH subtype was 86.7% and 100%

respectively (Supplementary Figure 3C). Positive rate and burden of

the two frequent pathogens (Human gammaherpesvirus 4 and

Human betaherpesvirus 5) in blood from patients with different

HLH subtypes were further illustrated in Supplementary

Figures 4A, B. In EBV-HLH subtype, the positive rate of Human

gammaherpesvirus 4 was as high as 88.24%, and the pathogen burden

was significantly higher than that of other subtypes (P<0.001).

Human betaherpesvirus 5 was found a highest positive rate in

nEBV-HLH subtype, but the pathogen burden in each subtype

showed no significant difference (P>0.05).
Etiological stratification of secondary HLH
based on microbiological data derived
from onco-mNGS and patient clinical data

Microecology is increasingly considered to be involved in the

onset and progression of diseases, therefore the diversity and

dynamics of the microbial community for each subtype of HLH

would suggest different etiologic mechanisms. Few species appeared

to commonly exist among different subtypes, with only 4 shared

microbes observed among all subtypes. nEBV-HLH subtype
FIGURE 2

The distribution of HLH subtypes and clinical specimens in the
present study. (A) Retrospective diagnosis of all patients. (B)
Distribution of sample types. Abbreviations: BALF, bronchoalveolar
lavage fluid; CSF, cerebrospinal fluid.
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emerged to have the most complex and diverse microbial

community with the most microbes identified, of which 32

species were uniquely existed (Figure 4A). All microbes in each

sample were counted, and their corresponding RPM values detected

by mNGS were summarized to verify the complexity among HLH

subtypes at general level (Figure 4B). The microbe counts of two

infection-induced subtypes, EBV-HLH and nEBV-HLH, were

significantly increased in comparison with Rh-HLH subtype

(P<0.05), but had no significance in comparison with M-HLH

subtype. Additionally, the total RPM value of all microbes within

each sample of EBV-HLH were significantly increased compared

with other subtypes (P < 0.01). The general landscape of four HLH

subtypes were summarized by heatmap in Supplementary

Figure 5A. To compare the overall composition of the blood

microbial signature in different HLH subtypes, the diversity

within each subtype and between subtypes was analyzed by

alpha-diversity and beta-diversity (Supplementary Figures 5B, C).

Four indices were analyzed in order to demonstrate the alpha-

diversity within each subtype, and results indicated that nEBV-
Frontiers in Immunology 07
HLH and M-HLH subtypes showed increased diversity, as

determined by analysis of variance (P<0.05). Unconstrained

PCoA (for principal coordinates PCoA1 and PCoA2) with Bray-

Curtis distance showed that microbes detected in EBV-HLH

subtype were separated from other HLH subtypes in the first axis

(P<0.05), indicating the unique microbial community composition

of EBV-HLH subtype. To further explore the differences in

microbial species between different HLH subtypes, the Linear

discriminant analysis Effect Size (LEfSe) method was performed

to identify microbes that significantly enriched in each subtype. A

total of 21 species were screened as differentially enriched microbes

among HLH subtypes, most of which were found significantly

abundant in M-HLH subtype (Figure 4C). Of these differential

species, several species such as Streptococcus oralis, Rothia

dentocariosa, Pseudomonas poae, Human alphaherpesvirus 3,

Human betaherpesvirus 5 and Bacillus cereus group were enriched

in Rh-HLH subtype, but only Human gammaherpesvirus 4 was

significantly enriched in EBV-HLH subtype. Interestingly, the

average RPM of Human betaherpesvirus 5 in Rh-HLH were found
FIGURE 3

First-level etiological stratification of secondary HLH diagnosis based on analysis of CNV data derived from Onco-mNGS. (A) Copy number variation
(CNV) positive rate detected by mNGS. (B) Distribution and frequncy of gain (AMP, amplification) or loss (DEL, deletion) of DNA segments in subtype
EBV-HLH and subtype M-HLH. (C) The efficacy assessment of a diagnostic model for the etiological stratification of secondary HLH at the first level
based on CNV data (ROC curve). (D) Diagram of the first level of etiological stratification for the diagnosis of secondary HLH. The Random Forest
binary classifier constructed on the basis of CNV data could better distinguish Group 1 (CNV-positive EBV-HLH and M-HLH) from Group 2 (CNV-
negative EBV-HLH, nEBV-HLH, and Rh-HLH), with an AUC value of 0.786.
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FIGURE 4

