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Studying the tumor microenvironment and surrounding lymph nodes is the main

focus of current immunological research on soft tissue sarcomas (STS). However,

due to the restricted opportunity to examine tumor samples, alternative

approaches are required to evaluate immune responses in non-surgical

patients. Therefore, the purpose of this study was to evaluate the peripheral

immune profile of STS patients, characterize patients accordingly and explore the

impact of peripheral immunotypes on patient survival. Blood samples were

collected from 55 STS patients and age-matched healthy donors (HD)

controls. Deep immunophenotyping and gene expression analysis of whole

blood was analyzed using multiparametric flow cytometry and real-time RT-

qPCR, respectively. Using xMAP technology, proteomic analysis was also carried

out on plasma samples. Unsupervised clustering analysis was used to classify

patients based on their immune profiles to further analyze the impact of

peripheral immunotypes on patient survival. Significant differences were found

between STS patients and HD controls. It was found a contraction of B cells and

CD4 T cells compartment, along with decreased expression levels of ICOSLG and

CD40LG; a major contribution of suppressor factors, as increased frequency of

M-MDSC and memory Tregs, increased expression levels of ARG1, and increased

plasma levels of IL-10, soluble VISTA and soluble TIMD-4; and a compromised

cytotoxic potential associated with NK and CD8 T cells, namely decreased

frequency of CD56dim NK cells, and decreased levels of PRF1, GZMB, and

KLRK1. In addition, the patients were classified into three peripheral

immunotype groups: "immune-high," "immune-intermediate," and "immune-

low." Furthermore, it was found a correlation between these immunotypes and

patient survival. Patients classified as "immune-high" exhibited higher levels of
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immune-related factors linked to cytotoxic/effector activity and longer survival

times, whereas patients classified as "immune-low" displayed higher levels of

immune factors associated with immunosuppression and shorter survival times.

In conclusion, it can be suggested that STS patients have a compromised

systemic immunity, and the correlation between immunotypes and survival

emphasizes the importance of studying peripheral blood samples in STS.

Assessing the peripheral immune response holds promise as a useful method

for monitoring and forecasting outcomes in STS.
KEYWORDS

soft tissue sarcoma, immunophenotyping, gene expression profiling, cytokines,

chemokines, growth factors, immune checkpoints
1 Introduction

Soft tissue sarcomas (STS) represent a broad class of rare and

highly heterogeneous mesenchymal tumors. The estimated incidence is

1.5–3.0 times per 100,000 individuals annually, and the World Health

Organization (WHO) documented over 100 histopathological subtypes

in 2020 (1–3). Themain concerns in STS, given the 20% 5-year survival

rate for advanced cancer, is the rate of recurrence and metastatic

disease, which presents a treatment challenge (3–5). Consequently, it is

essential to regularly monitor STS patients in order to forecast the

course of the disease. To follow up with STS patients, clinical practice

currently uses imaging methods and evaluates general cancer

biomarkers (6, 7). But since there aren’t any particular biomarkers

for STS used in clinical care, there’s an opportunity to look into and

find cellular and molecular factors that can be used to aid doctors in

clinical management.

Research on immune-related parameters as possible indicators of

cancer development has increased dramatically as a result of

immunotherapy’s advancements (8–10). This push for improved

prognostic, diagnostic, and monitoring approaches in cancer has

reignited interest in immunologic markers within STS. Inspired by

William B. Coley’s early 20th-century work on immunotherapy in

sarcomas (11), there is a growing recognition of the immune system’s

critical role in STS. While STS has traditionally been viewed as “cold”

tumors with limited immune response (12–14), emerging evidence

challenges this perception. Recent studies have highlighted the

variability in tumor mutational burden, the presence of an

occasionally “hot” tumor microenvironment, and observed responses

to immunotherapy, underscoring the complex and nuanced role of

immunity in STS (15, 16).

The immune contexture in STS tumors is marked by specific

features, including tumor-associated macrophages (TAM),

dysfunctional tumor-infiltrating lymphocytes (TIL), reduced CD8 T

cell and NK cell activity, increased Treg cells, limited B cell infiltration,

and impaired dendritic cell (DC) function (17–20). Moreover, gene

expression analysis of tumor samples in STS shown that a 20-gene
02
signature related to cytotoxic immune response further strengthened

the prognostic potential of the 67-gene Complexity Index in

SARComas (CINSARC) transcriptomic signature, that is a promising

predictor of metastatic disease in STS (21–23). Additionally, blood

plasma cytokine analysis in STS has shown correlations with clinical

parameters (24, 25), suggesting that plasma proteins could be valuable

for patient stratification and monitoring. Recent studies also highlight

the importance of tumor immunotypes, such as Sarcoma Immune

Classes (SIC A-E), in predicting patient outcomes and potential

responses to immunotherapy (18, 26, 27). Although understanding

the tumor’s local immune status is crucial, challenges related to

scheduling and sample availability can limit the effectiveness of

monitoring systems that depend on tumor samples. Therefore, it is

essential to explore alternative collection methods, such as analyzing

peripheral blood samples.

Systemic immunity plays a critical role in cancer control, with

changes in peripheral immune compositions both impacting and

reflecting tumor responses (28). Alterations in circulating immune

cells have been associated with prognosis across various cancer types,

indicating their potential as survival markers (29–32). Although research

on STS is limited, existing studies have shown that circulating immune

cells, immune-related gene expression, and plasma cytokine levels hold

promise for patient stratification (8, 23, 24, 33). These insights

emphasize the need for comprehensive assessments of both cellular

andmolecular parameters in peripheral blood, which could help identify

distinct immunotypes and provide a more nuanced understanding of a

patient’s immune status. Consequently, investigating circulating

biomarkers as predictors of disease outcomes in STS represents a

valuable and promising area of research.

Hence, this study hypothesizes that peripheral immune profiles

can function as biomarkers for distinguishing disease status and

monitoring treatment responses in patients with STS. The research

aims to evaluate the systemic immune compartment of STS

patients, and assess the impact of histological classification,

treatment response, and therapy. By analyzing immune cells,

immune-related genes (IRG), and immune-related soluble factors
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(IRSF), the study seeks to identify distinct peripheral immunotypes

associated with those variables. Additionally, the study explores the

correlation of immunotype classification with survival outcome. It

is anticipated that compromised systemic immunity in STS patients

will be reflected in distinct immune profiles, which may vary in their

impact on survival. The focus on systemic immune-related

biomarkers represents a significant shift, introducing non-

invasive, real-time monitoring methods that could transform the

clinical approach to STS.
2 Materials and methods

2.1 STS patients and healthy
donor controls

From November 2018 to February 2023, peripheral blood samples

and clinical data were collected at the Tumor Unit of the Locomotor

Apparatus, University Clinic of Orthopedics, Orthopedics Oncology

Service, Coimbra Hospital and Universitary Centre, which is a

European Reference Center for Adult STS Treatment. The inclusion

criteria for patients were confirmed STS diagnostic, not including

gastrointestinal tumor type (GIST), and age greater than 18 years.

Patients with confirmed viral or bacterial infections were excluded

from the study. A total of 55 STS patients’ peripheral blood samples

and age-matched healthy donors (HD) controls were examined. For

research involving human subjects, the World Medical Association’s

Helsinki Declaration is adhered to in this work. All participants gave

their informed consent after receiving thorough information regarding

the goal of the study. The Coimbra Hospital and Universitary Center,

Portugal, and the University of Coimbra’s Faculty of Medicine Ethics

Committee provided ethical permission for this study, with references

CE-018/2021 and CHUC-021-19, respectively. The study’s patient

population’s clinical and demographic information was outlined in

Table 1 and in more detail in Supplementary File S1.

The patient cohort reflects the heterogeneous population

encountered in real-world settings for STS. Therefore, patients

were categorized by histological types, including leiomyosarcoma

(LMS), liposarcoma (LS), undifferentiated sarcoma (US), synovial

sarcoma (SS), and a miscellaneous “Other” group for histotypes

with three or fewer patients. To analyze treatment impact and

patient response, they were further divided into groups: those

recommended for primary tumor surgery (DX), those with stable

disease (SD), and those with disease progression (PD), with

classifications made by the clinical team. Additionally, patients

were sorted by their therapy regimen at the time of sample

collection, resulting in four distinct groups: those receiving

anthracycline-based therapy (ANTHRA), those on trabectedin-

based therapy following anthracycline treatment (ANTHRA +

TRAB), those on first-line trabectedin treatment (TRAB), and

those following various other treatments (“OTHER”). Other

factors such as gender, anatomical site, and presence of metastatic

disease were also evaluated, but since no significant differences were

found, these data are not included here (data not shown).
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TABLE 1 Demographic and clinical characteristics of STS patients
enrolled in the study.

