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A degranulation assay using
Vg9Vd2 T cells for the rapid
diagnosis of familial
hemophagocytic syndromes
Olivia Jorisch-Mühlebach1†, Dina Pitts1†, Raphaela Tinner1,
Hong Ying Teh1, Conrad Roelli 1, Seraina Prader1,
Stefano Vavassori 1‡ and Jana Pachlopnik Schmid1,2*‡

1Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich,
Zurich, Switzerland, 2Pediatric Immunology, University of Zurich, Zurich, Switzerland
Introduction: Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening

immune disorder characterized by uncontrolled lymphocyte and macrophage

activation and a subsequent cytokine storm. The timely initiation of

immunosuppressive treatment is crucial for survival.

Methods: Here, we harnessed Vg9Vd2 T cell degranulation to develop a novel

functional assay for the diagnosis of HLH. We compared the novel assay with the

conventional natural killer (NK) cell stimulation method in terms of efficiency,

specificity, and reliability. Our analysis involved 213 samples from 182 individuals,

including 23 samples from 12 patients with degranulation deficiency (10 individuals

with UNC13D deficiency, 1 with STXBP2 deficiency, and 1 with RAB27A deficiency).

Results: While both tests exhibited 100% sensitivity, the Vg9Vd2 T cell degranulation

assay showed a superior specificity of 86.2% (n=70) compared to the NK cell

degranulation assay, which achieved 78.9% specificity (n=213). The Vg9Vd2 T cell

degranulation assay offered simpler technical requirements and reduced labor

intensity, leading to decreased susceptibility to errors with faster processing times.

Discussion: This efficiency stemmed from the sole requirement of dissolving (E)-

4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) powder, contrasting

with the intricate maintenance of K562 cells necessary for the NK cell

degranulation assay. With its diminished susceptibility to errors, we anticipate

that the assay will require fewer repetitions of analysis, rendering it particularly

well-suited for testing infants.

Conclusion: The Vg9Vd2 T cell degranulation assay is a user-friendly, efficient

diagnostic tool for HLH. It offers greater specificity, reliability, and practicality

than established methods. We believe that our present findings will facilitate the

prompt, accurate diagnosis of HLH and thus enable rapid treatment and better

patient outcomes.
KEYWORDS
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1 Introduction

Hemophagocytic lymphohistiocytosis (HLH) is a rare but severe

and life-threatening immune disorder; the prompt initiation of

immunosuppressive treatment is therefore crucial for survival. HLH

is characterized by the uncontrolled activation of lymphocytes and

macrophages and the subsequent secretion of large amounts of pro-

inflammatory cytokines (i.e. a “cytokine storm”) (1, 2).

Many different diseases can lead to HLH. Most forms of primary

(or familial) HLH are caused by pathogenic genetic variants in the

lymphocyte’s cytotoxic machinery (3, 4). Other genetic causes for

HLH and macrophage activation syndrome (which are distinct from

deficiencies in cytotoxicity) have been discovered recently (5). The

so-called “acquired” forms of HLH can appear in a setting of severe

infection, auto-inflammatory conditions, autoimmune disease,

(lymphoid) malignancies or drug treatment (6).

The initial diagnosis of HLH or macrophage activation

syndrome is based on a set of criteria (7, 8). The subsequent

work-up seeks to identify a potential trigger and detect an

underlying genetic predisposition to HLH. Prompt determination

of the patient’s genetic predisposition to HLH significantly

influences the subsequent care and the prognosis. While the

clinician is awaiting a molecular diagnostic confirmation, rapid

assays of protein expression and cell function have proven

immensely beneficial in accelerating the diagnosis of primary HLH.

One of the best-established functional assays of degranulation

deficiencies involves the detection of extracellular lysosomal

associated membrane protein 1 (Lamp-1, CD107a); this protein is

transiently exposed on the surface of cytotoxic cells after

degranulation, which enables its measurement using flow

cytometry (9). This assay is typically used to evaluate natural

killer (NK) cell degranulation in response to the incubation of

patient-derived peripheral blood mononuclear cells (PBMCs) with

the erythroleukemia K562 cell line. The absence of the major

histocompatibility complex class I antigen on K562 cells initiates

cytotoxic granule delivery, which can be indirectly quantified by the

measurement of CD107a expression on the NK cells. At present,

this is the “gold standard” degranulation assay in diagnostic

laboratories worldwide. It has outstanding sensitivity (nearly

100%) and slightly lower specificity (88%) (10, 11).

