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Glycosylphosphatidylinositol
anchor biosynthesis pathway-
based biomarker identification
with machine learning for
prognosis and T cell exhaustion
status prediction in breast cancer
Haodong Wu1†, Zhixuan Wu1†, Hongfeng Li1, Ziqiong Wang1,
Yao Chen1, Jingxia Bao1, Buran Chen2, Shuning Xu3, Erjie Xia1,
Daijiao Ye1* and Xuanxuan Dai1*

1Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational
Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou,
Zhejiang, China, 2School of Molecular Science, University of Western Australia, Perth, WA, Australia,
3Department of Computer Information Systems, Georgia State University, Atlanta, GA, United States
As the primary component of anti-tumor immunity, T cells are prone to exhaustion

and dysfunction in the tumormicroenvironment (TME). A thorough understanding of

T cell exhaustion (TEX) in the TME is crucial for effectively addressing TEX in clinical

settings and promoting the efficacy of immune checkpoint blockade therapies. In

eukaryotes, numerous cell surface proteins are tethered to the plasma membrane

via Glycosylphosphatidylinositol (GPI) anchors, which play a crucial role in facilitating

the proper translocation of membrane proteins. However, the available evidence is

insufficient to support any additional functional involvement of GPI anchors. Here,

we investigate the signature of GPI-anchor biosynthesis in the TME of breast cancer

(BC)patients, particularly its correlation with TEX. GPI-anchor biosynthesis should be

considered as a prognostic risk factor for BC. Patients with high GPI-anchor

biosynthesis showed more severe TEX. And the levels of GPI-anchor biosynthesis

in exhausted CD8 T cells was higher than normal CD8 T cells, which was not

observed betweenmalignant epithelial cells and normal mammary epithelial cells. In

addition, we also found that GPI -anchor biosynthesis related genes can be used to

diagnose TEX status and predict prognosis in BC patients, both the TEX diagnostic

model and the prognostic model showed good AUC values. Finally, we confirmed

our findings in cells and clinical samples. Knockdown of PIGU gene expression

significantly reduced the proliferation rate of MDA-MB-231 and MCF-7 cell lines.

Immunofluorescence results from clinical samples showed reduced aggregation of

CD8 T cells in tissues with high expression of GPAA1 and PIGU.
KEYWORDS

breast cancer disease, glycosylphosphatidylinositol anchor biosynthesis, T cell
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1392940/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1392940/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1392940/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1392940/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1392940/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1392940/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1392940&domain=pdf&date_stamp=2024-07-02
mailto:ydj1911@163.com
mailto:daoshidaixuanxuan@126.com
https://doi.org/10.3389/fimmu.2024.1392940
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1392940
https://www.frontiersin.org/journals/immunology


Wu et al. 10.3389/fimmu.2024.1392940
1 Introduction

Nowadays, breast cancer, as the most prevalent malignant

tumor in women, has replaced lung cancer as the cancer with the

highest incidence rate worldwide (1). Although numerous advances

in early screening, and diagnostic methods, the incidence of BC is

increasing yearly, constitutes ~11.7% of all new cancer patients (2).

Therefore, comprehending the involvement of diverse oncogenes

and risk factors in the initiation and progression of BC assumes

significance for early prevention and treatment strategies targeting

this disease.

Due to the distinctive immunostimulatory properties exhibited

by breast cancer, immunotherapy has gained considerable attention

as a promising therapeutic approach for breast cancer (3). In the

context of immunotherapeutic therapy, immune cells play a pivotal

role as the cellular basis. In certain highly immune-infiltrated tumors,

tumor-infiltrating lymphocytes (TILs) can constitute more than 40%

of the overall cell population (4). The functional status of T cells is

crucial for tumor evasion and immune therapy. However, the benefits

of immunotherapy in cancer treatment still remains limited due to T

cell functional dysregulation. It is typically characterized by reduced

proliferation capacity and impaired effector function of T cells, as well

as the excessive expression of various inhibitory receptors (5), which

result in a weakened immune response and the escape of tumor cells

from immune surveillance (6). CD8 T cell exhaustion, which

epitomizes the dysfunctional state of T cells within the TME, is

widely recognized as a major obstacle to current anticancer

immunotherapy (7).It is imperative to comprehensively investigate

the development mechanisms underlying T cell exhaustion in TME

and devise novel strategies to avert functional T cell exhaustion in

immunotherapeutic approaches.