Characteristic, unit N (%) or mean (SD)

Samples 55 (100%)

Age, years 54 ± 15

Sex (% of females) 29 (52.7%)

Disease status

Non-metastatic 20 (36.4%)

Primary 16 (29.1%)

Recurrence 4 (7.3%)

Metastatic 35 (63.6%)

Primary 25 (45.1%)

Recurrence 10 (18.2%)

Primary anatomical localization

Extremity 22 (40.0%)

Upper limb 20 (36.4%)

Lower limb 2 (6.4%)

Trunk (not retroperitoneal) 16 (29.1%)

Thorax 5 (9.1%)

Pelvis 4 (7.3%)

Trunk, unspecified 3 (5.5%)

Heart 1 (1.8%)

Liver 1 (1.8%)

Jejunum 1 (1.8%)

Adrenal gland 1 (1.8%)

Retroperitoneal 7 (12.7%)

Gynecological region 9 (16.4%)

Uterus 8 (14.5%)

Spermatic cord 1 (1.8%)

Head and neck 1 (1.8%)

Lineage of cell differentiation

Leiomyosarcoma 18 (32.7%)

Liposarcoma 9 (16.4%)

Undifferentiated sarcoma 9 (16.4%)

Synovial sarcoma 8 (14.5%)

Other 11 (20%)

Malignant peripheral
nerve sheath tumor

3 (5.5%)

Haemangiosarcoma 2 (3.6%)

Clear cell sarcoma 2 (3.6%)

Alveolar soft part sarcoma 1 (1.8%)

(Continued)
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2.2 Peripheral immunophenotyping

For immunophenotyping, peripheral blood samples collected

from 55 STS patients and 45 HD controls were analyzed. First, with

the use of the hematological counter DxH500 (Beckman Coulter,

Pasadena, CA, USA), the absolute frequency (AF) of total leucocytes

(LEU) and the AF and relative frequency (RF) of the major LEU

populations, such as lymphocytes (LY), monocytes (MO), and

granulocytes (GR), were determined.

Then, peripheral blood samples were stained and prepared for flow

cytometry analysis using an 8-color flow cytometer, BD FACSCanto II

(BD Biosciences, San Jose, CA, USA), with BD FACSDiva software

(BD Biosciences, San Jose, CA, USA). Initially, 100 µL of peripheral

blood or up to 1x106 LEU were incubated with fluorochrome-

conjugated monoclonal antibodies (mAbs) for 15 minutes in the

dark at room temperature. Following staining, red blood cells were

lysed using 2 mL of BD Lysing Solution (BD Biosciences, San Jose, CA,

USA) for 10 minutes under the same conditions. The samples were

then centrifuged at 450 × g for 5 minutes; the supernatant was

discarded, and the pellet was resuspended in 2 mL of 1x phosphate

buffer saline (PBS) for washing. After a second centrifugation at 450 × g
Frontiers in Immunology 04
for 5 minutes, the supernatant was discarded, and the cells were

resuspended in 1x PBS for acquisition.

The antibody panel employed, as previously described in the

literature (34, 35), included 6 different combinations of

fluorochrome-conjugated mAbs, enabling the identification of 83

immune cell populations. These included various lymphocyte

subpopulations, dendritic cells (DC), and myeloid-derived

suppressor cells (MDSC), along with key receptors related to cell

maturation, activation, and suppression. The antibodies were

titrated to determine the optimal concentration for up to 1x106

LEU in 100 µL, with detailed antibody specifications provided in

Supplementary File S2. Data analysis was performed using FlowJo

v.10.7 software (BD Biosciences, Ashland, OR, USA), and the gating

strategy is outlined in Supplementary File S3.
2.3 Whole blood immune-related gene
expression profiling

Approximately 9 mL of whole blood from 55 STS patients and 45

HD controls was drawn into PAXgene Blood RNA Tubes®

(PreAnalytiX, Hombrechtikon, Switzerland), which stabilize and

preserve RNA. After collection, the tubes were gently inverted to

mix with the stabilization reagent and stored at room temperature for

at least 2 hours. They were then frozen at -80°C until RNA extraction.

RNA extraction was performed using the PAXgene Blood RNA Kit®

(PreAnalytiX, Hombrechtikon, Switzerland). The RNA PAXgene

tubes were centrifuged at 3 000 × g for 10 minutes to pellet cellular

components. The pellet was resuspended in RNase-free water,

vortexed, and centrifuged again. The cell lysate was incubated with

buffers and proteinase K at 55°C for 10 minutes, then homogenized

using the PAXgene Shredder spin column. After adding absolute

ethanol, the lysate was transferred to PAXgene RNA spin columns,

where RNA was bound, washed, and treated with DNase I to remove

DNA. RNA was eluted twice with 40 mL of elution buffer, heat-

denatured at 65°C, and stored at -20°C overnight. RNA quality was

assessed using a Nanodrop 2000 spectrophotometer (Thermo Fisher

Scientific, Waltham, MA, USA), with acceptable ratios of 1.8-2.0 for

260/280 nm and 260/230 nm.

cDNA synthesis was carried out using the iScript™ Reverse

Transcription Supermix (BIO-RAD, Hercules, CA, USA). RNA

samples (32 mL) were mixed with 8 mL of iScript RT supermix

and incubated at 25°C for 5 minutes, 46°C for 20 minutes, and then

heated at 95°C for 1 minute to inactivate the reverse transcriptase.

The cDNA was stored at -20°C. The concentration and quality of

cDNA were also assessed using the Nanodrop 2000

spectrophotometer. For gene expression analysis, real-time RT-

qPCR was performed using two 96-well plates to accommodate

the 120 samples. The iTaq™ Universal SYBR® Green Supermix

(BIO-RAD, Hercules, CA, USA) was used for PCR reactions. Gene-

specific primers were obtained from Primer Bank or custom-

synthesized and reconstituted. The PCR conditions included an

initial denaturation at 95°C for 2 minutes, followed by 50 cycles of

denaturation at 95°C for 10 seconds, annealing/extension at 60°C

for 30 seconds, and a melt curve analysis from 65 to 97°C.
TABLE 1 Continued

Characteristic, unit N (%) or mean (SD)

Lineage of cell differentiation

Rhabdomyosarcoma 1 (1.8%)

Embryonal sarcoma 1 (1.8%)

Endometrial stromal sarcoma 1 (1.8%)

Treatment and response

Surgery (diagnostic/recurrence) 8 (14.5%)

Stable disease (chemotherapy) 26 (47.3%)

Progression disease (chemotherapy) 21 (38.2%)

Therapy

Anthracycline-based therapy 9 (16.4%)

Anthracycline-based
therapy followed by
trabectedin-based therapy

19 (34.5%)

Trabectedin-based therapy 8 (14.5%)

Other 11 (20%)

Not applicable 8 (14.5%)

Survival

Alive with disease 31 (56.4%)

Dead of disease 20 (36.4%)

Dead of other causes 4 (7.3%)

Time after collection (TAC
estimated, months)

15 ± 12 months

Time after diagnosis (TAD
estimated, months)

42 ± 34 months
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Calibrated normalized relative quantification (CNRQ) of gene

expression was determined using qBase+ v3.2 software (Biogazelle,

Gent, Belgium). In total, 99 IRG were measured, and reference

genes were selected based on the methodology described by

Vandesompele and colleagues (36). The primers used, along with

their specifications, were detailed in Supplementary File S4.
2.4 Plasmatic immune-related multiplex
analyte profiling

Multiplex analyte profiling (xMAP®) was conducted on plasma

samples from 20 STS patients and 20 HD controls. IRSF were

analyzed using four pre-configured panels of target analytes,

including one panel for general immune monitoring (Human

Immune Monitoring 65-plex ProcartaPlex Panel) and three

panels dedicated to immune checkpoint molecules (Human

Immuno-Oncology Checkpoint 14-Plex ProcartaPlex Panel 1,

Panel 2, and the 10-Plex ProcartaPlex Panel 3). The analysis was

performed in accordance with the manufacturer’s instructions, and

the Luminex xMAP® (100/200™ system) was used to quantify the

soluble proteins present in plasma samples. The data obtained from

the analysis was processed using the ProcartaPlex™ Analysis App

(https://apps.thermofisher.com/apps/procartaplex). Analytes with

concentrations below or above the limit of detection were

excluded from the analysis, resulting in a total of 81 analytes

being included in the final analysis. Details of the target analytes

in each immunoassay kit are provided in Supplementary File S5.
2.5 Bioinformatic tools

Principal component analysis (PCA) and unsupervised

clustering analysis were conducted using the ClustVis software,

accessed online at https://biit.cs.ut.ee/clustvis (37). All analyses,

from data normalization to final outcomes, were performed

entirely within this online tool. Initially, the data were normalized

using the ln (x + 1) transformation to ensure proper distribution.

PCA prediction ellipses were applied to differentiate between

patient groups annotated for histological classification, treatment/

response, and therapy, with unit variance scaling used for rows.

Principal components (PC) were calculated using single value

decomposition (SVD) with imputation. The prediction ellipses

indicate the 0.95 probability range for new observations within

the same group. Unsupervised clustering analysis was performed to

categorize patients based on selected immune-related factors. For

this analysis, rows were centered, and unit variance scaling was

applied to ensure consistency in data distribution. Missing values

were estimated using imputation methods. The clustering of rows

was conducted using Euclidean distance as the metric, paired with

Ward linkage to optimize the clustering hierarchy. Similarly,

columns were clustered using a correlation distance metric

combined with Ward linkage to assess the relationships between

the immune factors.

The identified IRG and IRSF in each cluster for rows were

further submitted to normal gene set analysis using the online
Frontiers in Immunology 05
software STRING version 11.5 (https://string-db.org) to construct

protein-protein interaction (PPI) networks (38). The PPI network

enrichment was measured, and the gene ontology (GO) pathway

enrichment analysis was assessed (count in network, strength,

and FDR).
2.6 Statistical analysis

For comparison of multiple variables, it was used the GraphPad

Prism version 9.0.2 for macOS (GraphPad Software, San Diego, CA,

USA). Data normalization was performed with arcsinh

transformation for flow cytometry data and log10 transformation

for RT-qPCR and xMAP® data. Non-normally distributed variables

between two groups (STS patients vs. HD control) were analyzed

using multiple Mann-Whitney U tests, with false discovery rate

(FDR) control and Bonferroni-Dunn correction applied. For more

than two groups (e.g., histological classification, treatment/

response, therapy), two-way ANOVA with FDR control followed

by Bonferroni’s post-test was employed. Significance levels were set

at p < 0.05, q = 0.05, and a = 0.05. Original values for median and

inter-quartile range (IQR) were used for graphical and

descriptive data.

