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Introduction

COVID-19 is characterized by dysregulated thrombo-inflammatory responses and

coagulation, leading to an increased risk of mortality in affected patients (1–3). Platelets

play a crucial role as rapid responders to the presence of pathogens, alerting nearby

immune cells and contributing to intravascular coagulation (4). In cases of Acute

Respiratory Distress Syndrome (ARDS), respiratory failure and thrombocytopenia

account for 70% of COVID-19-related deaths (5). The remaining fatalities result from a

sepsis-like condition triggered by a cytokine storm in response to viral infection and

secondary infections (6). Various studies have demonstrated that COVID-19 patients have

elevated levels of inflammatory cytokines, including IL-6, TNF-a, IL-1b, and IL-18 (7, 8).

Administration of steroids or anti-IL-6 monoclonal antibodies has been associated with

increased survival (9). Initial observations of severe lung necrosis, hyperinflammation,

vascular damage, thrombosis, and coagulation prompted therapeutic trials targeting

classical platelet activation or the coagulation cascade (4, 10). Microvascular thrombosis

of the pulmonary vasculature and other vascular beds is frequently observed in COVID‐19

(11). Patients in the intensive care unit with COVID-19 exhibit an elevated risk of ischemic

stroke and disseminated intravascular coagulation, as indicated by increased C-reactive

protein, D-dimer, and P-selectin levels (12). Notably, antiplatelet and anticoagulant trials

did not consistently demonstrate a beneficial effect, and the lack of efficacy often coincided

with the timing of infection and inflammation levels (13). The pathophysiology of COVID-

19 has been explored in recent reviews (reviewed in (3, 14, 15). While evidence confirms

inevitable platelet activation during COVID-19, the direct infectivity of platelets

remains uncertain.
Functions of platelets

Platelets, or thrombocytes, represent indispensable small blood cells crucial for

hemostasis, aimed at preventing bleeding. Originating from megakaryocytes, platelets

assume a pivotal role in the coagulation cascade (16). Their primary functions encompass

the formation of blood clots to staunch wounds, thereby averting excessive bleeding. Platelets

exhibit adherence to damaged blood vessels, releasing signaling chemicals that attract
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additional platelets, thereby instigating clot formation. Furthermore,

platelets house granules containing clotting factors and growth

factors imperative for tissue repair (17). Deviations in platelet

function may precipitate bleeding disorders or hypercoagulability.

Regular assessment of platelet levels through blood tests is standard

practice. Disorders affecting platelets span thrombocytosis,

characterized by elevated platelet counts, and thrombocytopenia,

indicative of low platelet levels. In addition to their well-established

hemostatic role, emerging research underscores the active

involvement of platelets in immune responses.

Platelets promote hemostasis through a series of sequential

processes: adhesion, activation, and aggregation (18). Following

vascular injury in classical hemostasis, the injured vessel initiates

vasoconstriction to limit blood loss. Subsequently, platelets adhere

to the injured vessel wall, undergo activation, and form aggregates,

constituting the primary and secondary platelet plug. This plug is

further stabilized by a dense fibrin mesh formed through the

coagulation cascade. Platelet activation is triggered by binding to

both von Willebrand factor (vWF) and collagen (19). Upon

activation, platelet granules are released, mediated by GPVI,

leading to an increase in platelet activators such as ADP

(adenosine diphosphate; from dense d-granules), vWF (from a-
granules, in addition to endothelial cell-derived vWF), and

thromboxane A2 (20). These activators can, in turn, activate

neighboring platelets. The binding of ADP and other potent

platelet activators to their receptors induces platelet aggregation.

Through an internal signaling mechanism, ADP binds to P2Y1 or

P2Y12 receptors, resulting in a conformational change of the

aIIbb3 receptor on the platelet surface. In its active

conformation, this receptor binds fibrinogen, facilitating platelet

aggregation to form a thrombus and prevent bleeding (21).
Platelets and COVID-19

In cases of COVID-19 pneumonia, researchers have observed

elevated levels of platelet-granulocyte and platelet–monocyte

aggregates (22). Based on previous autopsy studies, high platelet

reactivity was linked with dispersed thrombosis in multiple organs,

which suggested that SARS-CoV-2-mediated platelet activation, in

turn, contributed to the pathophysiology of COVID-19 (23–26).