Although the K562-cell-line-based assay is well established, it

has several limitations. Firstly, it is time-consuming and labor-

intensive and requires a relatively large blood sample. Secondly,

many external confounding factors (such as temperature changes

during sample storage, and the K562 cells’ growth status, culture

conditions, variations in K562 cell sourcing and passage) can

introduce variability and reduce sensitivity. These variables can

only be standardized in specialized laboratories with experience of

performing NK cell degranulation assays (10, 11). Nevertheless, the

introduction of the K562-based flow cytometry assay was a

significant improvement over the previous cytotoxicity assays,

which relied on radioactive chromium and thus required

cumbersome radioactive safety monitoring procedures (12).

In order to overcome variability issues and make degranulation

assays available to nonspecialized centers, other means of
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diagnosing deficiencies in cytotoxicity are needed. We therefore

looked at whether the K562 cell line could be replaced by small

antigenic molecules. When considering cells capable of cytotoxicity,

the responsiveness of Vg9Vd2 T cells to phosphoantigens (pAgs)

offers unique advantages (13). These include the homogeneity of the

cell population’s response to stimulation and their robustness vis-à-

vis long storage periods and cryopreservation. In some respects, yd
T cells expressing the Vg9Vd2 T-cell receptor (TCR) are similar to

conventional cytotoxic ab T lymphocytes because they form

immune synapses and share the resulting signaling pathways (14).

Vg9Vd2 T cells are not involved in major histocompatibility

complex antigen presentation but rely on an alternative antigen

presentation mechanism featuring butyrophillin 3 (BTN3) and

BTN2A1 (15, 16). The Vg9Vd2 TCR combination is the most

abundant among yd T cells in the peripheral blood of healthy

adults. Furthermore, the number of functional, perforin-producing

cytotoxic Vg9Vd2 T cell is already high in the fetus and at birth

relative to the less responsive and still immature NK cells (17).

HMBPP ((E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate, a

pyro-phosphorylated metabolite of isoprenoid synthesis) is a pAg

produced by eubacteria, cyanobacteria, plants, and apicomplexan

protozoa. Its subsequent recognition by Vg9Vd2 T cells triggers a

potent immune response (18).

The primary objective of the present study was to develop and

evaluate a novel, rapid, easy-to-use functional assay based on

Vg9Vd2 T cell degranulation, for the diagnosis of patients with

suspected HLH. The novel assay was compared with the

conventional K562 cell/NK cell co-incubation assay. We evaluated

cell samples from patients with subsequently confirmed familial

HLH and degranulation deficiency (hereafter referred to as the

“fHLH group”) and from blood donors with no known

degranulation deficiencies (hereafter referred to as the “control

group”). The study’s secondary objective was to determine a

threshold that could serve as a prospective cut-off for validation

of the novel assay.
2 Materials and methods

This was an empirically designed prospective study. To assess

degranulation capacity, the percentage of CD107a expression on the

cell surface was analyzed after stimulation of either NK cells with

K562 cells or Vg9Vd2 T cells with HMBPP. The effect of

cryopreservation on isolated PBMCs and the effect of interleukin

(IL)-2 prestimulation were also explored.

The blood sample analysis was approved by the institutional-

review-board, Zürich, Switzerland (BASEC; reference:

PB_2016_02280) and registered at Clinicaltrials.gov (NCT02735824).
2.1 Patient samples

Between May 2014 and November 2022, a total of 213

consecutive samples from 182 individuals were considered for a

functional degranulation assay in the diagnostic laboratory at
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(Figure 1). The cohort included patients having been referred for

suspected HLH due to suggestive clinical symptoms or a positive

family history and anonymous adult controls.

All the samples were tested with the conventional degranulation

assay (i.e. with K562 target cells). Following the introduction of the

novel HMBPP-stimulated degranulation assay in April 2021, all the

samples thereafter were tested using both assays. Fifteen of the 213

samples were analyzed after cryopreservation, and 21 samples were

analyzed after IL-2 prestimulation. To expand the sample and given

that primary HLH is a very rare disease, we included 7

cryopreserved PBMC samples (5 samples from 2 patients with

confirmed primary HLH and degranulation deficiency and 2

control samples) and 2 fresh blood samples (from a patient with

confirmed primary HLH and degranulation deficiency) which were

collected outside the main sampling period.

