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Reassessing granzyme B:
unveiling perforin-independent
versatility in immune responses
and therapeutic potentials
Raylynn Thompson1 and Xuefang Cao1,2*

1Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore
School of Medicine, Baltimore, MD, United States, 2Department of Microbiology and Immunology,
University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
The pivotal role of Granzyme B (GzmB) in immune responses, initially tied to

cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, has extended across

diverse cell types and disease models. A number of studies have challenged

conventional notions, revealing GzmB activity beyond apoptosis, impacting

autoimmune diseases, inflammatory disorders, cancer, and neurotoxicity.

Notably, the diverse functions of GzmB unfold through Perforin-dependent

and Perforin-independent mechanisms, offering clinical implications and

therapeutic insights. This review underscores the multifaceted roles of GzmB,

spanning immunological and pathological contexts, which call for further

investigations to pave the way for innovative targeted therapies.
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1 Introduction

Human and murine Granzymes play important roles in immune responses, crucial for

eliminating aberrant cells. GzmB, a serine protease initially identified in the granules of

cytotoxic lymphocytes, aids in eliminating infected or transformed cells via inducing

apoptotic cell death (1). Subsequent studies further established a critical role of GzmB in

regulating immune response via cytotoxic activity on T lymphocytes and antigen

presenting cells (2–4). However, another study challenged the conventional

understanding of lymphocyte-mediated cytotoxicity by showcasing that in vivo

cytotoxicity by cytotoxic T lymphocytes (CTLs) remains efficient in the absence of

Granzymes A and B, prompting a reevaluation of their roles in cell death and other

processes in immune responses (5). Additionally, recent studies have expanded GzmB

expression and function to a broader spectrum of other cell types including mast cells,

plasmacytoid dendritic cells (pDCs), and B cells (6). For example, the study by Pardo et al.

provided significant evidence of GzmB function independent of Perforin in mouse mast

cells, expanding its role beyond traditional cytotoxic lymphocytes (7). In inflammatory
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disorders such as atherosclerosis, mast cell-derived GzmB may

contribute to arterial damage; in autoimmune diseases such as

Rheumatoid Arthritis (RA), Perforin-independent extracellular

GzmB activity may also contribute to tissue destruction (8). Other

studies highlighted GzmB expression in pDCs and B cells with

regulatory phenotypes (9, 10), which then utilize GzmB to

negatively modulate T cell activity. Furthermore, GzmB’s

neurotoxic effects appear to transcend T cell-delivered

intracellular cytotoxic mechanism in neurological diseases such as

Multiple Sclerosis (MS), wherein GzmB was shown to induce

neurotoxicity through interacting with the membrane bound

receptors (11, 12).

As exemplified by these studies, GzmB, initially known for its

role in cytotoxic lymphocyte-mediated immune surveillance, has

now extended its influence across diverse contexts. These findings

underline GzmB’s roles across multiple diseases, positioning it as a

significant entity with clinical relevance and therapeutic potential.
2 Reassessing perforin-independent
versatility of GzmB in
immune responses

Natural Killer (NK) and CTLs are crucial to immune defense,

cancer surveillance, and precision medicine. Both cells can

eliminate infected or cancerous cells through cytotoxic molecules,

including GzmB, initially thought to rely on Perforin for target cell

entry (1). However, recent discoveries have expanded GzmB

activity to many other cell types and revealed its Perforin-

independent actions, broadening its impact in cytotoxic activity as

well as non-cytotoxic inflammatory processes. These findings have

added complexities to cytotoxic mechanisms, calling for further

investigation into the partnering versus separating relationships

between GzmB and Perforin in immune defense as well as

inflammatory disorders.
2.1 GzmB expression in cytotoxic
lymphocytes versus other types of
immune cells

The understanding of GzmB expression, from transcriptional

activation to post-translational modifications, remains a dynamic

area of research. In a study conducted in 2005, the direct impact of

IL-2 on Perforin and GzmB expression in lymphocytes was revealed,

enhancing cytotoxic activity without affecting survival or division of

the lymphocyte itself (13). Aside from cytotoxic lymphocytes, a study

in 2009 observed that activated human pDCs secrete GzmB, triggered

by IL-3 and IL-10, causing suppression of T cell proliferation (9).