Secondary-level etiological stratification of secondary HLH diagnosis based on analysis of microbiome data derived from Onco-mNGS and clinical
examination data. (A) Upset plots of blood microorganisms with frequencies above 3% in each HLH subtype identified by mNGS. (B) Box plots of blood
microbial burdens in different HLH subtypes, differences between groups were assessed by T-test. (C) Specific blood microbial biomarkers in different
subtypes were determined through LEfSe analysis. The microbial species enriched in the EBV-HLH, M-HLH and Rh-HLH subtypes were presented in the
plot with respective average RPM value and LDA scores. Alpha value for the factorial Kruskal-Wallis test among classes was 0.01, and for the pairwise
Wilcoxon test between subclasses was 0.05. A threshold value of 2.0 was applied to the log LDA score for discriminatory features. Significant differences
between groups are indicated by asterisks, with * represents P<0.05, ** represents P<0.01, *** represents P<0.001. Abbreviations: PCoA, principal
coordinate analysis; PERMANOVA, permutational multivariate analysis of variation; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant
analysis; NS., no significant difference. (D) The efficacy assessment of a diagnostic model for the etiological stratification of Group 1 (CNV-positive EBV-
HLH and M-HLH) at the secondary level based on microbiome and clinical examination data (ROC curve). (E) The efficacy assessment of a diagnostic
model for the etiological stratification of Group 2 (CNV-negative EBV-HLH, nEBV-HLH, and Rh-HLH) at the secondary level based on microbiome and
clinical examination data (ROC curve). (F) Diagram of both the first level and the secondary level of etiological stratification for the diagnosis of
secondary HLH.Two random forest binary classifiers and one ternary classifier constructed based on different types of data can better distinguish CNV-
positive EBV-HLH, M-HLH, CNV-negative EBV-HLH, nEBV-HLH, and Rh-HLH in different hierarchical order effectively.
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FIGURE 5

The prognosis prediction in EBV-HLH patients based on both CNVs and blood microbiome characteristics. (A) Occurrence of CNVs in patients with
different treatment outcomes. (B) Non-remission rates in CNV positive or negative patients with different HLH subtypes. (C) Comparison of the
counts and burdens of pathogens in HLH patients with different treatment outcomes. Differences between groups were assessed using T-test. (D)
Heatmap of selected microbes with frequencies above 10% in each group (R and NR) identified by mNGS in patients with nEBV-HLH subtype.
Microbes with frequency more than 10% within each group (R and NR) were selected, log10-transformed RPM of selected microbes were applied.
Samples were hierarchically clustered within each group using Pearson correlation as a distance measure with average-linkage. Abbreviations: R,
remission; NR, non-remission. (E) The determination of the number of significant variables for classification. The optimal point of cross-validation
error determined by the number of biomarkers was 13, which implies that based on the mean decreasing accuracy, the top 13 variables which are all
CNV-related parameters could be selected as potential markers used to differentiate between secondary HLH treatment effects (R vs. NR). (F) The
efficacy assessment of a diagnostic model for the early assessment of prognosis for secondary HLH treatment based on the above mentioned 13
CNV-related variables (ROC curve).
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lower than the other three subtypes, thus being classified as a

depleted microbe. These different microbes provide evidence for a

unique microbial community composition of different

HLH subtypes.

After the above microbiome analysis, we obtained information

about the characteristic microorganisms of different subgroups.

Next, we used the characteristic microbial information and the

clinical examination data to construct random forest classifier

models for distinguishing the CNV-positive EBV-HLH subgroup

and the M-HLH subgroup in Group 1 and the CNV-negative EBV-

HLH subgroup, the nEBV-HLH subgroup and Rh-HLH subgroup.