Glycosylphosphatidylinositol (GPI) anchor biosynthesis is

one of the generally exists in eukaryotic protein modification

after translation process (8). In simple terms, it provides a

“glycosylphosphatidylinositol anchor” for certain intracellular

proteins to specifically anchor onto the lipid bilayer (9), thereby

enabling their precise localization and engagement in vital

biological processes such as cellular signaling, adhesion, and

immune responses (10).. Abnormalities in the processes of GPI-

anchor biosynthesis have been shown to be involved in a variety of

diseases, such as paroxysmal nocturnal hemoglobinuria and the

syndrome of hyperphosphatemia with mental retardation (11, 12).

In addition, more and more studies have found that there are

identified abnormalities of GPI-anchor biosynthesis in

tumorigenesis and development, including the dysregulated

expression of genes involved in GPI biosynthesis and increased

synthesis of specific GPI-anchored proteins (GPI-AP) (13). The

biosynthesis of GPI-anchored proteins has been found to be closely

associated with the regulation of T cell functions in the immune

response (14). Studies indicate that GPI-anchored proteins play

crucial roles in regulating T cell activation, proliferation, and cell

death processes (15). In conditions such as chronic infections,

tumor microenvironments, or autoimmune diseases, T cells may

undergo functional exhaustion, leading to immune response

suppression and reduced therapeutic efficacy (16). These findings

suggest that the components of GPI-anchor biosynthesis and the
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high expression of tumor-associated GPI-AP may play a role in

carcinogenesis, providing new ideas for the exploration of tumor

markers and targeted therapies.

In the context of breast cancer, the biosynthesis of GPI-

anchored proteins has also been found to be closely associated

with the proliferation, invasion, and metastasis of breast cancer cells

(17, 18). By intervening in the GPI-anchored biosynthesis pathway,

we may potentially impact the survival and invasiveness of breast

cancer cells, thereby enhancing treatment efficacy and patient

survival rates. In this study, we aimed to explore the link of GPI

anchor biosynthesis with T cell exhaustion and tumor prognostic

progression in BC.
2 Materials and methods

2.1 Collection of raw data

The RNA-seq data and clinical information of patients were

obtained from the TCGA and GTEx databases (http://xena.ucsc.edu/).

The BC cohort contains 1097 cancer samples and 120 paracancer

samples. The pan-cancer dataset contains 10,534 samples covering 33

different types of cancers. All the TCGA files are stored in FPKM

standard format. The validation dataset was downloaded from the

Metabric database (https://www.cBioPortal.org), which provides RNA-

seq data and related clinical information of 1918 BC patients. In addition,

we downloaded the scRNA-seq profiles of BC from the GEO database

(https://www.ncbi.nlm.nih.gov/GSE114727) and selected 11 normal

breast single-cell samples and 30 tumor single-cell samples from it for

subsequent analysis.
2.2 Obtaining the necessary genes for
various scoring systems

The Glycosylphosphatidylinositol (GPI) - anchor biosynthesis

related genes were obtained from the relevant literature as indicated

in Supplementary Table 1 (19). The scoring genes for cytotoxic T

lymphocytes (CTL) are sourced from the String database (https://

cn.string-db.org/) (Supplementary Table 2). The chemokine score

consists of 41 known chemokines (Supplementary Table 3). All the

scores are determined by the expression of scoring genes with the

ssGSEA Algorithm (20). The cytolytic activity score (CYT-score),

which quantifies the cell-killing function, is based on the geometric

mean of gene expressions of GZMA and PRF1 (21).
2.3 Pan-cancer prognostic analysis of
GPI- anchor biosynthesis score

Package ‘GSVA’, was employed to calculate GPI-anchor

biosynthesis score (GPI-score) for patients in the TCGA pan-

cancer dataset. Differences in GPI-scores between various tumors

and normal samples were assessed using the “ggpubr” software

package. The association between GPI-scores and prognostic

indicators of patients was investigated by univariate Cox
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regression analysis (uniCox).Prognostic indicators include: overall