Samples were excluded if fewer than 250 events were recorded

on flow cytometry analysis because this low count could not provide

a reliable estimate of the proportion of NK cells or Vg9Vd2 T cells

expressing CD107a.
Frontiers in Immunology 03
2.2 Assay methods

2.2.1 Sample acquisition, PBMC isolation, and
cell stimulation

Venous whole blood samples were collected in heparin vials and

sent to the laboratory within 24 hours for PBMC isolation (Ficoll

(VWR International, 17–144-003) gradient centrifugation using

SepMate™ technology (Stem Cell Technologies, 85450)). The

extracted PBMCs were resuspended to a concentration of 2x106

lymphocytes/mL, with 100 mL/well in Iscove’s modified Dulbecco’s

medium (IMDM (Gibco, 12440–053)) supplemented with 10% FBS

(Sigma, F7534), 1% amino acids (ThermoFisher, 11140–035), 1%

antibiotics and antimycotics (Life Technologies, 15240–095), 1%

GlutaMAX-I (ThermoFisher, 3505–0061) and 1% 100 mM sodium

pyruvate (ThermoFisher, 11360–070). The PBMCs were stimulated

separately with K562 cells and HMBPP + IL-2 (BioLegend, 589104)

on a U-bottomed tissue culture plate. Each sample was run with a

nonstimulated negative control (IMDM only). The plate was

incubated for 2 hours at 37° in a 5% CO2 atmosphere before

staining with specific mAbs for flow cytometry.
B

A

FIGURE 1

Sample inclusion flow chart and timeline. (A) All samples were initially assessed with at least one of the assays (K562- or HMBPP-induced expression
of CD107a on NK cells or Vg9Vd2 T cells, respectively). Assays with fewer than 250 flow cytometry events were excluded (n=14). The sample donors
were subsequently categorized as fHLH patients or controls after genetic testing or clinical follow-up: Blue: No degranulation deficiency; 190
samples from 170 individuals; with 18 of these being IL-2 prestimulated. Red: Genotype consistent with a degranulation deficiency; 23 samples from
12 patients with primary HLH [including homozygous or compound heterozygous variants in UNC13D (n=10), STXBP2 (n=1), or RAB27A (n=1)]. Three
of these samples were IL-2 prestimulated. (B) The NK cell degranulation assay was introduced in May 2014, while Vg9Vd2 T cell-based assay was
introduced in April 2021. Blood samples were collected between May 2014 and November 2022, with healthy control samples collected from July
2019 onwards.
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In parallel, blood samples collected in K3EDTA tubes were

analyzed on a Sysmex XN analyzer for total lymphocyte counts.

2.2.2 NK cell degranulation with K562 stimulation
K562 cells (ATCC, CCL-243) were cultivated in IMDM at 37°C

in a 5% CO2 atmosphere. The culture medium was renewed every

3–5 days, and cell viability was evaluated under the microscope

every 2–3 days. The assay used a 1:1 K562:PBMC ratio. After

incubation on a U-bottomed culture plate, the cells were stained

with a mixture of anti-CD107a PE (H4A3, BD Bioscience, 555801),

anti-CD3 PerCP (SK7, BD Bioscience, 345766), and anti-CD56

APC (NCAM162, BD Bioscience, 341027).

2.2.3 Vg9Vd2 T cell degranulation with
HMBPP stimulation

For stimulation with HMBPP, 40 mL of diluted IL-2 (~100 IU/

100µL), 1 mL of HMBPP (Echelon, I-M055 diluted 1mg/ml in

Methanol) and 59 mL of IMDM were mixed. After the incubation,

the cells were stained with a mixture of anti-CD107a PE (H4A3, BD

Bioscience, 555801), anti-CD3 AmCyan (SK7, BD Bioscience,

339186), anti-CD56 APC (NCAM162, BD Bioscience, 341027),

and anti-TCR Vg9 FITC (REA470, Miltenyi Biotec, 130125204).

2.2.4 Flow cytometry
Data were recorded with a FACS Canto II flow cytometer and

analyzed with BD Diva software 8.0.1 (both from BD Bioscience).