Additionally, B cell receptor activation along with IL-21 treatment

induced proliferation of human B cells with high levels of GzmB

expression (10). Furthermore, Pardo et al. presented evidence that

skin-, but not lung-associated primary mast cells and in vitro-

differentiated bone marrow-derived mast cells (BMMC) express

GzmB (but not GzmA or Perforin), which is associated with
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cytoplasmic granules in BMMC and is secreted after Fcϵ-receptor-
mediated activation (7). In the meantime, post-translational

modifications, such as phosphorylation and proteolytic cleavage,

are involved in converting inactive GzmB into its functional form,

and may also influence apoptosis induction and inflammatory

response. There are ongoing investigations to elucidate the diverse

signals that drive GzmB production by different cell types, from gene

expression to functional activation, and the respective contributions

to immune response and inflammatory condition.
2.2 GzmB release: granule exocytosis

Activated lymphocytes including CTLs and NK cells are known

to express Perforin and Granzymes, and package these molecules into

the cytotoxic granules that are derived from lysosome compartments

(14). When a CTL recognizes and binds a target cell, the formation of

immunological synapse following MHC-TCR interaction activates

linker for activation of T cells (LAT) signalosome, which triggers

calcium influx through phospholipase C (PLC) pathway (15, 16).

Subsequently, the elevated calcium mobilizes cytotoxic granules to

polarize towards the immunological synapse, then Granzymes and

Perforin are released through degranulation (17). Interestingly, recent

studies have shown that other types of immune cells including B cells,

pDCs and mast cells may express and secrete GzmB in the absence of

Perforin. However, the molecular machinery governing GzmB release

from these conventionally known non-cytotoxic immune cells is not

well studied and demands further investigation.
2.3 GzmB delivery: dual mechanisms

After release, the dual mechanisms of GzmB delivery—

receptor-mediated and Perforin-mediated pathways—underlie its

versatile functions (Figure 1). The receptor-mediated pathway

engages cell surface receptors and involves receptor-mediated

endocytosis, impacting protein cleavage and caspase interplay.

Meanwhile, the Perforin-dependent route involves extracellular

release via the immunological synapse, translocating into target

cells to induce apoptosis via caspase cleavage. A recent study

exemplified the separation and collaboration between GzmB and

Perforin in this process, by examining intracellular damage in

intestinal epithelial cells induced by anti-CD3 mAb-activated

intra-epithelial lymphocytes (18). It revealed GzmB-dependent yet

Perforin-independent DNA fragmentation in intestinal epithelial

cells, while GzmB can still concurrently engage Perforin-dependent

pathways. This challenges the binary perception of GzmB delivery,

emphasizing its nuanced interplay with both mechanisms. Such

adaptability adds complexity to immune surveillance, requiring

comprehensive investigation into its diverse actions. The

relationship between GzmB, Perforin, heparan sulfate, and

mannose-6-phosphate receptor (M6PR) underscores their joint

role in efficient GzmB delivery. While receptors significantly aid

entry, alternative routes highlight GzmB’s versatility. Granule-

mediated killing is augmented by heparan sulfate and M6PR,

broadening the scope of GzmB’s action in immune responses (19).
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2.3.1 Perforin-mediated delivery
The long-held doctrine is that GzmB works hand-in-hand with

Perforin to trigger cell death. In the canonical model, GzmB is

delivered into target cells through the immunological synapse in a

Perforin-dependent manner upon the cell-cell contact between

lymphocytes and target cells, followed by cleaving intracellular

substrates to execute apoptotic cell death (1). During Perforin-

mediated delivery into target cells, GzmB leakage is mitigated

through a diffusion-proof immunological synapse that is formed

in an MHC-restricted manner. Perforin polymerization within the

target cell membrane is believed to form pores that breach the target

cell membrane, through which GzmB then translocates into the

target cells, initiating intracellular apoptotic pathways (1).