The ratio of the training set to the test set was 3:1, and the number

of important variables for classification was determined using the

tenfold cross-validation method. As shown in Figure 4D, we

determined the diagnostic performance of the binary classifier by

the ROC curve, and found that the binary classifier was able to

effectively discriminate between the CNV-positive EBV-HLH

subgroups and M-HLH subgroups in Group 1, with an AUC

value of 0.833. Meanwhile, a random forest multivariate classifier

constructed based on the characteristic microbial information and

clinical examination data could effectively distinguish the CNV-

negative EBV-HLH subgroup, the nEBV-HLH subgroup and the

Rh-HLH subgroup in Group 2, with AUC values of 0.727, 0.718 and

0.656, respectively (Figure 4E). Finally, we drew a schematic

diagram of secondary HLH stratified diagnosis containing the

first and second levels, further illustrating that on the basis of the

first level of stratified diagnosis based on CNV, the present study

can continue to use the biomarker collections such as characteristic

microbial information of different subgroups and prophylactic data

to construct random forest binary classifier or multiclassifier

models used for the second level of etiological stratified

diagnosis (Figure 4F).
The predictive assessment of treatment
prognosis in EBV-HLH patients based on
both CNVs and blood
microbiome characteristics

Multiple treatments have been proven to be effective for specific

subtypes of HLH, but the outcomes of each subtype vary broadly

among individuals. Further analyses were required to investigate the

associations between CNVs and microbial community with

treatment processes and outcomes of different HLH subtypes,

particularly two infection-induced subtypes, EBV-HLH and

nEBV-HLH. Based on the treatment outcomes, all cases were

categorized into remission and non-remission groups. The

positive rate of CNV occurrence in patients with different

outcome was presented in Figure 5. Results showed that most

samples from remission group (61/79) appeared to be CNV-

negative, whereas in non-remission group, there was a fifty-fifty

split between CNV-positive (10/20) and CNV-negative (10/20)

samples (Figure 5A). It is suggested that samples from non-

remission group appear to have higher CNV positive rate at

general level, which was also observed in the EBV-HLH subtype

and the M-HLH subtype (Figure 5B). The distribution of CNV on
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different chromosomes are distinct between remission and non-

remission groups (Supplementary Figure 6A). Remission group

showed a common amplification on chromosome 1, with

frequency more than 40%. However, the most common

alternation in non-remission group was deletion of DNA

fragment on chromosome 19. These findings suggested that CNV

distribution also leads to different treatment outcomes.

For association analysis between blood microbiome with

treatment outcome, two parameters were described, the number

of all microbes detected in each sample and the total RPM value of

all microbes in each sample (Figure 5). Microbes were clustered into

two groups determined by their etiological roles, as pathogens and

non-pathogenic microbes. The microbe number (P=0.009) and the

total RPM value (P=0.001) of pathogens in each sample showed

significant difference between remission and non-remission groups,

which indicated the association of the diversity and abundance of

pathogenic microbes with treatment outcomes (Figure 5C).

Whereas, both the number (P=0.420) and the total RPM value

(P=0.560) of non-pathogenic microbes between remission and non-

remission groups showed no significant difference (Supplementary

Figure 6B). The landscape of microbial community of remission

group and non-remission group in EBV-HLH subtype showed

distinct patterns, with significant differences in the number of

non-pathogenic microorganisms (P=0.009) (Supplementary

Figure 7). Same analysis strategy was applied for nEBV-HLH

subtype by comparing remission group and non-remission group

at pathogen and non-pathogenic microbe level, but the results did

not show consistent trend as in EBV-HLH subtype (Supplementary

Figure 8). For EBV-HLH subtype, besides EBV infection being the

most contribute pathogen, there are other co-infected pathogen

existed, but appear no significant association with treatment

outcomes (Supplementary Figure 6C). However, the heatmap of

the overall microbial community illustrated the enrichment of

bacteria and fungi in non-remission group, demonstrated the

important role of non-virus species in therapy feedback of nEBV-

HLH subtype (Figure 5D).