Surface CD107a expression was measured as a percentage (%

CD107a) on gated CD3-CD56+ NK cells and CD3+TCRVg9+
Vg9Vd2 T cells. Nonstimulated PBMCs were used to set the cut-off

for a positive signal and to account for background noise. Gating

strategies for the two assays are given in the Supplementary Material.

2.2.5 IL-2 prestimulation of PBMCs
Assays that gave values close to or below the cut-off were

repeated, in case pre-analytical or assay-derived problems had

influenced the test results. A transient deficiency in NK cell

degranulation with an undefined cause (such as in vitro damage

to the NK cells) could also lead to values below the cut-off. An IL-2

prestimulation of the PBMCs for 6 to 15 days prior to K562

stimulation can help to correct false negative results, although

it is time-consuming. The effect of IL-2 prestimulation was also

tested for the Vg9Vd2 T cell degranulation assay prior to the

HMBPP stimulation.
2.3 Statistical analysis

Statistical analyses were performed with GraphPad Prism

software (version 9.2.0, GraphPad Software LLC, San Diego, CA).

Spearman’s rank correlation coefficient was calculated as a guide to

the strength of the relationship between two sets of assay results.

The data’s distribution was evaluated with normal quantile-quantile

(QQ) plots. A two-tailed Wilcoxon matched-pairs signed rank test

was used to compare results for nonstimulated vs. stimulated cells.

An unpaired Mann-Whitney test for nonparametric data was used
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to compare results from stimulated cells for the fHLH group vs. the

control group. The specificity and sensitivity were calculated, and

the two assays were compared in a contingency table. The threshold

for statistical significance was set to p<0.05 in all tests.
3 Results

A total of 213 samples (Table 1) from 182 individuals (n=12 with

confirmed primary HLH and degranulation deficiency; n=170 in

whom these conditions were excluded or unknown) were assessed

with at least one of the assays (K562- or HMBPP-induced expression of

CD107a on NK cells or Vg9Vd2 T cells, respectively). Repeated

samplings and sample analyses were included. Of those individuals

presenting with primary HLH, we analyzed 23 samples in total (20

samples of 10 individuals with UNC13D deficiency; 1 sample of 1

individual with STXBP2 deficiency; 2 samples of 1 individual with

RAB27A deficiency, Table 2).
3.1 The NK cell degranulation assay with
fresh blood

The NK cell degranulation assay (based on incubation of K562

with PBMCs isolated from fresh blood samples) is the gold standard

for the diagnosis of degranulation deficiencies. The cut-off for

CD107a expression on NK cells is 10%. We performed the assay

with 198 PBMC samples from fresh blood: 18 from fHLH patients

and 180 from control individuals (Figure 2). In the control group,

the proportion of CD107a expression (%CD107a) for NK cells

ranged from 0.0 to 70.7% (mean ± standard deviation (SD) value of

3.9 ± 9.0%) before stimulation with K562 cells and from 0.0–60.6%

(mean ± SD: 17.5 ± 10.6%) after incubation (p<0.0001). Most

samples showed a low %CD107a (<10%) at baseline and

displayed an elevation in CD107a expression upon stimulation

with K562 cells. For unknown reasons, 10 samples showed an

elevated %CD107a (>10%) before stimulation. We wondered

whether the cells had already been stimulated in some way,

although the clinical data from control individuals did not

indicate any inflammatory conditions, and these elevated

degranulation rates were not correlated with the donors’ serum

level of C-reactive protein within ±2 days of sampling (Table 1).

The %CD107a with NK cells was lower in the fHLH group than

in the control group, with a range of 0.0–5.0% (mean ± SD: 1.4 ±

1.5%) before stimulation and 0.0–10.0% (mean ± SD: 2.8 ± 2.8%)

afterwards (p=0.0289). The difference in the stimulated %CD107a

between the fHLH group and the control group was statistically

significant (p<0.0001, Mann-Whitney test).
3.2 The NK cell degranulation assay with
fresh and cryopreserved samples

The NK cell degranulation assay with the K562 cell line was also

performed with the additional cryopreserved PBMC samples (n=213)