Spearman’s correlation coefficient, calculated using GraphPad

Prism version 9.0.2 for macOS (GraphPad Software, San Diego, CA,

USA), was used to assess correlations between immune-related

factors (immune cells, IRG, or IRSF), with significance set at p < 0.05.

Time-to-event survival analyses were conducted using IBM

SPSS Statistics for Mac OS 26.0 (IBM Corp, Armonk, NY, USA).

Cox regression and/or log-rank tests were used to evaluate the

impact of studied parameters on patient survival. The variable time

was defined as the time after collection (TAC), from the collection

date until death or the study’s end. In some cases, time after

diagnosis (TAD) was tested. Given the rarity of these tumors,

using TAC instead of TAD allowed us to include more patients

and gather sufficient data. To address variability in collection dates

and potential bias, our analysis systematically integrated collection

times into the study design. Patients who died from other causes (4

patients) were excluded. For individual variables, Cox regression

analysis with hazard ratios and log-rank tests using dichotomous

variables based on median values were performed. For multiple

variables, standardization and multicollinearity assessments were

conducted, followed by multivariate Cox analysis using Enter or

Stepwise Forward Conditional methods. The proportional hazards

assumption was checked using interaction terms with the log of

time. Kaplan-Meier curves and log-rank tests were used to analyze

the impact of peripheral immunotypes on patient survival, with

multivariate Cox analysis performed as previously described.
3 Results

In this study an extensive analysis of immune-related factors

was conducted in peripheral blood samples from 55 STS patients

and age-matched HD controls. Immunophenotyping of peripheral

blood was conducted by flow cytometry to assess the frequency of
frontiersin.org
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83 immune cell populations, including major and minor myeloid

and lymphoid cell populations, along with receptors involved in

maturation, activation, and suppression. Gene expression analysis

using real-time RT-qPCR was employed to evaluate the relative

quantity of 99 IRG associated with immune response, as

suppression, activation, and cytotoxicity. Similarly, 81 IRSF

were quantified in plasma samples collected from 20 STS patients

and 20 HD controls by xMAP® technology using standard

commercial panels.

Moreover, STS patients were studied according to histological

classification, treatment/response, and therapy regimen to discuss

how these clinical parameters may influence the alterations

observed in STS patients comparatively with HD controls. For

IRSF, due to the low sample size, statistical analysis according to

histological classification and therapy were excluded, and for

treatment and response evaluation, only SD and PD patients

were included.

Each set of analysis of immune cells, IRG and IRSF, was

performed on the same sample collected from each STS patient,

allowing the construction of peripheral immune profiles based on

the combined data. Afterwards, unsupervised clustering analysis

was performed to identify similar immune profiles within patients

and classify patients according to their immunotype. The

immunotype classification was inspected for its impact on patient

survival in order to explore the potential of peripheral blood

samples as a tool for STS monitoring.
3.1 Contraction of B cell and CD4 T cell
compartments in STS patients

The immunophenotyping was performed on peripheral blood

samples collected from STS patients and HD controls. Using the

automated hematological counter, the leucocyte absolute frequency

and the GR, MO, and LY absolute and relative frequencies were

assessed. It was observed a significant decrease in LY absolute and

relative frequency (0.9 cells/<L, IQR: 0.6–1.4, N = 49; 16.6% of LEU,

IQR: 8.4–27.6, N = 49; respectively) when compared with HD

controls (2.1 cells/<L, IQR: 1.7–2.5, N = 45, adjusted p (adj p) <

0.000001; 32.9% of LEU, IQR: 24.5–39.6, N = 45, adj p = 0.000002)

(Supplementary Files S6A, B). Alongside, it was observed an

increase in the relative frequency of GR in STS patients (74.3% of

LEU, IQR: 57.8–82.5, N = 49) compared with HD controls (61.1%

of LEU, IQR: 52.9–67.6, N = 45, adj p = 0.011569) (Supplementary

file S6B). No significant alterations were observed for both absolute

and relative frequencies of MO (Supplementary Files S6A, B). Using

flow cytometry, the relative frequency of DC and MDSC was

assessed, and the absolute frequency of both was estimated based

on the LEU absolute count. Yet no significant alterations were

observed (Supplementary Files S6A, B). Similarly, no differences

were observed when analyzing the groups of patients according to

the clinical parameters (data not shown).

It was also considered the frequency of LY subpopulations. The

comparative analysis between STS patients and HD controls

revealed that STS patients have significantly lower B cell absolute

and relative frequency (0.02 cells/<L, IQR: 0.01–0.11, N = 49; 2.5%
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of LY, IQR: 0.5–9.8, N = 55; respectively) when compared with HD

controls (0.19 cells/<L, IQR: 0.16–0.27, N = 45, adj p < 0.000001;

10.5% of total LY, IQR: 7.8–12.4, N = 45, adj p = 0.002370)

(Figures 1A, B). The absolute frequency of T cells (0.69 cells/<L,

IQR: 0.39–1.06, N = 49) and NK cells (0.08 cells/<L, IQR: 0.05–0.16,

N = 49) was also significantly decreased in STS patients when

compared with HD controls (1.38 cells/<L, IQR: 1.13–1.34, N = 45,

adj p = 0.000004; 0.26 cells/<L, IQR: 0.16–0.4, N = 45, adj p <

0.000001; respectively), whereas no significant differences were

observed for relative frequencies (Supplementary Files S7A, B).

No significant differences were observed for the absolute or relative

frequency of NKT-like cells (Supplementary Files S7A, B).

Considering the clinical parameters, significant differences were

observed in the relative frequency of B cells. According to

histological classification, LS patients exhibited a significantly

higher frequency of B cells (8.5% of LY, IQR: 2.5–20.1, N = 9)

when compared with LMS (2.1% of LY, IQR: 0.8–7.8, N = 18, adj

p = 0.0351) and SS patients (0.7% of LY, IQR: 0.2–3.4, N = 8, adj

p = 0.0011) (Figure 1C). Regarding treatment and response, a

significant lower relative frequency of B cells was observed in SD

(1.1% of LY, IQR: 0.4–5.1, N = 26, adj p < 0.0001) and PD (2.3% of

LY, IQR: 1.1–10.9, N = 21, adj p = 0.0035) patients compared with

DX patients (13.5% of LY, IQR: 10.3–18.4, N = 8) (Figure 1C).

Lastly, when analyzing the therapy regimen, it was observed that

there were significantly lower levels of B cells in ANTHRA patients

(0.14% of LY, IQR: 0.09–0.74, N = 9) than in the TRAB (6.1% of LY,

IQR: 2.6–12.1, N = 8, adj p = 0.0004) or OTHER (6.7% of LY, IQR:

0.5–12.3, N = 11, adj p = 0.0007) group of patients (Figure 1C).

In whole blood gene expression analysis, lower expression levels

of CD27, CD40LG, and ICOSLG (0.586 CNRQ, IQR: 0.208–1.843, N

= 55; 0.600 CNRQ, IQR: 0.364–1.651, N = 55; 0.400 CNRQ, IQR:

0.209–2.952, N = 49; respectively) were observed in STS patients

comparatively with HD controls (3.059 CNRQ, IQR: 1.497–4.649,

N = 45, adj p < 0.000001; 1.899 CNRQ, IQR: 1.018–2.608, N = 45,

adj p = 0.004186; 3.060 CNRQ, IQR: 1.776–4.430, N = 45, adj

p = 0.00001; respectively) (Figure 1D). Considering the clinical

parameters evaluated, no significant differences were observed (data

not shown), yet PD patients exhibit a tendency for a decrease in the

plasma levels of ICOS-L (561.9 pg/mL, IQR: 258.6–808.8, N = 20)

compared with SD patients (1470.3 pg/mL, IQR: 1211.6–1813.1,

N = 6, FDR = 0.008359; adj p = 0.000103) (Figure 1E).

Moreover, besides no alterations in the relative frequency of T

cells (Supplementary File S7B), it was observed a significant reduction

in the absolute and relative frequency of CD4 T cells (0.32 cells/<L,

IQR: 0.17–0.57, N = 49; 46.3% of T cells, IQR: 36.2–60.6, N = 55;

respectively) in STS patients comparatively with HD controls (0.9

cells/<L, IQR: 0.68–1.03, N = 45, adj p < 0.000001; 59.8% of T cells,

IQR: 55.3–67.8, N = 45, p = 0.000963; respectively) (Figures 1F, G;

Supplementary File S8). The gene expression analysis revealed

decreased expression levels of CD28 and IL2RA in STS patients

(0.770 CNRQ, IQR: 0.331–2.681, N = 55; 0.583 CNRQ, IQR: 0.277–

1.709, N = 54) comparatively with HD controls (3.059 CNRQ, IQR:

1.497–4.639, N = 45, adj p = 0.000116; 2.429, IQR: 1.638–3.510, N =

45, adj p = 0.000011; respectively) (Figure 1H).