Although the above studies elevated CNVs and characteristic

microorganisms as key parameters for early predictive assessment

of secondary HLH clinical outcome, we found that perhaps only

CNV-related key parameters could be used for early prognostic

assessment of secondary HLH treatment when we constructed a

Random Forest binary classifier model based on the above

mentioned biomarkers to differentiate between secondary HLH

treatment effects (R vs. NR). When we set the ratio of training

and test sets to 3:1 and used the tenfold cross-validation method to

determine the number of significant variables for classification, the

optimal point of cross-validation error determined by the number

of biomarkers was 13, which implies that based on the mean

decreasing accuracy, the top 13 variables could be selected as

potential markers used to differentiate between secondary HLH

treatment effects (R vs. NR) (Figure 5E). Interestingly, the top 13

potential markers mentioned above were all CNV-related

parameters, suggesting that changes in patients’ peripheral blood

CNV may be closely related to the prognosis of secondary HLH

treatment (Figure 5E). Finally, we gained further insight into the

diagnostic performance of the binary classifier based on the above
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13 biomarkers through ROC curves (Figure 5F). The results showed

that the classifier model performed better in the early assessment of

prognosis for secondary HLH treatment with an AUC value of

0.750 (Figure 5F).
Discussion

Early diagnosis and appropriate targeted therapy may be an

effective way to improve the survival and prognosis of patients with

HLH. In clinical practice, patients with secondary HLH are often

unclear at the initial diagnosis whether they have insidious diseases,

such as complicated infections, tumours or autoimmune diseases,

which can be important triggers of secondary HLH (26, 27) and are

important directions for etiological screening, thus a comprehensive

assessment and systematic diagnosis of patients with suspected

HLH are needed. mNGS is commonly used for infectious

pathogen detection and has also been proved promising in

diagnosing various tumors including CNS malignancies, lung

cancers and haematological malignancies (20, 21, 23, 24, 28, 29).

In this study, we identified complex infections, tumours or

autoimmune diseases by Onco-mNGS and immunological assay

data, which were used as important parameters for constructing the

Random Forest classifier model, performed key parameter

screening to evaluate the effectiveness of the classifier in following

study, and explored the novel Onco-mNGS in diagnosing

secondary HLH triggered by different underlying diseases clinical

value. The CNV and microbial data simultaneously generated by

Onco-mNGS technology was further explored to identify a series of

novel biomarkers that were available for typing different HLH

subtypes. Based on these data, the treatment outcomes of HLH

patients with different HLH subtypes were evaluated, which could

be of potentially important clinical significance in accessing

prognosis of HLH patients.

HLH is a rare, complicated and multifaceted syndrome that

maybe triggered by various infectious agents, malignancies and

rheumatologic disorders (30). The diagnosis of HLH is often

delayed and misdiagnosis remains a significant concern due to the

complexity of diagnostic criteria and similarity to other inflammatory

disorders. Additionally, it is of vital importance to identify the

secondary triggers to select the appropriate therapeutic strategies.

In this study, 92 patients of secondaryHLHwere finally classified into

four subtypes based on Onco-mNGS technology, including EBV or

other pathogens triggered HLH, malignant associated HLH and

rheumatological disease related HLH. Most of these patients in our

study were triggered by infections and were predominantly associated

with EBV. A regional study on adult HLH patients in China revealed

that malignancy was the most common underlying cause, accounting

for 42% of the cases, but EBV was a predominant pathogen in

infection related HLH patients (31). However, the overall

epidemiological investigation of HLH in China reported that EBV-

HLH was the most common subtype, which may be related to the

prevalence of EBV in our country (32). In this study, infection-

induced HLH patients were further subdivided into EBV-associated

and other pathogens-associated subtypes based on Onco-mNGS,

which may better differentiate patients with different causative
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agents and contribute to precise anti-infection therapy. Our study

indicated that Onco-mNGS reached a sensitivity of 60% in detecting

patients with HLH associated with other infections (non-EBV),

although it was consistent with conventional methods in patients

with EBV-HLH, and therefore it may be served as a complement to

conventional methods.