2.3.2 Receptor-mediated endocytosis
Understanding GzmB’s diverse functionalities and its

autonomy from Perforin has been a journey, beginning in 1997,

which marked a significant revelation in GzmB function

independent of Perforin. Exploring the role of cytotoxic cells,

specifically lymphokine-activated killer (LAK) cells, against

various viral infections, an in vitro model showcased LAK cells’

ability to degrade RNA in VSV-infected cells, curtailing infectious

virion production. The study demonstrated that GzmB reduced

viral transcript levels and induced rapid DNA strand breakage

within infected cells, affirming its Perforin-independent efficacy in

curbing VSV production (20). Further revelations continued to

unravel GzmB’s Perforin-independent activities. In 2000, the focus

shifted to receptor-mediated endocytosis, uncovering the cation-

independent mannose-6-phosphate receptor (CI-M6PR) as GzmB’s

primary binding and uptake receptor (21). It was initially believed

that endocytosis and GzmB accumulation within endosomal

vesicles, assisted by CI-M6PR, were inadequate for GzmB’s

cytosolic delivery. However, subsequent studies revealed GzmB’s

independent cytotoxic effects without Perforin. Non-glycosylated

GzmB demonstrated selective and potent cytotoxicity to target cells,

suggesting potential application in cytotoxic immunoconjugates for

targeted cell killing (22). A 2004 study further challenged existing
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beliefs by demonstrating GzmB’s preference for receptor-mediated

endocytosis over pore formation by Perforin. It identified dynamin

as an entry receptor on target cells, elucidating its role in GzmB-

mediated apoptosis (23). Furthermore, a 2005 study delved into

CD4+CD25+ regulatory T cells’ suppression mechanism, unveiling

GzmB’s critical role in regulating immune responses. Reducing

GzmB levels hindered Treg cells’ efficacy in suppressing other

immune cells during direct interactions, challenging the belief

that GzmB required additional partners for function (24).

In addition to these two distinct pathways, GzmB was shown to

undergo electrostatic exchange from serglycin, another component

in cytotoxic granules, which facilitates GzmB delivery to target cells

(25). The electrostatic exchange phenomenon may be generalized to

multiple uptake pathways, ensuring granzyme influence on a wide

variety of target cell types.
3 Three locations of function:
intracellular, cell surface, extracellular

3.1 Intracellular functions: cytotoxic versus
non-cytotoxic

In the classical model, intracellular GzmB is detected within

cytotoxic lymphocytes or their corresponding target cells following

Perforin-mediated delivery (26). Once delivered into target cells,

GzmB activates a precise apoptotic cascade via caspase cleavage,

notably pro-caspase-8 and pro-caspase-10. This orchestrated process

involves a pivotal interaction with Bid, generating tBid and triggering

mitochondrial release of cytochrome c. Cytochrome c, along with

other factors, activates caspase-9, initiating downstream effector

caspases, ultimately causing DNA fragmentation, a defining feature

of programmed cell death (27). In contrast, a recent study identified a

previously unexpected role of GzmB in triggering sublethal DNA

damage response in cancer cells independent of Perforin, where

GzmB performs proteolytic function without causing cell death by

cleaving intracellular proteins, including ICAD, caspase-7, caspase-8,
B
A

FIGURE 1

Schematic Representation of GzmB release via degranulation from cytotoxic T cells and subsequently two distinct pathways for delivery into target
cells. The figure illustrates pore formation via Perforin polymerization (A) and receptor-mediated endocytosis (B), and subsequent intracellular
proteolytic activities that activate the cascade of apoptotic cell death.
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DDX21, topoisomerase-IIa, and NuMA, indicative of GzmB’s

protease activity within cells (28). Interestingly, these intracellular

enzymatic activities lead to a non-cytotoxic DNA damage response.

Consequently, interferon regulatory transcription factor 3 (IRF3) was

activated, which may regulate the expression of a set of interferon-

stimulated genes involved in inflammatory response (28).
3.2 Cell surface protein and membrane
bound receptors