survival (OS); disease-free interval (DFI); progression-free interval

(PFI); and disease-specific survival (DSS) (22). And the Kaplan-

Meier method was employed to assess differences in OS across

distinct groups (23).
2.4 Functional enrichment analysis

The differential gene analysis among various groups was

conducted using the “limma” package, and | log2 fold change

(FC) |≥ 0.5 and p< 0.05 were the standard for the differential

genes. Finally, KEGG and GSEA enrichment analysis of the

differential genes was performed on SangerBox portal (https://

www.sangerbox.com) (24).
2.5 Immune microenvironment analysis

Apply the “ssGSEA” algorithm to assess the enrichment scores

of 22 immune cell types in every individual, while employing the

deconvolution method with LM22 immunological feature matrix in

CIBERSORT for precise calculation of infiltrating immune cell

components (25). In addition, Stromal score and immune score

were calculated by “ESTIMATE” algorithm (26).
2.6 Consensus clustering

Previous studies have demonstrated that interleukin-2 (IL-2),

tumor necrosis factor (TNF), interferon-gamma (IFN-g), and the

cytotoxic T lymphocyte (CTL) can serve as quantitative markers for

assessing the abundance of T cell exhaustion (27, 28). Consensus

clustering analysis was performed on the TCGA BC cohort based on

the aforementioned characteristics of T cell exhaustion with K-Means

clustering algorithm. The R package “ConsensusClusterPlus” was used

to determine the number of clusters with the parameters were set as

reps=50, maxK=9, pFeature=1, pItem=0.8. And 1000 repetitions were

carried out to ensure the stability of the subtype (29).
2.7 Processing of the scRNA-seq data

The “Seurat” package was used for quality control of data,

which involved excluding cells exhibiting ≥5% expression of

mitochondria-related genes and those with fewer than 50 detected

genes. Further normalization of the gene expression matrix is

conducted based on the top 3000 variable genes. The significant

principal components (PCs) were computed by principal

component analysis (PCA), and the dimensionality was

subsequently reduced for the first 20 PCs. Then, a cluster

classification analysis was conducted on all units. With the help

of the CellMarker database and FindAllMarkers function, we

annotated different cell clusters. There are significant differences

in the chromosomal copy number variations (CNV)between

malignant cells and normal cells in solid tumors. The InferCNV
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algorithm is widely used for exploring scRNA-seq data to provide

evidence of large-scale chromosomal copy number alterations,

thereby effectively identifying malignant cells (30). We utilized

the InferCNV algorithm to identify malignant cells within clusters

of epithelial cells. The GPI-score in different cell clusters was

calculated by the AddModuleScore algorithm implemented in

Seurat. The Monocle 2 algorithm was employed for pseudo-time

trace analysis, and the plot_pseudotime_heatmap function was

utilized to construct heatmaps illustrating the dynamic expression

of genes (31).
2.8 Establishment of a diagnostic model
for T cell exhaustion

We performed ssGSEA analysis on the characteristics of T-cell

exhaustion (including IL2, TNF, IFNG, TGFB1, IL10, TCF7,

TBX21, TOX expression abundance, CTL score, Chemokines

score, and CYT score) to derived a T-cell exhaustion score (TEX-

score). Based on the median TE-score, we divided BC patients into

two types (Severe exhaustion type and mild exhaustion type).

Different exhaustion states are included as the outcomes of the

model. The XGBoost algorithm and the Logistic regression

algorithm were used for model training, and the TEX-score of

patients was used as the gold standard to evaluate the predictive

value of these two models for T-cell exhaustion. The ROC analysis

for outcome prediction was conducted using pROC’s ROC

function, and the final AUC result was determined by utilizing

pROC’s ci function to obtain both AUC and confidence intervals.
2.9 Construction of a prognostic model
for breast cancer

Integrating GPI-anchor biosynthesis related genes and T cell

exhaustion related genes (IL2, TNF, IFNG) as input features, we

arranged 101 combinations of 10 algorithms in the training dataset

for variable selection and model construction based on a ten-fold

cross-validation framework (32). Optimal modeling method

selection is based on c-din values, followed by feature gene

screening, calculation of the proportion of feature genes in the

prognostic model, and subsequent construction of a risk score.