Genomic instability is a hallmark of cancer, and a large number

of genomic alterations are present in human cancers, with aneuploidy

(imbalance at the chromosome level) being one of the most common

alterations (33, 34). Copy number variants (CNVs), as an indicative

parameter of aneuploidy, are usually closely associated with the onset

and progression of tumours and their associated diseases, and their

effects often extend from the genomic level to the level of gene

expression, ultimately giving rise to clinical phenotypes that are

closely related to tumours and their associated diseases (35, 36).

Generally, copy number variants (CNVs) in cancer patients may

include deletion and duplication of small fragments, reduction/single

nucleotide variants, gain or loss of chromosomal arms, or even

doubling of entire chromosomes and whole genomes (37). CNV, as

a comprehensive signalling parameter, consists of different variants

from the genomic to the chromosomal level and involves copy

number variation on different chromosomes, in particular whether

copy number variation occurs on each chromosome, the type of copy

number variation (deletions or duplications), and the degree of copy

number variation (minor or major). In the current study, rapid

identification of chromosomal CNVs including deletion and

amplification were obtained based on the novel Onco-mNGS

technology, and different forms (major and minor) within the two

patterns represented changes in whole or focal sites of the

chromosomes. Evidence have demonstrated that the prediction of

aneuploidy-based tumor by mNGS not only expands the typical

application scenarios of conventional mNGS for identifying

potentially infectious agents, but also yields satisfactory

performance in predicting malignancies, thus improving the

diagnostic efficiency of malignant tumors (20, 21, 23, 24). CNV

was observed in both patients with infection-induced HLH and

patients with malignancy -associated HLH in our study but

appeared to present distinct characteristics between the two

subtypes. Compared with the EBV-HLH subtype, the M-HLH

subtype had a higher incidence of CNVs on almost all

chromosomes except chromosome 21, which represented frequent

genomic instability. Besides, significantly different CNV types were

found on chromosome 8, 13, 16, 18 and 19 between the two subtypes.

These differences may be related to the different subtypes and their

associated tumors, yet further studies are needed to explore the

underlying causes and significance. When analysing the etiology of

HLH, especially when constructing a classification model using the

Random Forest classifier, it is often necessary to prefer high-

performance parameters from a large number of subdivided

parameters in order to obtain better classification results, and thus

subdivided CNV parameters (e.g., which chromosome undergoes a

CNV, the type of CNV, and the intensity of the CNV, etc.) are more

valuable to analyse than a single parameter based solely on the

presence or absence of a CNV. In fact, in this study, we

constructed a random forest binary classification model based on

biomarkers such as CNV and characteristic microorganisms to
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differentiate secondary HLH treatment effects (R vs. NR). When we

set the ratio of training and test sets to 3:1 and used the tenfold cross-

validation method to determine the number of significant variables

for classification, the optimal point of cross-validation error

determined by the number of biomarkers was 13, which implies

that based on the mean decreasing accuracy, the top 13 variables

could be selected as potential markers used to differentiate between

secondary HLH treatment effects (R vs. NR) (Figure 5E).

Interestingly, the top 13 potential markers mentioned above were

all CNV-related parameters, suggesting that changes in patients’

peripheral blood CNV may be closely related to the prognosis of

secondary HLH treatment (Figure 5E). Acute EBV infection can

idiosyncratically lead to non-neoplastic HLH in patients without

genetic predisposition (i.e. secondary HLH), while EBV-associated

T/natural killer (NK)-cell lymphoproliferative disorders and

lymphomas can induce neoplasia-associated HLH (38). As we

known, T and NK cell lymphomas are the most dominant

malignancies that induce HLH, and they are frequently associated

with EBV infection (39). Therefore, it is believed that EBV infection

plays an important role in the pathogenesis of HLH, which reminds

us to carefully identify the complex etiology of patients with HLH in

order to take appropriate therapeutic strategies and improve the

prognosis of patients.