Pat ients hospi ta l ized with COVID‐19 have reported

thrombocytopenia, and lower platelet counts have been associated

with more adverse clinical outcomes (27). A meta-analysis

comprising 31 studies and 7613 participants revealed a reduced

platelet count in severe COVID‐19 cases, correlating with a 3-fold

increase in the risk of developing severe COVID‐19 (28).

Increased plasma levels of proteins that could also be platelet-

derived, such as sCD40LG (CD154), TxB2, P-selectin, and vWF, have

confirmed that platelets are being activated during COVID-19.

Consistently, platelet activation is evident by increased expression

of P-selectin CD40 and CD63 on the surface of platelets from patients

with COVID-19. A meta-analysis of 7,613 COVID-19 patients

revealed that patients with severe disease had a lower platelet count

than those with non-severe disease. Additionally, the non-survivors

had a much lower platelet count than the survivors. However, not all
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studies have found platelet counts to be a predictor of COVID-19

mortality (29). Platelet activation was obvious in individuals with

severe COVID-19, as measured by surface expression of P-selectin

and CD63, and it was substantially linked with D-dimer levels.

Soluble P-selectin levels were considerably higher in ICU patients

than in non-ICU patients (30, 31). Furthermore, increased

concentrations of both types of microvesicles (EV) (CD41+EV and

annexin V+ CD41+ EV) per platelet in both patients with non-severe

and severe COVID-19 compared with healthy controls were

observed, suggesting the contribution of platelets derived MVs to

COVID-19 disease pathology (31). Patients with COVID-19 exhibit

elevated levels of platelet–neutrophil aggregates and increased

neutrophil extracellular traps (NETs) (32, 33). These factors can

contribute to the development of immunothrombosis, leading to

thromboembolic complications. Ultimately, this process results in

platelet consumption and thrombocytopenia, both of which

are correlated with heightened mortality (27, 34). In contrast, there

are studies supporting antiviral phenotype of platelets in various viral

infections, including COVID-19, regulated through IFITs/IFITM3

(35, 36).
Proposed platelet receptors interact
with SARS-CoV-2

Platelets possess an array of receptors, including Cluster of

differentiation(CD)40L, toll-like receptor, and the Fc receptor for

IgG (FcyRIIa), enabling them to respond to stimuli (37). In other

viral infections, such as Dengue haemorrhagic fever, antibody-

coated virions induce substantial platelet activation through an

FcgRIIa-dependent mechanism (38, 39). Similarly, Influenza H1N1

(40) and some Bunyaviruses like Crimea-Congo Haemorrhagic

fever (41) induce platelet activation via FcgRIIa. However, the

direct interaction mechanisms between SARS‐CoV‐2 and platelets

or megakaryocytes remain contentious.

Shen et al., using RT-PCR assay, reported the detection of

CD147, GRP78, KREMEN1, cathepsin L, NRP1, and ASGR1 in

megakaryoblast cell line (MEG-01), and CD147, GRP78,

KREMEN1, and ASGR1 in platelets. Notably, ACE2 was not

detected in MEG-01 cell line or platelets (42, 43), suggesting

SARS-CoV-2 may employ receptors other than ACE2 for

interaction. Structural studies have proposed CD26 as another

SARS-CoV-2 receptor, although its expression on platelets is

debated (24, 43). Tang et al. demonstrated that the envelope (E)

protein of SARS-CoV-2 enhances platelet activation and

thrombosis through a CD36/p38 MAPK/NF-kB signaling axis

(44). Additionally, platelets express a multitude of immune

receptors, including CD40L, Toll-like receptors (TLRs), and the

Fc receptor for IgG (FcgRIIA) (37). In line with this, a few other

studies indicated that the E protein can physically interact with the

TLR2 transmembrane receptor, stimulating NF-kB transcription

and CXCL8 production (45, 46). Additionally, the viral Spike (S)

protein independently binds with CD42b and stimulates platelets

(47). Carnevale and colleagues provided evidence that SARS-CoV-2

uses the S protein to activate platelets via TLR4, leading to Nox2-

related oxidative stress and a prothrombotic phenotype (48).
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Another clinical study demonstrated that signaling through

FcgRIIA and the C5a-C5aR pathway mediate platelet

hyperactivation in COVID-19 (49). Puhm et al. demonstrated

that TF from SARS-CoV-2–infected cells activates thrombin,

signaling PARs on platelets, with potential implications for

COVID-19 coagulation (50). Ito and colleagues proposed platelet

aIIbb3 integrin binds to the SARS-CoV-2 S protein of the alpha

strain but not wild type and omicron strains (51).