Furthermore, the correlation analysis of B cells and CD4 T cells

with the IRG CD27, CD40LG, and ICOSLG in STS patients showed
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a significant positive correlation between the relative frequency of B

cells and the gene expression levels of the IRG CD27 (Spearman r =

0.277, p = 0.0406), ICOSLG (Spearman r = 0.541, p < 0.0001), and

CD40LG (Spearman r = 0.296, p = 0.0282), and the plasma levels of

CD40-L (Spearman r = 0.586, p = 0.0066). Similarly, the relative

frequency of CD4 T cells was found to be positively correlated with

the gene expression levels of ICOSLG (Spearman r = 0.352, p =

0.0132) and CD40LG (Spearman r = 0.342, p = 0.0105), with

statistical value (Figure 1I).
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3.2 The major impact of
immunosuppression (MDSC and Treg) in
STS patients

In this cohort of STS patients, a significant expansion of circulating

monocytic-MDSC (M-MDSC) was observed (79.7% of MDSC, IQR:

58.5–88.6, N = 54) when compared with the HD controls (54.3% of

MDSC, IQR: 35.1–72.3, N = 35, adj p = 0.00652) (Figure 2A). The gene

expression levels of the IRG ARG1 were also found to be significantly
FIGURE 1

Contraction of B cell and CD4 T cell compartments in STS patients. Multiparametric flow cytometry and real-time RT-qPCR were used to analyze
immune cells and IRG in peripheral whole blood samples, and xMAP technology was used to analyze IRSF in plasma samples. (A) Absolute frequency
of B cells observed in STS patients and HD controls. (B) Relative frequency of B cells observed in STS patients and HD controls. (C) Relative
frequency of B cells according to histological classification, treatment/response, and therapy. (D) Relative quantification of the IRG CD27, ICOSLG,
and CD40LG observed in STS patients and HD controls. (E) Relative quantification of the IRSF ICOS-L according to treatment/response. (F) Absolute
frequency of CD4 T cells observed in STS patients and HD controls. (G) Relative frequency of CD4 T cells observed in STS patients and HD controls.
(H) Relative quantification of the IRG CD28 and IL2RA observed in STS patients and HD controls. (I) Correlation analysis of B cells and CD4 T cells
with the IRG CD27, ICOSLG, and CD40LG, and with the IRSF CD40-L. Original values were used for data representation using Tukey method, while
transformed values of immune cells (arcsin transformed), IRG (log10 transformed), and IRSF (log10 transformed) were used for statistical analysis. In
A, B, D-H, it was conducted multiple Mann-Whitney U tests controlling for FDR, followed by Bonferroni-Dunn method to obtain the adjusted p-
values. In C, it was conducted 2-way ANOVA controlling for FDR (q = 0.05), followed by Bonferroni's post-test for multiple comparisons between
groups. In I, Spearman's correlation analysis was performed, and the coefficient matrix was plotted, with significant p-values represented. The color
scale represents the direction of association, green means positive correlation and red means negative correlation. Statistical significance was set at
p < 0.05, q = 0.05 and a = 0.05. Legend: HD, healthy donors; STS, soft tissue sarcoma; LMS, leiomyosarcoma; LS, liposarcoma; US, undifferentiated
sarcoma; SS, synovial sarcoma; DX, patients indicated for surgery; SD, stable disease; PD, progression disease; TRAB, trabectedin-base
chemotherapy; ANTHRA, anthracycline-based therapy; ANTHRA + TRAB, trabectedin-based therapy after anthracycline-based therapy; AF, absolute
frequency; RF, relative frequency; IRG, immune-related genes; IRSF, immune-related soluble factors; CNRQ, calibrated normalized relative quantity;
FDR, false discovery rate; Adj p, adjusted p-value.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1391840
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Almeida et al. 10.3389/fimmu.2024.1391840
increased in STS patients’ peripheral whole blood (1.419, IQR: 0.420–

4.124, N = 55), compared with HD controls (0.335 CNRQ, IQR: 0.256–

0.658, N = 43, adj p = 007121) (Figure 2B). Moreover, the relative

frequency of circulating M-MDSC and the gene expression levels of

ARG1 were to be found positively correlated in STS patients, with a

statistical value (Spearman r = 0.2985, p = 0.0283) (Figure 2C). Using

xMAP technology, the quantification of soluble VISTA in plasma

samples was found to be superior in STS patients (47.6 pg/mL, IQR:

26.3–65.5, N = 20) than in HD controls (12.5 pg/mL, IQR: 8.6–15.2,

N = 19, adj p = 0.001216) (Figure 2D).

The maturation state of CD4 T cells was evaluated, and it was

observed that there was a decreased relative frequency of naïve CD4

T cells (9.4% of CD4 T cells, IQR: 5.2–21.8, N = 55) in STS patients

than in HD controls (34.3% of CD4 T cells, IQR: 17.1–43, N = 45,

adj p < 0.000001) (Supplementary File S9A). The relative frequency

of Th1, Th2, Th17, and Treg cells was also evaluated. Significantly

lower frequencies of Th2 cells (42.2% of CD4 T cells, IQR: 25.9–

52.6, N = 55) and increased frequencies of Th17 cells (13.2% of CD4

T cells, IQR: 10.1–19, N = 55) were observed in STS patients when

compared with HD controls (53.1% of CD4 T cells, IQR: 46.4–63.6,

N = 45, adj p = 001292; 7.2% of CD4 T cells; IQR: 6.1–11.6, N = 45,
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adj p = 000194; respectively), while no differences were observed for

Th1 nor Treg cells (Supplementary File S9B). On the other hand,

the frequency of memory Treg cells was found increased in the

peripheral blood of STS patients (89.7% of Treg cells, IQR: 85.3–

92.8, N = 53) compared with HD controls (75.3% of Treg cells, IQR:

69.5–83.7, N = 75.3, adj p < 0.000001) (Figure 2E). The analysis of

plasma samples also revealed a higher significant quantification of

IL-10 in STS patients (1.8 pg/mL, IQR: 1.8–12.7, N = 19) than in

HD controls (1.8 pg/mL, IQR: 1.8–1.9, N = 19, adj p = 0.013511)

(Figure 2F). Moreover, the analysis of the IRSF revealed increased

levels of TIMD-4 in plasma samples from STS patients (635.9 pg/

mL, IQR: 411.1–1603.8, N = 20) compared with HD controls (261.5

pg/mL, IQR: 150.5–418.9, N = 19, adj p = 0.008118) (Figure 2G).
3.3 Compromised cytotoxic potential
associated with CD56dim NK cells and CD8
T cells in STS patients

The analysis of the peripheral blood and plasma samples

showed a significant increase in the relative frequency of CD8 T
FIGURE 2

Major impact of immunosuppression (MDSC and Treg) in STS patients. Multiparametric flow cytometry and real-time RT-qPCR were used to analyze
immune cells and IRG in peripheral whole blood samples, and xMAP technology was used to analyze IRSF in plasma samples. (A) Relative frequency
of M-MDSC cells observed in STS patients and HD controls. (B) Relative quantification of the IRG ARG1 observed in STS patients and HD controls.
(C) Correlation analysis of M-MDSC with the IRG ARG1. (D) Relative quantification of the IRSF TIMD-4 observed in STS patients and HD controls.
(E) Relative frequency of Treg cells observed in STS patients and HD controls. (F) Relative quantification of the IRSF IL-10 observed in STS patients
and HD controls. (G) Relative quantification of the IRG TIMD-4 observed in STS patients and HD controls. Original values were used for data
representation using Tukey method, while transformed values of immune cells (arcsin transformed), IRG (log10 transformed), and IRSF (log10
transformed) were used for statistical analysis. In (A, B, D-G), it was conducted multiple Mann-Whitney U tests controlling for FDR, followed by
Bonferroni-Dunn method to obtain the adjusted p-values. In (C), Spearman’s correlation analysis was performed. Statistical significance was set at p
< 0.05, q = 0.05 and a = 0.05. HD, healthy donors; STS, soft tissue sarcoma; MDSC, myeloid-derived suppressor cells; M-MDSC, monocytic-MDSC;
Treg, regulatory T cells; IRG, immune-related genes; IRSF, immune-related soluble factors; CNRQ, calibrated normalized relative quantity; FDR, false
discovery rate; Adj p, adjusted p-value.
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cells (45.7% of T cells, IQR: 32.4–57.1, N = 55) in STS patients when

compared with HD controls (32.9% of T cells, IQR: 26–37.8, N = 45,

adj p = 0.001186) (Figure 3A), while no differences were observed

for absolute frequency (Supplementary File S8A). Similarly, no

alterations were observed for CD8 T cell subpopulations

according to maturation states (Supplementary File S9C).