In some cases, infection and malignancy often co-exist in patients

with HLH, and it is possible that HLH develops in association with

triggering infections that occur as the result of chemotherapy-induced

immunosuppression (40). Thus, both malignancy and infection may

contribute to the cause of HLH in such situation (41). In fact, HLH

patients have a high incidence of complicated infections and infection-

related mortality due to the presence of multiple infection-related risks

such as abnormal autoimmune status, combination chemotherapy,

hemocytopenia, and the use of immunosuppressive drugs (42). In this

study, we described the responsible pathogens that may cause

infections in blood samples from patients with different HLH

subtypes. The current study based on onco-mNGS have found that

in addition to identifying such pathogens as EBV, CMV and

Staphylococcus aureus, which are relatively common in bloodstream

infections, other potential pathogens including human alpha

herpesvirus 1 and Torque teno virus, human beta herpesvirus 6B and

human alpha herpesvirus 3 were also detected. Previous studies have

shown that the most commonly Gram-positive bacteria detected by

mNGS were Staphylococcus aureus in blood samples from patients

with diagnosed with sepsis and bloodstream infection, while

human herpesvirus type 5 and Epstein-Barr virus were the most

commonly detected viruses, which is consistent with our study (42).

Notably, CMV was present in almost all subtypes of patients enrolled

in this study, and this may be related to the generally lower

immunocompetence of these HLH patients. In addition, mNGS was

able to identify viral pathogens among patients with hematologic

malignancies who developed sepsis (43). Bloodstream infection and

sepsis remains a common but fatal complication among patients with

immune suppression. Thus, complex infection in HLH is a serious and

challenging disease that requires vigilance, early identification, and

timely anti-infective therapy (40).

The human microbiome comprises a vast corpus of bacterial,

archaeal, viral and fungal microbial taxa and microecology is
Frontiers in Immunology 12
increasingly considered to be involved in the onset and progression

of diseases. It was hypothesized that the blood microbiome

originates from the skin–oral–gut axis (44). A various of studies

have described the blood microbial communities and evaluated the

potential of blood microbiome dysbiosis as a prognostic marker in

cardiovascular diseases, cirrhosis, severe acute pancreatitis, type 2

diabetes, and chronic kidney diseases (45–48). Blood microbiomes of

HLH patients were also characterized based on our Onco-mNGS

technology, and it was found that much lower microbial diversity was

observed in patients with EBV-HLH than that in patients with other

HLH subtypes due to anti-infective treatment. Several key microbial

species enriched in the different subtypes were also identified,

including Streptococcus oralis, Rothia dentocariosa, Pseudomonas

poae, Human alphaherpesvirus 3, Human betaherpesvirus 5 and

Bacillus cereus group, Human gammaherpesvirus 4, and they may

be responsible for the distinct microbial community among different

HLH subtypes. Our results extend the knowledge of the blood

microbiome in patients with HLH.

It is difficult to diagnose and initiate treatment in patients with

secondary HLH because of the overlap of the signs and symptoms

with a wide range of chronic conditions, including sepsis, multiple

organ dysfunction, malignancy, or progression of rheumatic

diseases (49, 50). Many biomarkers have been proposed for the

diagnosis of HLH in both adults and children. Previous studies have

established diagnostic models for differential diagnosis of secondary

HLH by evaluating a serial of cytokine levels and HScore, which

have achieved a good diagnostic performance (51–53). However,

the HScore was used for estimating an individual’s risk of having

reactive hemophagocytic syndrome, not for the differential

diagnosis of HLH or other underlying diseases (54, 55). For

patients with secondary HLH, good medical management and

follow-up depend on the underlying trigger of HLH in these

patients. Since we have defined the distinct characteristics of

different HLH subtypes on CNV profile, infectious pathogen

spectrum and blood microbial community, a random forest

classification model was thereby developed based on these data

which allowed us to better identify the different HLH subtypes and

determine the main triggers. According to the current classification

model, a total of four variables were included in this study, including

Human gammaherpesvirus 4, Human polyomavirus 1, WBC and

Torque teno virus. It can make timely and precise classifications

among different HLH subtypes through applying this predictive

model, which is beneficial to guide further targeted treatment.