(Figure 3). After stimulation, the %CD107a ranged from 0.0% to
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60.6% (mean ± SD: 17.6 ± 10.6%) with PBMCs from the control

group (n=190) and from 0.0% to 10.0% (mean ± SD: 3.2 ± 2.9%) with

PBMC samples from the fHLH group (n=23). The QQ plot showed

that the data were not normally distributed. After K562 stimulation,

the %CD107a differed significantly when comparing the fHLH and

control groups (p<0.0001, Mann-Whitney test). The sensitivity was

100% and the specificity was 78.9% (40 false positives and 150 true
Frontiers in Immunology 05
negatives, Table 3). In a receiver operating characteristic (ROC) curve

analysis, the area under the curve was 0.948 (p<0.0001).
3.3 The Vg9Vd2 T cell degranulation assay
using fresh and cryopreserved samples

After HMBPP-dependent induction of freshly isolated or

cryopreserved PBMC samples, the %CD107a for Vg9Vd2 T cells

ranged from 3.3% to 66.0% (mean ± SD: 24.9 ± 16.3%) in the

control group (n=80, 10 samples excluded, Figure 3) and from 0.3%
TABLE 1 Demographic and clinical characteristics of the individuals
having provided samples.

K562
assay

HMBPP
assay

n=213 n=80

Cryopreserved samples 15 (7.1%) 15 (18.8%)

Demographic characteristics:

male 92 (43.2%) 30 (37.5%)

female 68 (31.9%) 15 (18.8%)

unknown (anonymous controls) 53 (24.9%) 35 (43.8%)

median age (range): 3.0 (0–56) 1.0 (0–44)

< 1 months (mean ± SD) in days 12 (± 8.2) 20 (± 7.2)

1–12 months (mean ± SD) in months 3.5 (± 2.8) 3.9 (± 3.3)

1–5 years (mean ± SD) 2.4 (± 1.4) 2.4 (± 1.3)

6–10 years (mean ± SD) 7.4 (± 1.4) 9.0 (± 0.8)

11–18 years (mean ± SD) 14 (± 2.7) 15 (± 2.3)

adults (>18 years) (mean ± SD) 39 (± 11) 38 (± 4.3)

healthy adult controls, anonymous (n) 53 35

Clinical characteristics:

fHLH (a genetically confirmed
degranulation deficiency) 23 (10.8%) 7 (8.8%)

HLH-like disease/HLH without a
degranulation deficiency (Prf, XLP1, XIAP,
CD48, ZNFX1) 15 (7.0%) 1 (1.3%)

primary immunodeficiency without an HLH-
like phenotype 5 (2.4%) 2 (2.5%)

malignancies 9 (4.2%) 1 (1.3%)

autoimmune/rheumatologic disease 11 (5.2%) 2 (2.5%)

infectious disease 12 (5.6%) 4 (5.0%)

PIMS/Kawasaki syndrome 17 (8.0%) 3 (3.8%)

metabolic disorder 7 (3.3%) 2 (2.5%)

hematologic disease 9 (4.2%) 5 (6.3%)

unknown 51 (24.0%) 18 (22.5%)

healthy controls, anonymous 54 (25.4%) 35 (43.8%)

mean CRP (± SD); n
41 (± 65);
n=86

48 (± 78);
n=22
The degranulation assays were performed on fresh or cryopreserved samples from patients
with suspected degranulation deficiencies and control individuals. SD, Standard deviation;
fHLH, familial Hemophagocytic lymphohistiocytosis; PIMS, Pediatric Inflammatory
Multisystem Syndrome; CRP, C-reactive protein.
TABLE 2 A total of 23 samples from 12 patients with a genetically
confirmed degranulation impairment were collected.

patients samples

Total fHLH n=12 n=23

UNC13D 10 20

STXBP2 1 1

RAB27A 1 2
Repeated samplings and sample analyses were included.
FIGURE 2

NK cell degranulation assay on fresh blood samples, using K562
cells for stimulation (n=198) and CD107a expression as a marker for
degranulation. The cut-off for insufficient degranulation was 10%.
Left: fresh blood samples from control individuals. Right: fresh blood
samples from patients with a subsequently confirmed genetic
deficiency in degranulation (fHLH). Values before (-) and after (+)
stimulation with K562 cells are shown for both groups. Patients with
a transient NK cell degranulation deficiency of unknown reason are
included. Results for samples with a high degranulation rate prior to
stimulation are shown in grey. The %CD107a values before vs. after
stimulation differed significantly in the control group but not in the
fHLH group (p<0.0001 and p=0.0289, respectively; two-tailed
Wilcoxon matched-pairs signed rank test). After stimulation, the %
CD107a differed significantly when comparing the fHLH group and
the control group (****p<0.0001, Mann-Whitney test). The assay’s
sensitivity was 100%, and the specificity was 78.3% (39 false positives
and 141 true negatives).
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to 2.0% (mean ± SD: 1.6 ± 0.9%) in the fHLH group (p<0.0001,