Moreover, the relative frequency of CD56dim NK cells was found

to be significantly lower in STS patients (88.5% of NK cells, IQR:

77.7–94.3, N = 55) than in HD controls (97% of NK cells, IQR:

95.6–98.4, N = 45, adj p < 0.000001) (Figure 3B). The analysis

according to treatment/response revealed significant increased
Frontiers in Immunology 09
levels of CD56bright NK cells in PD patients (13.7% of NK cells,

IQR: 9.1–29.2, N = 21) in comparison with DX patients (4.4% of NK

cells, IQR: 2.6–10.2, N = 8, p = 0.0078) (Figure 3C). Gene expression

analysis of whole blood samples showed that STS patients had

significantly decreased levels of the IRG PRF1 (0.484, IQR: 0.185–

2.049, N = 55), GZMB (0.515 CNRQ, IQR: 0.351–1.457, N = 55),

and KLRK1 (0.545 CNRQ, IQR: 0.318–2.047, N = 55)

comparatively to HD controls (2.365 CNRQ, IQR: 1.675–3.772,

N = 45, adj p = 0.000188; 1.705, IQR: 1.312–2.453, N = 45, adj p =

0.000525; 2.098 CNRQ, IQR: 1.580–3.354, N = 45, adj p = 0.000965;

respectively) (Figure 3D). It was also shown that ANTHRA patients
FIGURE 3

Compromised cytotoxic potential associated with CD56dim NK cells and CD8 T cells in STS patients. Multiparametric flow cytometry and real-time
RT-qPCR were used to analyze immune cells and IRG in peripheral whole blood samples. (A) Relative frequency of CD8 T cells observed in STS
patients and HD controls. (B) Relative frequency of CD56dim NK cells observed in STS patients and HD controls. (C) Relative frequency of CD56dim

NK cells according to treatment/response. (D) Relative quantification of the IRG PRF1, GZMB, and KLRK1 observed in STS patients and HD controls.
(E) Relative quantification of the IRG PRF1 according to therapy. (F) Correlation analysis of CD56dim NK cells, EMRA CD8 T cells, and the IRSF
arginase with the IRG PRF1, GZMB, and KLRK1. Original values were used for data representation using Tukey method, while transformed values of
immune cells (arcsin transformed) and IRG (log10 transformed) were used for statistical analysis. In (A, B, D) it was conducted multiple Mann-
Whitney U tests controlling for FDR, followed by Bonferroni-Dunn method to obtain the adjusted p-values. In (C, E), it was conducted 2-way
ANOVA controlling for FDR (q = 0.05), followed by Bonferroni’s post-test for multiple comparisons between groups. In F, Spearman’s correlation
analysis was performed, and the coefficient matrix was plotted, with significant p-values represented. The color scale represents the direction of
association, green means positive correlation and red means negative correlation. Statistical significance was set at p < 0.05, q = 0.05 and a = 0.05.
HD, healthy donors; STS, soft tissue sarcoma; DX, patients indicated for surgery; SD, stable disease; PD, progression disease; TRAB, trabectedin-base
chemotherapy; ANTHRA, anthracycline-based therapy; ANTHRA + TRAB, trabectedin-based therapy after anthracycline-based therapy; IRG,
immune-related genes; CNRQ, calibrated normalized relative quantity; FDR, false discovery rate; Adj p, adjusted p-value.
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exhibited lower levels of PRF1 (0.168 CNRQ, IQR: 0.111–0.306, N =

9), which were significantly decreased comparatively with TRAB

patients (2.060 CNRQ, IQR: 1.560–3.500, N = 8, adj p = 0.0181)

(Figure 3E). Additionally, through the correlation analysis of CD8 T

cells and CD56dim NK cells with the gene expression levels of PRF1,

GZMB, and KLRK1 in STS patients, it was observed a significant

positive correlation of CD56dim NK cells with PRF1 (Spearman r =

0.273, p = 0.0435) and EMRA CD8 T cells with PRF1 (Spearman r =

0.312, p = 0.0203), GZMB (Spearman r = 0.266, p = 0.0496), and

KLRD1 (Spearman r = 0.336, p = 0.0122) (Figure 3F). Contrarily,

the plasma level of Arginase in STS patients (699.6 pg/mL, IQR:

91.5–3417, N = 20) was found to be negatively correlated, with

statistical value, with PRF1 (Spearman r = -0.597, p = 0.0055),

GZMB (Spearman r = -0.708, p = 0.0005), and KLRK1 (Spearman

r = -0.487, p = 0.0293) (Figure 3F).
3.4 Immunotype classification and impact
on patient survival

Furthermore, it was aimed at integrating the data obtained from

flow cytometry, real-time RT-qPCR, and xMAP analysis to

construct peripheral immune profiles and explore their value for

monitoring STS patients. To achieve that, and considering the large

number of variables, immune cells, IRG, and IRSF, first it was

investigated the potential impact of each variable on patient

survival, defined as time-to-death event counting from the time of

the sample collection to the event of death or the end of the study

(May 2023), denominated as time after collection (TAC). Through

Cox regression and log-rank tests with an appreciation of KM

curves, it was identified immune-related factors significantly

correlated with patient survival. The calculated hazard ratio

associated with the Cox regression analysis indicated the level of

risk or protection associated with each variable. Detailed statistics

are depicted in Figure 4. Within the immune cell populations

analyzed, increased levels of GR (AF), polymorphonuclear-MDSC

(PMN-MDSC), Th2, and naïve CD8 T cells were indicated as risk

factors, whereas increased levels of MO, DC, LY, T cells, EM CD4 T,

and Th1 cells were indicated as protection factors (Figure 4).

Among IRG, heightened levels of ARG1 were linked to increased

risk, while increased levels of GZMB, CD69, CD3D, NCR2, KLRD1,

CCL2, CCL4, CD96, TIGIT, and CD40LG were associated with

protection (Figure 4). In the analysis of IRSF, factors such as IL-2,

IL-5, IL-10, IL-17A, IFN-g, MMP1, bNGF, TLSP, VISTA, TIMD-4,

PVR, and CTLA-4 were indicated as risk factors, while an increased

level of soluble ICOS-L was associated with protection in STS

patients (Figure 4).

It was also performed a multivariable Cox proportional hazards

regression analysis to assess the impact of immune-related variables

on patient survival, adjusting for commonly known prognostic

factors such as tumor site (extremity, trunk non-RPS, RPS,

gynecologic, head & neck), tumor grade (low grade, high grade,

metastatic primary, metastatic recurrent), age at diagnosis, and age at

collection time. Due to high multicollinearity and the sample size

relative to the number of variables, a Stepwise Method with Forward

selection (Likelihood Ratio) was employed. Data was standardized,
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interaction terms with the log of time. The results indicated that

gene expression of CD40LG (p = 0.001), and the combination of

CD40LG and the relative frequency of PMN-MDSC (p = 0.022), are

significant predictors of patient survival (Supplementary File S10).

The proportional hazards assumption was validated for both

CD40LG and PMN-MDSC predictors (p > 0.05).

Next, a database containing individual parameters associated

with either risk or protection (comprising 35 immune-related

variables) for each of the 55 STS patients included in the study

was constructed and then uploaded into the ClustVis web platform

(http://biit.cs.ut.ee/clustvis/) for data visualization. The data was

processed using PCA prediction ellipses and heatmaps (37). For

data normalization and to reduce skewness, the original values were

transformed (ln (x + 1)), and row centering and unit variance

scaling were applied to enhance comparability across different

immune-related factors. Additionally, imputation methods were

employed to handle missing values, ensuring accurate estimations.

Unit variance scaling was applied to rows and SVD with imputation

was used to calculate PC.

First, histological classification, treatment/response, and

therapy were considered for creating PCA prediction ellipses

(Figure 5A). The degree of a similarity or dissimilarity between

the groups might be deduced by looking at the placement and

overlap of the ellipses. The X and Y axes are represented by PC1 and

PC2, which explain 26.3% and 10.7% of the total variation,

respectively. The overlap observed in the prediction ellipses

indicated an independence of peripheral immunotypes from

histological classification, treatment/response, and therapy.

Following this, unsupervised clustering analysis was conducted,

resulting in the generation of a heatmap featuring 55 columns

(representing patients) and 35 rows (representing immune factors)

(Figure 5B, left). The clustering of columns (patients) utilized the

correlation distance metric and Ward linkage, while the clustering

of rows (immune-related factors) employed Euclidean distance and

Ward linkage. The analysis revealed three major patient clusters,

denoted as P1, P2, and P3, which comprised 17/55, 14/55, and 24/55

of the patients, respectively. Moreover, two clusters were identified

for the rows, representing the immune-related factors: an upper

cluster (C1) containing 17/35 factors and a lower cluster (C2)

containing 18/35 factors.

Then, the immune-related variables that distinguish between

patient groups were examined. In C1, the immune populations GR

(#), PMN-MDSC (%), Naïve CD8 T cells (%), and Th2 cells (%)

were clustered together with the IRG ARG1, and the IRSF sVISTA,

sCTLA-4, IL-5, bNFG, sIL10, sTLSP, L-2, IL-17A, IFN-g, sMMP-1,

sPVR, and sTIMD-4. In C2, the immune populations MO%, DC%,

LY%, T cells %, EM CD4 T cells%, and Th1 cells% were clustered

together with the IRG CD3D, CCL4, GZMB, CD96, NCR2, TIGIT,

CD40LG, KLRC2, CD69, and CCL2, and the IRSF sICOS-L. Using

STRING version 11.5 (https://string-db.org), a bioinformatic

analysis compared the set of genes and proteins within each C1

and C2 cluster with the whole proteome to identify associated

biological pathways (38). For each cluster, a table with factor names

and normalized means against the HD controls was uploaded, and a

PPI network analysis was constructed (Figure 5B, right). The PPI
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network enrichment value was < 1x10-16 for both sets of genes (C1

and C2). A functional enrichment analysis of the GO pathway was

performed for each gene or protein set, and the top five significant

pathways with higher strength were considered. For C1, the top five

GO biological processes identified were: positive regulation of

plasma cell differentiation, positive regulation of interleukin-23

production, positive regulation of MHC class II biosynthetic

process, negative regulation of interleukin-17 production, and
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positive regulation of regulatory T cell differentiation (Figure 5B,

right, top). For C2, the top five GO biological processes identified

were: regulation of NK cell chemotaxis, eosinophil chemotaxis,

positive regulation of endothelial cell apoptotic process, negative

regulation of NK cell-mediated immunity, and stimulatory C-type

lectin receptor signaling pathway (Figure 5B, right, bottom).