However, even with the prompt administration of specific

therapeutic strategy, treatment response and overall survival rates

of HLH patients remain markedly worse, especially when the

condition is associated with malignancy and infection (56, 57).

Poor prognosis were common not only in patients with

malignancy-associated HLH, but also in those with active EBV

infection and in some high-risk HLH patients of unknown cause,

andmany of them died of rapid deterioration due to severe sepsis and

multi-organ failure (58–61). It is therefore of great importance for

clinicians to identify high-risk patients earlier in the course of

management. Few studies have been conducted to identify factors

associated with treatment outcomes in patients with secondary HLH

based on CNV and microbiological data. The current results have
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selected a serial of predictive factors to identify high-risk patients with

poor treatment outcomes. Our study showed that patients with

positive CNV results and frequent deletions of DNA fragment on

chromosome 19 were more likely associated with unfavorable

treatment outcomes. Considering microbial factors, it was found

that poor treatment outcomes were also associated with patients with

higher pathogen burdens. Meanwhile, a disturbed bloodmicrobiome,

especially enriched bacteria and fungi, was related with a worse

response to treatment. The treatment outcomes of different HLH

subtypes were also investigated. In the EBV-HLH, lower non-

pathogenic microbes were found to be significant correlated with

poor outcomes. Combinations of these predictive factors may allow

clinicians to identify patients at high risk of poor prognosis and more

quickly adapt the therapeutic strategy, although a larger sample,

multicenter, randomized controlled clinical cohort is needed to

further study and verify. In fact, although the random forest

classifier model established in this study showed relatively good

working efficacy in the stratified diagnosis of secondary HLH

etiology and early prediction of treatment prognosis, the overall

small sample size caused by multiple factors is still an important

drawback of this study, including the low prevalence of HLH (about

1-225/300,000 in children and 1/2000 in adults), the difficulty of

definitive diagnosis of secondary HLH etiology based on the existing

clinical diagnostic conditions, and the difficulty of tracking patient

information due to the relatively complex and lengthy consultation

process. We believe that based on the technical platform and research

paradigm established in this study, as well as the preliminary results

obtained, the subsequent establishment of a multi-geographical and

multi-centre study cohort with a large sample size will further

optimize and improve the composition of the relevant biomarker

set, and significantly enhance the effectiveness of the Random Forest

classifier model in the etiological diagnosis of secondary HLH and the

early prediction of the prognosis of treatment.

In conclusion, our study demonstrated that the novel Onco-

mNGS is able to identify the infection and malignancy- related

triggers among patients with secondary HLH. A random forest

classification model based on CNV profile, infectious pathogen

spectrum and blood microbial community was developed to better

identify the different HLH subtypes and determine the underlying

triggers. The prognosis for treatment of HLH patients is not only

associated with CNV, but also with the presence of pathogens and

non- pathogens in peripheral blood. Higher CNV burden along

with frequent deletions on chromosome 19, higher pathogen

burden and lower non-pathogenic microbes were prognosis

factors that significantly related with unfavorable treatment

outcomes. Our study provided comprehensive knowledge in the

triggers and prognostic predictors of patients with secondary HLH,

which may help early diagnosis and appropriate targeted therapy,

thus improving the survival and prognosis of the patients.
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SUPPLEMENTARY FIGURE 1

The distribution of pathogens identified by mNGS in this study. (A) Heatmap

of pathogens identified by mNGS sequencing. Log10-transformed RPM of
selected microbes were applied. Samples were hierarchically clustered within

each subtype using Pearson correlation as a distance measure with average-
linkage. (B) The composition of pathogenic microbes in each subtype. All

pathogens were adjudicated by clinical physicians. Log2-transformed RPM
were applied for the analysis.