Mann-Whitney test). The QQ plot showed that the data were not

normally distributed. With a cut-off of 7.5%, the sensitivity was

100% and the specificity was 86.2% (9 false positives and 56 true

negatives, Table 3). In a ROC curve analysis, the area under the

curve was 1.0 (p<0.0002).
3.4 Comparison of the NK cell
degranulation assay and Vg9Vd2 T cell
degranulation assay

By drawing up a contingency table, we confirmed that the

HMBPP induced Vg9Vd2 T cell degranulation had a higher

specificity (86.2%, n=80) than the K562 based NK cell

degranulation assay (78.9%, n=213). The sensitivity was 100% for

both assays (Table 3). The proportion of samples excluded due to an

event count <250 was higher in the Vg9Vd2 T cell degranulation

assay (12.5%) than in the NK cell degranulation assay (0%). The
Frontiers in Immunology 06
positive predictive value was 36.5% for the NK cell degranulation

assay and 35.7% for the Vg9Vd2 T cell degranulation assay. The

negative predictive value was 100% for both assays.

The Spearman’s rank correlation coefficient for samples tested

with both the NK cell degranulation assay and the Vg9Vd2 T cell

degranulation assay (n=80) was 0.546, after stimulation with K562

or HMBPP, respectively. Hence, the two datasets were not

significantly correlated (p<0.0001) (Figure 4).

In our cohort, some individuals received treatment before blood

sampling. To assess the impact of immunosuppression on assay

outcomes, we compared treated and untreated individuals. Patients

receiving corticosteroid treatment equivalent to Methylprednisolone

≥1 mg/kg were classified as immunosuppressed. However, our findings

did not indicate a significant influence of this treatment on assay

outcomes (data not shown).

The limited frequency of both NK cells and Vg9Vd2 T cells

poses a challenge, particularly in scenarios with restricted blood

sample volumes, often experienced in infants. Table 4 illustrates the

percentage distribution of NK cells and Vg9Vd2 T cells among total
B C

D

A

FIGURE 3

Comparison of the NK cell degranulation assay (n=213) and the Vg9Vd2 T cell degranulation assay (n=80) with fresh blood samples and
cryopreserved PBMC samples. (A) Samples from control individuals (on the left of the graph) and samples from fHLH patients (on the right) were
compared using K562-stimulated cells (top) and HMBPP-stimulated cells (bottom) (****p<0.0001 in a Mann-Whitney test). The %CD107a cut-off was
set to 7.5% in the Vg9Vd2 T cell degranulation assay. There is a grey area in the readouts between 7.5% and 13.4% (the 25th percentile of the control
samples), where the assay has to be repeated. Blue dots: %CD107a values below the 7.5% cut-off analyzed with the Vg9Vd2 T cell degranulation
assay (bottom) and the correlating results of the same samples with the NK cell degranulation assay (top). (B) The sensitivity was 100% for both tests.
The specificity was 78.9% (40 false positives and 150 true negatives) after stimulation with K562 cells (top) and 86.2% (9 false positives and 56 true
negatives) after HMBPP stimulation (bottom). (C) QQ plots for the PBMCs after stimulation with K562 cells (top) or with HMBPP (bottom). (D) The
area under the ROC curve was 0.948 (p<0.0001) for K562-stimulated cells (top) and 1.0 (p<0.0002) for HMBPP-stimulated cells (bottom).
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lymphocytes in infants aged ≤ 1 year. Although larger variances

were noted in the percentages of Vg9Vd2 T cells, the percentages of

NK cells did not significantly differ from those of Vg9Vd2 T cells

among lymphocytes.
3.5 IL-2 prestimulation prior to
degranulation assays

Incubation of PBMCs with IL-2 for 6 to 15 days before

incubation with the K562 cell line or stimulation with HMBPP

led to an increase in degranulation (p<0.0001; two-tailed Wilcoxon

matched-pairs signed rank test). The difference in %CD107a before
Frontiers in Immunology 07
and after IL-2 incubation was statistically significant (p<0.0001 for