Moreover, individual correlations between each immune cell

population and IRG and IRSF were investigated. A multivariate
FIGURE 4

Immune-related factors individually associated with patient survival. Multiparametric flow cytometry and real-time RT-qPCR were used to analyze
immune cells and IRG in peripheral whole blood samples, and xMAP technology was used to analyze IRSF in plasma samples. Univariate Cox
analysis, log-rank test, and graphical representation of the survival-associated hazard ratio. Red and green dots represent factors associated with risk
and protection, respectively. Statistical significance was set at p < 0.05. GR, granulocytes; AF, absolute frequency; RF, frequency; MO, monocytes;
DC, dendritic cells; MDSC, myeloid-derived suppressor cells; PMN-MDSC, polymorphonuclear-MDSC; LY, lymphocytes; DN, double negative; EM,
effector memory; Th, T helper.; IRG, immune-related genes; IRSF, immune-related soluble factors.
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FIGURE 5

Immunotype classification and impact on patient survival. Multiparametric flow cytometry and real-time RT-qPCR were used to analyze immune
cells and IRG in peripheral whole blood samples, and xMAP technology was used to analyze IRSF in plasma samples. (A) PCA according to
histological classification, treatment/response, and therapy. Unit variance scaling was applied to rows and SVD with imputation was used to calculate
principal components. Prediction ellipses are such that with a 0.95 probability, a new observation from the same group will fall inside the ellipse.
(B) Unsupervised clustering analysis of the selected immune cells, IRG and IRSF, and PPI network of IRG and IRSF identified in both C1 and C2
clusters. Heatmap to visualize clustering of multivariate data for 55 STS patients. ClustVis was accessed online (https://biit.cs.ut.ee/clustvis) and
patients were plotted by columns while the selected parameters were plotted by rows. Three clusters of patients (P1, P2 and P3) and two clusters of
immune-related factors (C1 and C2) were identified. PPI and cluster analysis of the immune-related factors present in each cluster of the heatmap
constructed for the 55 STS patients, using the online software STRING (version 11.5). C1 cluster, 13 nodes and 45 edges. The PPI network enrichment was
found to be statistically significant (p < 1.0e-16). C2 cluster, 12 nodes and 45 edges. The PPI network enrichment was found to be statistically significant (p
< 1.0e-16). (C) Spearman’s correlation analysis of immune cells clustered in C1 and C2 with IRG and IRSF. The coefficient matrix was plotted with the p-
values represented. The color scale represents the direction of association, green means positive correlation and red means negative correlation.
(D) Survival analysis based on peripheral immunotypes. Kaplan-Meier curves generated from a cohort of 55 STS patients, categorized into P1 (“immune
high”), P2 (“immune intermediate”), and P3 (“immune low”) immunotypes. Censored events were identified as a cross in the respective curves. The
number of patients at risk are represented in the table below the graph. Statistical significance was set at p < 0.05. PCA, principal component analysis; PC,
principal component; IRG, immune-related genes; IRSF, immune-related soluble factors; LMS, leiomyosarcoma; LS, liposarcoma; US, Undifferentiated
sarcoma; SS, synovial sarcoma. ANTHRA, Anthracycline-based chemotherapy; TRAB, trabectedin-based therapy; Naïve, patients indicated for surgery;
PPI, protein-protein interaction; IRG, immune-related genes.; IRSF, immune-related soluble factors; UC, upper cluster; LC, lower cluster; GO, gene
ontology; FDR, false discovery rate; TAC, time after collection.
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analysis was conducted, and a Spearman correlation matrix was

plotted, depicting the degree of association between factors

(Spearman’s R for each pair) (Figure 5C). The colored scale in the

matrix indicates the correlation direction, with green representing a

positive correlation and red representing a negative correlation.

Wells with values in the matrix represent significant p-values.

Immune cells individually associated with risk (GR (#), PMN-

MDSC (%), naïve CD8 T cells (%), Th2 (%)) exhibited a similar

correlation pattern with IRG and IRSF. Conversely, immune cell

populations associated with protection (MO%, DC%, LY%, T cells

%, EM CD4 T cells, and Th1 cells%) demonstrated a similar pattern

within each other, opposite to that observed for risk-

associated populations.

Considering GO functional analysis, Spearman correlation

analysis, and immunobiology knowledge, it was determined that

the C1 cluster was enriched in inflammatory/immunosuppressive

factors, while the C2 cluster was enriched in effector/cytotoxic

factors. Therefore, the peripheral immune profiles P1, P2, and P3

were categorized as “immune high,” “immune intermediate,” and

“immune low,” respectively. P1 patients displayed reduced levels of

C1 factors along with elevated levels of C2 factors, contrary to the

observation for P3 patients. P2 patients exhibited intermediate

expression levels of C1 and C2 factors, reflecting an

intermediate profile.

The implication of peripheral immunotypes on patient clinical

outcomes was then investigated. Similar to the survival analysis

performed for individual factors, the TAC was set from the time of

blood collection until death event occurrence or the end of the study.

The resulting KM curves are shown in Figure 5D. The P1 “immune

high,” P2 “immune intermediate,” and P3 “immune low” patients

exhibited an estimated TAC of 41 months (N = 13), 20 months (N =

14), and 19 months (N = 24), respectively. The survival rate at 12

months for C1 “immune high” was 100%, whereas for C2 “immune
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intermediate” it was 70%, and for C1 “immune low” it was about

60%. The log-rank test was employed, and significant differences were

observed for the survival curves of C1 “immune high” and C3

“immune low” patients (p-value = 0.018). The survival analysis of

immunotypes using TAD was assessed, but no significant values were

found (Supplementary File S11).

In line with the survival analysis of individual variables, the

significance of peripheral immunotypes was assessed using a

multivariate Cox regression model adjusted for tumor site, tumor

grade, age at diagnosis, and age at collection time. The overall

model, which incorporated all variables, significantly predicted

patient survival when employing both the Enter (p = 0.003) and

forward Stepwise (p = 0.023) methods (Figure 6A). Using the Enter

method, the variable immunotypes (p = 0.016) retained its

significance. Additionally, age at diagnosis (p = 0.005) and age at

collection (p = 0.004) were also found to be significant (Figure 6B).

Conversely, using the Stepwise method, the variable immunotypes

was the only factor that remained significant (p = 0.029)

(Figure 6B). The proportional hazards assumption was validated

for immunotypes (p > 0.05).
4 Discussion

The current monitoring methods for patients with STS lack

effectiveness, prompting the need for alternative approaches. While

previous studies have linked patient survival to the immune

environment within tumor sites, our comprehension of the

overall systemic immune status of STS patients remains

incomplete. Utilizing peripheral blood collection as a minimally

invasive means, this study aimed to assess the immune status of STS

patients, providing advantages over traditional tumor sampling

methods. The study aimed to evaluate immune cells, IRG, and
FIGURE 6

Multivariate Cox analysis of immunotypes adjusting for common prognostic factors. Multiparametric flow cytometry and real-time RT-qPCR were
used to analyze immune cells and IRG in peripheral whole blood samples, and xMAP technology was used to analyze IRSF in plasma samples. Enter
and stepwise method with forward selection (likelihood ratio) for immunotypes adjusting for tumor site (extremity, trunk non-RPS, RPS, gynecologic,
head & neck), tumor grade (low grade (non-metastatic primary); high grade (non-metastatic primary recurrent; metastatic primary; metastatic
recurrent), age at diagnosis, and age at collection time. (A) Overall model including all the variables. Enter and forward Stepwise Conditional (LR)
method. (B) Variables in the equation for the Enter and forward Stepwise Conditional (LR) method, and univariate Cox analysis. Statistical significance
was set at p < 0.05.
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IRSF, identify peripheral immune profiles, and investigate their

association with patient survival. Consequently, the findings

suggested impaired systemic immunity in STS patients, with the

analysis of peripheral immunotypes indicating an impact on

patient survival.
4.1 Contraction of B cell and CD4 T cell
compartments in STS patients

Analysis of major leukocyte populations revealed significant

lymphopenia accompanied by an expansion of GR, predominantly

neutrophils (NEU). These observations align with findings from

previous studies in STS and cancer in general (24, 30, 39–41). For

example, systemic inflammation indices like the neutrophil-to-

lymphocyte ratio (NLR) have been proposed as prognostic factors

in STS and cancer overall (42–46). A high NLR, indicative of NEU

expansion and LY reduction, is commonly associated with a

poorer prognosis. The decrease in LY counts may be attributed to

various factors, including the tumor’s peripheral effects (47–49) and

chemotherapy-induced decline (50), which is noteworthy considering

that most patients in our study were undergoing chemotherapy.