A number of studies have extended Perforin-independent

GzmB activity to the membrane surface of target cells. First, NK

cell-derived GzmB was reported to specifically bind cell surface-

bound heat shock protein 70 (Hsp70) in a process that mediates

Perforin-independent GzmB uptake (29). This interaction increases

the sensitivity of tumor cells to NK cell-mediated killing. The study

identified a 14 amino acid sequence from Hsp70, termed TKD,

sensitizing tumor cells to NK cytotoxic activity, orchestrating GzmB

release by activated NK cells and inducing apoptosis in Hsp70

membrane-positive tumor cells. These findings support an

immunotherapeutic strategy that uses GzmB as a lever to target

membrane Hsp70-expressing tumors (30). In addition, in a model

of T cell-mediated neuroinflammatory disorder, GzmB was found

to mediate neurotoxicity through proteolytic activity on a G-

protein-coupled receptor (11). GzmB cleaves and activates the

protease-activated receptor-1 (PAR-1) on neuronal cell

membrane, leading to increased expression and translocation of

the voltage gated potassium channel, Kv1.3 to the neuronal cell

membrane, followed by activation of Notch-1 resulting in

neurotoxicity (12). These observations suggest that GzmB

released from T cells induced neuronal injury and neurite atrophy

by interacting with the membrane bound Gi-coupled PAR-1

receptor and subsequently activated Kv1.3 and Notch-1, which

was required for GzmB-induced neurotoxicity (12). Furthermore,

GzmB displayed Perforin-independent function by cleaving the

extracellular domain of Notch-1, yet GzmB cleavage of Notch-1

can occur in all subcellular compartments, during maturation of the

Notch-1 receptor, at the membrane, and in the nucleus (31).

Cleavage of Notch-1 by GzmB resulted in a loss of transcriptional

activity, independent of Notch-1 activation, which may influence

target cell proliferation and survival (31).
3.3 Extracellular functions

Understanding GzmB’s extracellular functions remains an

active research area despite significant progress in deciphering its

intracellular mechanisms. Recent studies accentuate the diverse

extracellular roles of GzmB, expanding beyond apoptosis,

demonstrating its involvement in extracellular matrix (ECM)

remodeling and immune regulation (8, 18). Released

independently of perforin or GzmA, mast cell-derived GzmB

plays a role in ECM modulation, impacting cellular adhesion and

migration (27). Also, immunological synapse leakage of GzmB may

influence cellular behavior. Anoikis induction in smooth muscle
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and endothelial cells reveals GzmB’s role in cellular motility and its

potential anti-carcinogenic impact. Several ECM substrates for

GzmB have been identified, including aggrecan, fibronectin,

vitronectin, and laminin. GzmB cleaves vitronectin at the RGD

domain, crucial for integrin binding, disrupting cellular-vitronectin

interactions and affecting cell adhesion and migration (27). Notably,

a recent study using 2-photon microscopy shows that extracellular

GzmB activity is important for the migration of primed CD8+ CTLs

(32). Upon engagement with postcapillary venules, CTLs secrete a

small amount of GzmB that works like scissors to cut through

basement membrane constituents to facilitate their recruitment into

the inflammatory site (32).
4 Clinical and therapeutic implications

Due to the distinct roles in various physiological and

pathological contexts, GzmB emerges as a key contributor to

immune regulation and disease pathogenesis. Initially recognized

for its involvement in immune surveillance through cytotoxic

lymphocyte-mediated apoptosis, GzmB has extended its influence

into several realms, including autoimmune diseases, inflammatory

disorders, neurological disorders, cancer immunotherapies, and

allogeneic hematopoietic cell transplantation. Each area presents a

unique interplay between GzmB and the intricate mechanisms

governing immune responses and tissue homeostasis.
4.1 Autoimmune and
inflammatory disorders

In an autoimmune condition such as rheumatoid arthritis,

characterized by immune system attacking normal self-tissues,

especially joints, GzmB may play a significant extracellular role,

contributing to tissue damage (9). Its significance even extends to

cardiovascular pathogenesis. Atherosclerosis, a major contributor to

heart attacks and strokes, involves lipid-driven inflammation where T

lymphocytes, macrophages, and other immune cells contribute to

plaque formation. Mast cell-derived GzmB may induce detachment

of endothelial and smooth muscle cells, implicating in atherosclerotic

lesions (7). Elevated GzmB levels correlate with unstable plaques and

post-infarct ventricular remodeling, signifying its potential role in

disease progression. In arterial walls, inflammatory responses attract

immune cells that secrete GzmB, which may contribute to arterial

wall damage and susceptibility to aortic dilation and aneurysms. Two

reports highlighted GzmB’s role in aneurysm formation independent

of Perforin, positioning it as a potential therapeutic target (33, 34).

Studies in murine models show that GzmB deficiency reduces

aneurysm incidence, emphasizing its involvement in aneurysm

progression. Elevated GzmB levels and the cleavage of fibrillin-1

signify its crucial role in vessel wall destabilization, a hallmark of

aneurysm pathology. Further exploration of SA3N’s effects on GzmB

and decorin degradation presents a promising avenue targeting

GzmB for therapeutic intervention in aortic aneurysms.