K562-stimulated cells and p=0.0014 for HMBPP-stimulated cells;

Mann-Whitney test). Our suggested cut-off after IL-2 incubation

was 15–20% for the K562-induced NK cell degranulation assay and

7.5–10% for the HMBPP-induced Vg9Vd2 T cell degranulation

assay (Figure 5). Some samples from patients with primary HLH

(e.g. RAB27A deficiency, also known as Griscelli syndrome) gave

normal degranulation results after IL-2 prestimulation.
4 Discussion

A novel functional assay of CD107 expression on Vg9Vd2 T

cells in response to in vitro stimulation with HMBPP proved to be a

user-friendly, efficient means of diagnosing degranulation

deficiencies. Relative to the established NK cell degranulation

assay, the new assay showed a higher specificity (78.9% vs. 86.2%,

respectively) and the same, high sensitivity (100%). Furthermore,

the novel assay was more reliable, less labor-intensive, more rapid,

and less susceptible to errors than the NK cell degranulation assay.

Given its decreased vulnerability to errors, we expect that the

Vg9Vd2 T cell degranulation will necessitate fewer repetitions of

analysis, making it especially suitable for testing infants.

The new Vg9Vd2 T cell degranulation assay showed a lower

cut-off than the conventional NK cell degranulation assay and also

distinguished more clearly between positive results (for healthy

individuals) and negative results (individuals with a degranulation

deficiency). These advantages reduced the need to repeat the assay,

which is a crucial advantage in an urgent medical situation. We set

the %CD107a cut-off to 7.5%, with a grey area (in which the test

should be repeated) between 7.5% and 13.4% (the 25th percentile of

the CD107a expression for samples from control individuals

without a degranulation deficiency). We also showed that the

assay could be performed on cryopreserved PMBCs and that it

revealed an increase in degranulation capacity after incubation of

the PBMCs with IL-2 (19). The latter feature could be used to check

results close to the cut-off and thus further characterize the PBMCs’

degranulation capacity.

As reported by Bryceson et al. (2012) and by our group, the NK

cell degranulation assay shows high intra-sample variability in the

%CD107a; this is mainly due to factors that influence the quality of

the K562 cells and the PBMC sample. The novel Vg9Vd2 T cell

degranulation assay is less susceptible to this variation. Moreover,

there is no need to culture a cell line. Nevertheless, the

interpretation of the novel assay’s results might not be reliable if

too few Vg9Vd2 T cells are counted by flow cytometry. Detection of

CD107a upregulation in both Vg9Vd2 T cells and NK cells poses

inherent challenges due to their low frequency, particularly in

scenarios where blood sample volumes are limited, as is often the

case with infants. Furthermore, we found that the event count in the

Vg9Vd2 T cell degranulation assay was sometimes low for

cryopreserved PBMC samples. It remains to be established

whether the cell membrane and/or other components were

damaged by freezing. Furthermore, the literature data on the

mechanism of HMBPP’s activation of the Vg9Vd2 T cells are

contradictory: some reports mention an intracellular mechanism,
TABLE 3 Contingency table for the evaluation of the sensitivity and
specificity of the NK cell degranulation assay and Vg9Vd2 T cell
degranulation assay.

NK cell
degranulation assay
(n=213, 0 exclusions)

Confirmed
primary HLH

No
primary HLH

Positive test (degranulation defect) 23 (10.8%) 40 (18.8%)

Negative test (no
degranulation defect) 0 (0.0%) 150 (70.4%)

Sensitivity: 100% Specificity: 78.9%

Vg9Vd2 T cell
degranulation assay
(n=80, 10 exclusions)

Confirmed
primary HLH

No
primary HLH

Positive test (degranulation defect) 5 (7.1%) 9 (12.9%)

Negative test (no
degranulation defect) 0 (0.0%) 56 (80.0%)

Sensitivity: 100% Specificity: 86.2%
Genetic testing was used as the reference in the diagnosis of HLH, and the clinical course was
used as the reference for healthy control individuals. The sensitivity was 100% for both tests.
The specificity was 78.9% (n=213) for the NK cell degranulation assay and 86.2% (n=80, 10
exclusions) for the Vg9Vd2 T cell degranulation assay.
FIGURE 4

Spearman’s rank correlation coefficient for CD107a expression in the
NK cell degranulation assay and the Vg9Vd2 T cell degranulation
assay was r=0.546 (n=80, 10 exclusions, p<0.0001).
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whereas others mention an extracellular mechanism involving a

transmembrane protein from the butyrophilin family (20).