Besides the studies highlighting the significance of major

leukocyte populations, there exists a gap in research investigating

in-depth analyses of immune cell populations, IRG, or IRSF in the

peripheral blood of STS patients. Therefore, our study uncovered

compelling findings. The decrease in B cells and CD4 T cells,

consistent with the observations by Kim et al. (51), along with the

reduced gene expression levels of ICOSLG and CD40LG, which are

positively associated with both B cells and CD4 T cells, suggests

impaired activation of these cell types. B cells have been implicated

in the context of STS within the tumor site, where higher infiltration

and the presence of B cell-rich tertiary lymphoid structures (TLS)

correlate with improved clinical outcomes (17, 18, 52). The

peripheral reduction of B cells may hinder their migration to the

tumor site, potentially weakening immune responses in the tumor

microenvironment (TME). Decreased circulating levels of CD4 T

cells have also been documented in other solid tumors (53, 54),

suggesting a potential decrease in CD4 T cell infiltration,

particularly Th1 cells crucial for effective immune responses. It’s

worth noting that reduced levels in both populations may be

associated with chemotherapy (50). However, only B cells

exhibited a significant reduction compared to patients not

undergoing chemotherapy (DX patients), indicating that the

decrease in CD4 T cells is not solely attributable to chemotherapy.

Moreover, analysis based on chemotherapy regimens revealed that

ANTHRA patients exhibited the lowest frequency of B cells,

consistent with a study in breast cancer demonstrating the impact

of anthracyclines on the B cell compartment (55). Interestingly,

TRAB patients exhibited significantly higher levels of B cells,

suggesting a potential advantage of trabectedin over anthracyclines.

In addition to the decrease in B cells and CD4 T cells, the gene

expression levels of ICOSLG and CD40LG were also found to be

reduced in these patients. Both ICOS/ICOS-L and CD40/CD40LG

play critical roles in the communication between B cells and CD4 T
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cells, among other immune functions (56, 57). Furthermore, the

downregulation of these pathways has been implicated in cancer

(58, 59). For instance, in LS, there’s evidence of a correlation

between ICOS expression in tumors and improved clinical

outcomes (60), which aligns with the tendency for decreased

plasma levels of ICOS-L observed in our study’s PD patients.

Additionally, LS patients exhibited increased frequencies of B

cells. Furthermore, other immune-related genes like CD27,

associated with switch memory B cells, and CD28 and IL2RA,

linked to T cells, were also found to be decreased in the peripheral

blood of these patients. Therefore, beyond the decrease in

frequencies, the observed reduction in B cells, CD4 T cells, and

the mentioned IRG suggests impaired activation of circulating B

and CD4 T cells in STS patients, potentially leading to diminished

migration of effector cells to the TME.
4.2 The major impact of
immunosuppression (MDSC and Treg) in
STS patients

Furthermore, an increase in suppressor populations, notably

M-MDSC and memory Treg cells, was observed, along with

elevated gene expression levels of the IRG ARG1 and increased

plasma levels of VISTA, TIMD-4, and IL-10. In studies involving

sarcoma patients, elevated levels of M-MDSC have been linked

to reduced treatment efficacy, tumor growth, and a poorer

prognosis (51, 61). Additionally, increased gene expression

levels of ARG1 were found to be positively correlated with the

heightened frequency of M-MDSC in this study. M-MDSC are

known to be robust producers of arginase-1, which can inhibit

NK and T cell cytotoxicity by depleting arginine from the

microenvironment (62–65). Moreover, in STS, both ARG1 and

ARG2 gene expression have been identified in tumor samples,

suggesting an immunosuppressive TME that may impede an

effective immune response (66). Hence, beyond the TME, it can be

hypothesized that the expansion of M-MDSC leads to the release of

arginase-1 into the peripheral microenvironment, inhibiting the

cytotoxic function of T and NK cells and thereby contributing to

impaired systemic immunity.

Moreover, an increase in plasma levels of the immune

checkpoint VISTA was observed. This molecule has been

proposed as a significant factor for immunotherapy in STS, as its

expression on tumor samples has been associated with tumor grade,

tumor-infiltrating lymphocyte numbers, and PD-1 expression (67).

Particularly in SS, the expression of VISTA by macrophages has

been shown to inhibit the infiltration of T cells in ex vivo

experiments (68). Additionally, VISTA may influence the

differentiation of MDSC (69, 70). Therefore, considering the

expansion of M-MDSC, increased levels of VISTA may

potentially promote the differentiation and expansion of

circulating M-MDSC.

Furthermore, an increase in memory Treg cells and IL-10

plasma levels was observed. In STS and other solid tumors, the

presence of Treg cells in tumor samples has been associated with
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worse outcomes (19, 71), suggesting a similar scenario in the

periphery. Hence, the increased levels of memory Tregs, besides

the reduced levels of CD4 T cells, may contribute to an

immunosuppressive microenvironment. Studies have reported

that M-MDSC may promote the expansion of Treg cells via the

release of IL-10 into the environment (72–74), aligning with the

observations for M-MDSC, memory Treg cells, and IL-10 in this

study. Increased plasma levels of IL-10 have been documented in

pediatric STS patients and are associated with advanced disease,

poor response to chemotherapy, and unfavorable outcomes (75).

IL-10 has been correlated with increased suppression of T cells in

cancer patients and associated with worse survival (76, 77).

Additionally, increased plasma levels of TIMD-4 were also

observed in this study. TIMD-4, or TIM-4, is another immune

checkpoint molecule involved in T cell regulation. In cancer, its

expression in tumor samples has been correlated with worse patient

outcomes due to decreased effector function of tumor-infiltrating

CD8 T cells (78, 79). Although studies evaluating this molecule in

STS are rare, a case report of LS showed expression of TIM-3 or

TIM-4 in tumor samples, indicating a direct involvement in cancer

progression (80). Considering the findings for M-MDSC, ARG1,

soluble VISTA, Treg cells, IL-10, and soluble TIMD-4, it can be

suggested that immunosuppression at the periphery has a

significant impact, sustaining impaired systemic immunity, which

may limit the anti-tumoral immune response at the tumor site.
4.3 Compromised cytotoxic potential
associated with CD56dim NK cells and CD8
T cells in STS patients

Furthermore, a decrease in CD56dim NK cells and a reduction in

the gene expression levels of cytotoxic-related factors PRF1, GZMB,

and KLRK1 were observed. NK cells are professional killer cells

crucial for tumor cell clearance, with their infiltration within tumors

typically associated with better prognoses (81). NK cells can be

categorized into two major subpopulations: CD56bright NK cells,

which are adept at secreting cytokines and chemokines, and

CD56dim NK cells, which exhibit greater cytotoxic activity (82).

Therefore, the decreased frequency of CD56dim NK cells may imply

a diminished cytotoxic potential of circulating NK cells in STS

patients. The observation of increased levels of CD56bright NK cells

and decreased levels of CD56dim NK cells in PD patients further

supports this assumption. Similarly, CD8 T cells are known for their

cytotoxic activity. In this study, an expansion of circulating CD8 T

cells was observed, suggesting an increased presence of these cells in

the periphery. However, there was no observed increase in the

effector CD8 T cell subpopulations EM and EMRA, indicating that

despite the expansion of total CD8 T cells, there isn’t a proportional

increase in the cells with the capacity to clear tumor cells.

Additionally, a decrease in the gene expression levels of

important cytotoxic factors such as PRF1, GZMB, and KLRK1

was noted. PRF1 was found to be positively correlated with

CD56dim NK cells, while PRF1, GZMB, and KLRK1 were

significantly correlated with EMRA CD8 T cells. PRF1 and

GZMB encode pore-forming and cytotoxic granules, respectively,
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involved in the cytotoxic process of NK and T cells against tumor

cells (83–86). Therefore, the decreased gene expression of both may

indicate an ineffective cytotoxic capacity of circulating NK and T

cells. Moreover, significantly higher levels of PRF1 were observed in

TRAB patients compared to ANTHRA patients. Trabectedin has

demonstrated immunomodulatory effects by inhibiting tumor-

associated macrophages and inducing NK-mediated cytotoxicity

in cancer, as multiple myeloma (87–89). This suggests that

trabectedin may enhance NK and T cell function by mitigating

the effects of the TME on the systemic immune response. This could

also contribute to some of the advantages of trabectedin over

anthracyclines in STS treatment.

Indeed, a previous study demonstrated that peripheral NK cells

from STS patients are dysfunctional, as they are unable to lyse

tumor cells in vitro (90). Lower frequencies of circulating CD8 T

cells producing PRF1 were observed in gastric cancer compared to

healthy individuals (91). Additionally, lower gene expression levels

of KLRK1, which encodes the activatory receptor NKG2D

expressed by both NK and T cells, were noted. This aligns with

previous reports showing decreased expression of NKG2D by

circulating NK cells and the association of NKG2D+ CD8 T cells

with improved disease-free survival in STS patients (90). Moreover,

in vitro studies have shown that NKG2Dmediates NK cell cytotoxic

activity against sarcoma cells (92). Interestingly, a negative

correlation was observed between the gene expression levels of

PRF1, GZMB, and KLRK1 and the plasma levels of arginase-1.