Furthermore, a few studies have implicated GzmB in T cell-

mediated neurological disorders. GzmB released from CD4+ and
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CD8+ T cells can induce considerable neuronal injury. Recombinant

GzmB, even at low concentrations in the absence of Perforin, induced

significant toxicity in neurons through Gia-coupled receptors (11).

GzmB’s interaction with neuronal receptors, particularly PAR-1 and

Kv1.3, contributed to progression of neuronal damage (12). These

findings not only shed light on the intricacies of GzmB’s role in

neurotoxicity but also open promising therapeutic avenues for

addressing T cell-mediated neurological diseases.
4.2 Cancer immunity, immune suppression
and immunotherapy

Conventional treatments struggle against tumor progression,

but emerging therapies including cancer vaccines and adoptive T

cell therapy face challenges in generating effective immune

responses due to immunosuppression. Innovative strategies in

identifying tumor antigens, counteracting immune checkpoint

and tumor-induced immune suppression have been fueling the

growth of cancer immunotherapy. In this context, GzmB has

exhibited complex roles in antitumor cytotoxic lymphocytes as

well as immunosuppressive pDCs and Treg cells (9, 35, 36).

Recent trials combining chemotherapy with immunotherapy

show promise but still lack clarity in mechanisms. A study in

2010 highlighted chemotherapy’s role in enhancing tumor

susceptibility to CTL-mediated killing. Chemotherapy, TAX,

DOX, and CIS, made tumor cells more susceptible to GzmB-

induced cell death independently of Perforin, facilitating non-

antigen-specific CTL killing. This effect was mediated via

upregulation of M6PR on the surface of tumor cells (37). These

models suggest that combining radiation/chemotherapy with

cancer vaccines enhances T cell responses associated with

antitumor effects. Further studies are warranted to delineate the

relevant mechanisms and design GzmB-targeting strategies that

improve combinatory cancer treatments.
4.3 Allogenic hematopoietic
cell transplantation

Many publications have provided strong evidence showing the

significance of Perforin and GzmB in allogeneic hematopoietic cell

transplantation (38). Several studies suggest that GzmB plays

differential roles in graft-versus-host disease (GVHD) and graft-

versus-tumor effect mediated by different types of donor T cells.

While GzmB is required for CD8+ T cells to cause GVHD, GzmB-

mediated damage of CD8+ T cells impairs graft-versus-tumor effect

(4). On the other hand, GzmB-mediated activation-induced death

of CD4+ T cells inhibits murine acute GVHD (39), while GzmB

contributes to the optimal graft-versus-tumor effect mediated by

CD4+ T cells (40). Furthermore, the endogenous inhibitor of

GzmB, serine protease inhibitor 6, protects alloreactive T cells

from GzmB-mediated mitochondrial damage without affecting

graft-versus-tumor effect (41). Notably, host-derived serine

protease inhibitor 6 also provides GzmB-independent protection
Frontiers in Immunology 05
of intestinal epithelial cells in acute GVHD (42), suggesting that it

may interact with other proteases. These studies have underscored

its complex roles in adverse GVHD and the desired graft-versus-

tumor effect. There are ongoing studies investigating the roles of

Perforin-independent GzmB activity in both acute and chronic

GVHD models. Understanding the nuanced regulation and

function of GzmB in allogeneic immune response may offer a

promising avenue for managing GVHD severity.
5 Conclusion

In conclusion, the diverse roles of GzmB in cytotoxic and non-

cytotoxic immune responses, its finely regulated gene expression,

release by immune cells, and delivery to target cells through both

Perforin-dependent and Perforin-independent mechanisms,

underscore its significance in various physiological and pathological

contexts. Its participation in extracellular and intracellular processes

reflects dynamic versatility, while its dual mechanisms of delivery

contribute to the complexity of immune responses. GzmB not only

plays a critical role in immune surveillance and defense against

pathogens, but also contributes to the regulation of immune

homeostasis, mediating autoimmune responses and inflammatory

processes. Therefore, the significance and versatility of GzmB call for

researchers to delve deeper into the complexities of its involvement in

inflammatory disorders, autoimmune diseases, and cancer. This

evolving landscape holds great potential not only for enhancing our

grasp of fundamental immunological processes but also for paving

the way towards innovative interventions harnessing GzmB activities

for targeted therapies in the treatment of a spectrum of

medical conditions.
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