SUPPLEMENTARY FIGURE 2

Pathogen composition in each sample collected from patient with EBV-HLH

(A), non-EBV-HLH (B), M-HLH (C) and Rh-HLH (D) subtype. All pathogens
were adjudicated by clinical physicians. Log2-transformed RPM were applied

for the analysis.

SUPPLEMENTARY FIGURE 3

Positive rate and diagnositic performance of mNGS. (A) Positive detection
rate of mNGS in different HLH subtypes. (B) Taxonomic composition of

microbes identified by mNGS in all blood samples. (C) Diagnostic
performance of mNGS in identifying EBV-HLH subtypes (n=51) and nEBV-

HLH subtypes (n=21) when compared with clinical gold standards. For
identificaiton of EBV-HLH and nEBV-HLH subtype, sensitivity of mNGS was

86.7% and 100% respectively.
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SUPPLEMENTARY FIGURE 4

Detection and burden of EBV and CMV in blood from patients with different
HLH subtypes. (A) EBV and CMV positive rate detected by mNGS sequencing.

(B) EBV and CMV burdens between different HLH subtypes. Differences

between groups were assessed using T-test. Significant differences between
groups are indicated by asterisks, with *** represents P<0.001. Abbreviations:

EBV, Epstein-Barr virus; CMV, Cytomegalovirus; NS., no significant difference.

SUPPLEMENTARY FIGURE 5

Analysis of blood microbiome composition and diversity in HLH patients with

different etiologies. (A) Heatmap of blood microorganisms with frequencies

above 2% in each HLH subtype identified by mNGS. Log10-transformed RPM
of selected microbes were applied. Samples were hierarchically clustered

within each subtype using Pearson correlation as a distances measure with
average-linkage. (B) Microbial alpha diversity based on species profile within

each subtype was evaluated using shannon index, richness, simpson index
and inverse simpson index. Differences between groups were assessed using

anova. (C)Microbial beta diversity based on species profile between subtypes

was evaluated through Unconstrained PCoA (for principal coordinates PCoA1
and PCoA2) by Bray–Curtis distance, with permutational multivariate analysis

of variance (PERMANOVA) by Adonis.

SUPPLEMENTARY FIGURE 6

The association of treatment outcome in HLH patients with CNV

characteristics and blood microbiome respectively. (A) Distribution of DNA

fragment gain (amplification) or loss (deletion) in each chromosome in EBV-
HLH and M-HLH patients with different treatment outcomes. Abbreviations:

R, remission; NR, non-remission. (B) Comparison of the counts and burdens
of non-pathogenic microbes in HLH patients with different treatment

outcomes. Differences between groups were assessed using T-test. (C)
Heatmap of co-infected microbes with frequencies above 5% in each

group (R and NR) identified by mNGS in patients with EBV-HLH subtype.

Log10-transformed RPM of co-infected microbes were applied. Samples
were hierarchically clustered within each subtype using Pearson correlation

as a distance measure with average-linkage.

SUPPLEMENTARY FIGURE 7

The association between blood microbiome and treatment outcome in EBV-

HLH patients. (A) Comparison of the counts and burdens of pathogens in EBV-

HLH patients with different treatment outcomes. Differences between groups
were assessed using T-test. (B) Comparison of the counts and burdens of non-

pathogenic microbes in EBV-HLH patients with different treatment outcomes.
Differences between groups were assessed using T-test.

SUPPLEMENTARY FIGURE 8

The association between blood microbiome and treatment outcome in

nEBV-HLH patients. (A) Comparison of the counts and burdens of
pathogens in nEBV-HLH patients with different treatment outcomes.

Differences between groups were assessed using T-test. (B) Comparison of
the counts and burdens of non-pathogenic microbes in nEBV-HLH patients

with different treatment outcomes. Differences between groups were
assessed using T-test.
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