Considering the role of arginase-1, possibly released by M-MDSC,

in inhibiting the cytotoxic capacity of NK and T cells (3, 62–65), this

finding further supports the proposed immunosuppressed systemic

immunity sustained by the expansion of M-MDSC. This expansion

leads to the inhibition of NK and T cell cytotoxicity via the release of

arginase-1 and the depletion of arginine from the circulation. Taken

together, these findings suggest a decreased cytotoxic capacity of

NK and T cells in the peripheral blood of STS patients, likely

influenced by pro-tumoral mediators in circulation.
4.4 Immunotype classification and impact
on patient survival

Next, it was employed unsupervised clustering analysis using

immune cells, IRG and IRSF, and three distinct peripheral immune

profiles (P1, P2, and P3), based on immune-related factors (C1 and

C2), were identified in this cohort of STS patients. The contribution

of each immune-related factor delineate the differences in the

immune profiles among patients, and the investigation into the

factors comprising each cluster (C1 and C2) unveiled unique

associations. Cluster C1 showed associations of GR, PMN-MDSC,

Th2 cells, and naïve CD8 T cells, with IRG such as ARG1, and IRSF

like soluble IL-10, VISTA, and TIMD-4, alongside other immune

checkpoint molecules and inflammatory mediators. GO pathway

analysis suggested a potential association with immune suppression,

particularly with Treg cells. In contrast, cluster C2 displayed

associations between MO, DC, LY, T cells, EM CD4 T cells, and

Th1 cells with IRG like GZMB and CD40LG, as well as the soluble

factor ICOS-L, among others, correlated with cytotoxicity. GO
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pathway enrichment indicated a correlation with cytotoxicity,

particularly associated with NK cells. These findings highlight

distinct immune profiles in STS patients, providing insights into

potential mechanisms underlying immune responses and suggesting

avenues for patient classification and immune monitoring.

Although circulating Treg cells did not show a correlation

with patient survival in this study, the observed expansion of

memory Tregs may be associated with these findings, contributing

to heightened immunosuppression of systemic immunity in STS,

aligning with studies in STS showing that Treg cell infiltration in

tumors reflects an increased risk of local recurrence (19).

Additionally, the correlation patterns between GR and IRSF

underscore the importance of GR in sustaining an inflammatory

microenvironment in STS, aligning with findings from other

studies in the field (43, 44, 93). On the other hand, both NK

cells and CD8 T cells are renowned for their potent anti-tumor

activity and have been extensively investigated for their ability to

eliminate tumor cells (94, 95). In the context of STS, the presence

of infiltrating NK cells and CD8 T cells has been linked to

increased survival (96, 97). While the involvement of the ICOS-

L pathway in T cells has been previously explored, it is crucial to

highlight the protective nature of Th1 cells and DC, both of which

exhibit a significant positive correlation with ICOS-L in this study.

This correlation suggests that, despite limited studies in the

context of STS, the heightened activation of Th1 cells by DC

through the ICOS-L pathway might also play a crucial role in

disease management and control.

Therefore, based on the immune factors in clusters C1 and C2,

patients were categorized into “immune high,” “immune

intermediate,” and “immune low” immunotypes. “Immune high”

patients (P1) showed elevated cytotoxic-associated factors and lower

inflammatory or immunosuppression-related factors, while “immune

low” patients (P3) exhibited the opposite pattern. P2 patients fell into

the “immune intermediate” category. Analysis of survival rates

revealed that “immune high” patients had a significantly better

survival outcome compared to “immune low” patients, with a 12-

month survival rate of 100% versus 60%, respectively. “Immune

intermediate” patients showed survival rates in-between the other

twogroups.This highlights thepotential ofperipheral immunotypes as

biomarkers for predicting outcomes in STS.

Patients classified as “immune high” exhibited elevated levels of

effector memory (EM) CD4 T cells, along with increased expression

of CD40LG and ICOS-L. These markers suggest that B cells and

CD4 T cells in these patients maintain robust functionality, which is

crucial for effective immune responses. Additionally, these patients

showed heightened levels of cytotoxic activity markers like GZMB,

indicating a more vigorous and effective immune attack against

tumor cells. In contrast, patients categorized as “immune low”

displayed higher levels of suppressive factors commonly

associated with Treg cells and MDSCs, such as the IRG ARG1

and plasma cytokine IL-10. The presence of these suppressive

factors implies a compromised immune response, likely due to

immune suppression mechanisms that inhibit effective anti-tumor

activity. These observations highlight the critical role of immune

mechanisms in influencing patient survival, with “immune high”

subtypes benefiting from a more active and functional immune
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system, whereas “immune low” subtypes face challenges from

immune suppression.

Recent years have seen a growing interest in incorporating

diverse immune-related parameters to explore their predictive value

in cancer survival and therapy response (98). In sarcoma patients,

tumoral immunotypes have been proposed to optimize therapeutic

strategies (27). For instance, in US, unsupervised clustering analysis

of tumor samples identified three distinct immunological clusters

also labeled as “immune high,” “immune intermediate,” and

“immune low” (99). These clusters showed significant associations

with overall survival in primary tumors. Moreover, comprehensive

immune profiling has revealed LMS with an active and “hot” TME,

highlighting the importance of immune competence for an effective

anti-tumoral response (100). Beyond the analysis of tumor samples,

peripheral immune profiles have also shown correlations with

patient survival in various cancers (101–103), and in STS, gene

expression profiles from TCGA databases have identified immune

signatures linked to clinical outcomes (104). Additionally, in

patients with US, an “immune-high” profile has been linked to a

favorable response to ICI therapy (105).

The multivariate analysis identified CD40LG gene expression

and PMN-MDSC frequency as significant predictors of patient

survival. Although the overall model incorporating all variables

did not significantly predict patient survival, the identification of

these specific markers (CD40LG and PMN-MDSC) underscores

their potential clinical relevance. Moreover, when discussing the

advantages of utilizing peripheral phenotypes over individual-

related parameters, it is important to emphasize the robustness of

immunotypes in multivariate analyses. In this study, immunotypes

retained their significance even after adjusting for common clinical

and personal characteristics, demonstrating their ability to capture

relevant information that might be overlooked when only

individual variables are considered. Specifically, when using Cox

regression models to evaluate individual immune cells, IRG, and

IRSF, peripheral immunotypes provide a distinct advantage. They

integrate a broader spectrum of immune-related data, thereby

offering a more comprehensive and stable measure of immune

status compared to isolated individual parameters.

Thus, the incorporation of immune profiles into prognostic

models may improve patient outcomes, treatment regimens, and

risk stratification. Immune profiling is pivotal for identifying

patients with heightened immune cytotoxicity who may benefit

from immunotherapeutic interventions to boost anti-tumor

immune responses. Conversely, those with low immune activity

and higher immunosuppression may need strategies to overcome

immune evasion and restore function, enabling more precise

patient management and tailored therapies based on their

immunotype. While histological classification might have a

reduced impact on observed patient immunotypes, recent studies

underscore significant immune-related differences among STS

histotypes (105–109), potentially correlating with varying

sensitivity to immune responses and tumor aggressiveness. For

instance, investigations into ICI therapy in STS patients reveal

promising treatment responses in specific histotypes such as US

and LMS. The independence of immunotypes from histological

classification presents a significant advantage for monitoring STS
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patients, allowing for patient-specific categorization within the

disease’s inherent heterogeneity. Yet, specific alterations in

immune parameters were observed, suggesting that monitoring

these changes could also complement histotype classification.

Moreover, the prevalence of the “immune low” immunotype is

higher in PD patients, aligning with lower survival rates. Despite the

suggested impact of trabectedin in promoting improved systemic

immunity, no discernible effect was noted for immunotype

classification. This is crucial for therapeutic interventions, where

shifts in immune-related factors might correlate directly with

treatment responses.

In conclusion, this study revealed contraction and impairment

of circulating B and CD4 T cells, expansion of suppressor cells such

as M-MDSC and Treg, and increased levels of immune-related

factors associated with inhibition, including ARG1, soluble VISTA,

soluble TIMD-4, and IL-10. Moreover, compromised cytotoxic

function was observed due to reductions in cytotoxic factors like

PRF1 and GZMB, along with cytotoxic NK cells and activatory

receptors such as KLRK1 (NKG2D), indicating compromised

systemic immunity in STS patients. Unsupervised clustering

analysis identified three distinct immunotypes, each characterized

by varying levels of immunosuppression or activation and

cytotoxicity-related factors. Patients (P1) with lower levels of

immunosuppressor factors (C1) and higher levels of factors

related to the activation and cytotoxicity of NK and T cells (C2)

exhibited superior survival rates compared to patients (P3) with the

opposite pattern. These findings suggest impaired immunity in STS

patients with impact on patient survival, highlighting the potential

of monitoring STS patients using peripheral blood samples to

evaluate the immune status of a patient as an alternative to tumor

sample evaluation. Additionally, classifying STS patients into more

homogeneous groups may streamline clinical management.

This study provides valuable insights into the peripheral immune

landscape in STS patients, but several limitations must be

acknowledged. The small sample size limits the statistical power and

the ability to accurately evaluate clinical parameters, emphasizing the

need for larger cohorts. Additionally, the variability in diagnostic

timing and non-standardized sample collection times introduce

heterogeneity, making it challenging to isolate newly diagnosed

patients and impacting the consistency of the data. The cross-

sectional design further restricts the study by not capturing immune

dynamics over time, which is crucial for understanding disease

progression and treatment response. Without external validation of

the immunotypes identified, the generalizability of these findings

remains uncertain, suggesting a need for future studies to validate

these results in larger, diverse cohorts.

Building on the current findings, future research should focus

on longitudinal studies to monitor changes in the immune

landscape over time and under different treatment regimens. This

approach will provide deeper insights into the prognostic and

predictive significance of immune profiling in STS. Additionally,

there is a need for interventions aimed at modulating peripheral

immune responses, which could potentially improve clinical

outcomes. Future trials should aim to standardize and validate

immunotype classification, ultimately integrating these insights into

clinical practice to enhance the management of STS patients.
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