Despite the distinct biological characteristics of SARS-CoV-2

Omicron, it leads to platelet activation and desensitization, similar

to observations with the Delta variant. Omicron is also found in

platelets from severe patients, inducing selective autophagy.

However, the mechanisms of intraplatelet processing of

Omicron cargo differ from Delta, suggesting that S protein

mutations modify virus-platelet interactions (52). Although

several receptors on platelet surface (Figure 1), besides ACE2,

proposed for viral entry in platelets, due to the limited in vivo

experimental evidence, further studies are required to substantiate

these claims.
Controversies in COVID-19 and direct
infection of platelets

Initial investigations proposed the direct invasion of platelets by

SARS-CoV-2, impacting their functionality (53). Autopsies
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reported the presence of SARS-CoV-2 viral particles in both

megakaryocytes and platelets (54). Notably, Zhang et al. reported

ACE2 expression on the platelet surface (55), but this observation

was not consistently replicated in other studies (24, 31, 54, 56). The

conflicting findings raise questions about the interaction between

SARS-CoV-2 and platelets through ACE2. RNA-seq and western

blot analyses revealed no evidence of ACE2 or TMPRSS2 in CD45‐

depleted platelets from both COVID‐19 patients and healthy

individuals (24). Zaid et al. conducted a similar study and also

reported the absence of ACE2 on platelets from COVID‐19 patients

and healthy volunteers (31). A retrospective survey of plasma

samples from severe and non-severe COVID‐19 patients revealed

increased thrombosis and elevated levels of sP‐selectin, sGPVI,

RANTES, and PF4 during platelet activation (43). In contrast,

Zhang et al. reported significant expression of ACE2 and

TMPRSS2 mRNA and protein on platelets from healthy

individuals and mice. Furthermore, in vitro and in vivo

experiments using humanized ACE2 transgenic mice

demonstrated that SARS‐CoV‐2 and its S protein directly activate

platelets (55). Another study by Koupenova et al. revealed that

SARS‐CoV‐2 induces programmed cell death in platelets, leading to

internalization of virions attached to microparticles, bypassing

ACE2 (57). This internalization results in rapid digestion,

apoptosis, necroptosis, and extracellular vesicle release,

contributing to dysregulated immunity and thrombosis. However,

these conflicting observations raise questions about the direct
FIGURE 1

Proposed platelet receptors interaction with SARS-CoV-2. In vitro studies proposed that SARS-CoV-2 virus S and E proteins interact with platelet
surface receptors, such as CD42b, TLR4, Fc receptor, CD36, TLR2, and aIIbb3 integrin. Most soluble agonists released by activated platelets, such as
adenosine diphosphate (ADP), thromboxane A2 (TxA2) as well as TF/FVIIa/Xa-mediated thrombin trigger platelet activation through GPCRs. For
instance, elevated levels of thrombin in the circulatory system due to the activation of coagulation cascade, also activates the platelets through
PAR1/PAR4 receptors. S, spike protein; E, envelope protein.
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interaction between SARS‐CoV‐2 and platelets and the concept of

direct platelet infectivity.
Conclusion

The current body of evidence underscores the ambiguity

surrounding the direct interaction between SARS-CoV-2 and

platelets. The disparate observations of viral load within

plate lets from COVID-19 patients , coupled with the

identification of numerous alternative receptors on the platelet

surface, have contributed to the uncertainty. In vitro and in vivo

experimental studies as well as proteomic and transcriptomic

analyses of platelets from COVID-19 patients and mice infected

with SARS-CoV-2 further highlight the unlikelihood of direct

platelet infectivity for the activation of platelets by SARS-CoV-2

viral proteins. Amidst this uncertainty, critical or fatal COVID-19

cases have exhibited various pathological abnormalities, including

endothelial dysfunction, cytokine storms, and the formation of

NETs. These abnormalities may be exacerbated by platelet

hyperactivity, resulting from the aggregation of platelets to

activated endothelial cells and neutrophils.
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