We tested both assays with freshly isolated and cryopreserved

PBMC samples, which is consistent with routine clinical practice.

Although the use of cryopreserved samples in the Vg9Vd2 T cell

degranulation assay expanded the sample size, the number of

samples from patients with fHLH remained small. Other study

limitations included the lack of double-blind testing, the single-

center study design, and the relative short sampling period.

In the future, larger multicenter cohort studies will be required

to define a consistent %CD107a cut-off for the Vg9Vd2 T cell

degranulation assay. Furthermore, the degranulation of cord blood

samples and PBMCs from adults, adolescents and infants should be

analyzed to investigate potential age-related differences in control

individuals. Moreover, sources of error in the Vg9Vd2 T cell
Frontiers in Immunology 08
degranulation assay and reasons for false negative results should

be determined.

It is thought that a significant proportion of patients with

primary HLH are not diagnosed because of a lack of awareness of

the condition or its resemblance to sepsis. The lack of an accurate

diagnosis or timely treatment ultimately lead to severe organ failure

or death. Hematopoietic stem cell transplantation (HSCT) has

potential as a curative treatment for primary HLH (21, 22). Post-

HSCT outcomes are notably better when patients are free from

active disease at the time of transplantation. In families with

primary HLH, the overall survival rate is better for a second

affected child than for the index sibling (23–26). Newborn

screening therefore has significant potential for improving the

prognosis in cases of primary HLH. Most rare disease experts

agree that DNA sequencing could be used to screen apparently

healthy newborns for treatable genetic disorders (27). Before

sequencing-based newborn screening programs can be

implemented, we must be able to distinguish between disease-

causing variants and benign variants of all the screened genes

(28). The Vg9Vd2 T cell degranulation assay might be a valuable

addition to a newborn screening program as a means of functionally

validating a positive genetic test results. It might also constitute a

rapid screening method for prompt treatment initiation in an

emergency context. Lastly, the low volume of blood required for

the assay increases its feasibility.

In conclusion, a novel Vg9Vd2 T cell degranulation assay with

HMBPP stimulation is more specific and faster than the

conventional NK cell degranulation assay. The novel assay is less

sensitive to error, is less labor-intensive, and enables the rapid

diagnosis of a degranulation deficiency. In vitro IL-2 prestimulation

prior to the assay helps to classify samples close to the cut-off. This

Vg9Vd2 T cell degranulation assay is a feasible, very sensitive

method for detecting degranulation deficiencies in freshly isolated

and cryopreserved PBMCs.
BA

FIGURE 5

NK cells and Vg9Vd2 T cells after IL-2 prestimulation. (A) The NK cell degranulation assay and (B) the Vg9Vd2 T cell degranulation assay showed
higher %CD107a values after incubation with IL-2 (on the right-hand side of each panel; n=21). The graph shows the %CD107a readouts before (-)
and after (+) stimulation with K562 cells and HMBPP, respectively. By way of a comparison, the PBMC degranulation before IL-2 prestimulation is
also shown on the left of each graph. ****p<0.0001 and **p=0.0014 in a Mann-Whitney test. Blue: A cryopreserved PBMC sample from a patient
with a degranulation deficiency (RAB27A deficiency) showed an increase in %CD107a after IL-2 prestimulation. Red: Two cryopreserved PBMC
samples from a patient with UNC13D mutations gave a %CD107a value below 10%, even after IL-2 prestimulation. In the HMBPP assay, these
samples met our exclusion criteria and so are not shown.
TABLE 4 Percentage distribution of NK cells and Vg9Vd2 T cells among
total lymphocytes in infants ≤ 1 year.

NK cells in %
of lymphocytes

Vg9Vd2 T
cells in %

of lymphocytes

n=15 n=14

Minimum 0.8 0.3

10% Percentile 1.6 0.3

90% Percentile 8.6 34.9

Maximum 9.6 67.2

Median 3.1 0.5

Mean 4.2 5.4

Unpaired t test P value = 0.79
The data represents NK cell and Vg9Vd2 T cell percentages determined after PBMC isolation,
while total lymphocyte counts were determined from whole blood samples.
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