Risk score  ¼  o
n
Coefficient of gene ðnÞ � Expression of gene ðnÞ
2.10 Immunofluorescence and
cellular experiment

25 BC patients were recruited from the First Affiliated Hospital of

Wenzhou Medical University (Supplementary Table 4). Breast tumor

tissue was processed into 4mm thick paraffin sections and subsequently

dewaxed. The sections were then incubated in 0.01M sodium citrate at

room temperature for 100 minutes to eliminate endogenous enzyme

activity. Subsequently, a solution containing 5% goat serum was
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applied and incubated at room temperature for 60minutes, followed by

overnight incubation with DAPI (1:100), CD8 (1:100), PIGU (1:100),

andGPAA1 (1:100) antibodies, respectively. On the following day, after

washing with 0.02% PBST, a secondary antibody solution

(concentration of 1:200) was added under light-avoiding conditions

and incubated at room temperature for 2 hours. Finally, the sections

were washed with 0.02% PBST, mounted, and observed using confocal

optical microscopy to visualize the staining results.

Small interfering RNA (siRNA) was designed by Tongyong

(Shanghai)Company to knock down PIGU mRNA in BRCA cell

lines. Total RNA was extracted by Trizol reagent (RNAiso Plus-

9109, Takara), and cDNA was synthesized through PCR thermal

cycler (Eppendorf, Germany) using reverse transcription reagent

(RR036A, Takara) according to the instructions. An appropriate

amount of cDNA was used as a template to verify the efficiency of

knock down for qRT-PCR through TB Green dye (RR820A,

Takara) on Mastercycler real-time PCR system (LightCycler,

Roche). After targeted gene knock down, siNC and siPIGU cells

were seeded in 96-well plates and cultivated for 48h. CCK8 reagent

(CK04, Dojindo) was added and incubated for 2h. The absorbance

was measured at 450nm by microplate reader (Tecan, Switzerland).
2.11 Statistical analysis

The t-test was applied to the normally distributed data in this

study, while the Wilcoxon rank sum test was used for analyzing the

non-normally distributed data. The chi-square test was employed to

compare categorical variables. In order to compare the disparities

among small sample sizes, a non-parametric test is selected. Pearson

correlation analysis is used to measure the strength and direction of the

linear relationship between two variables. All the analysis were

conducted on the R software (version 4.1.2).And adhering to

standard practice, the results are statistically significant with p< 0.05.
3 Result

3.1 Glycosylphosphatidylinositol (GPI)
anchor biosynthesis is a prognostic risk
factor in breast cancer

We quantified the intensity of GPI-anchored biosynthesis in

patients with GPI-scores and evaluated the differences in GPI-

anchored biosynthesis between cancer and paracancer tissues in the

TCGA pan-cancer dataset. Figure 1A shows that there are 20 cancer

types exhibit significant changes in GPI-anchored biosynthesis. The

levels of GPI-anchored biosynthesis in the tumor tissues of LGG,

TGCT, LUAD, READ, BRCA, THCA, LIHC, LUSC, SKCM, PRAD

and GBM were higher than those in normal tissues. Conversely, the

levels of GPI-anchored biosynthesis in the tumor tissues of DLBC, OV,

KIRC, KICH, STAD, ESCA, KIRP, PAAD and ACC were lower than

normal tissues. As the result of unicox analysis shown in the forest

diagram (Figure 1B), GPI-anchored biosynthesis is a risky factor of

prognosis in LGG, HNSC, GBM, CESC and BRCA, while it is a

protective factor in READ, THYM, OV, MESO, LUSC and KIRC.
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The results from the KM plotter demonstrated that the enhancements

to the GPI-anchored biosynthesis was associated with poor prognosis

in HNSC, BRCA, LGG and LUAD (Figure 1C). However, in COAD,

LIHC, LUSC,MESO, READ and KIRC, the stronger the GPI-anchored

biosynthesis, the more favorable the prognosis for patients. Combined

the results of the cox regression, K-M survival curve and the expression

of GPI-scores in tumor and normal samples, we finally determined that

the GPI-anchored biosynthesis may exert a pivotal role in the

development of breast cancer.
3.2 Functional enrichment analysis of the
GPI-anchored biosynthesis

The TCGA BC patients were divided into two cohorts with high

and low GPI-anchored biosynthesis based on the best cutoff values of

the GPI-score. The heat map illustrates the distinct gene patterns

within various patient subgroups (Figure 2A). KEGG functional

enrichment analysis of different clusters of patients showed that the

patients with high GPI-anchored biosynthesis had a worse prognosis

accompanied by a lower immune response, the specific manifestations

include the down-regulation of Cytokine-cytokine receptor interaction,

Helper T lymphocytes (Th17, Th1 and Th2) cell differentiation,

Primary immunodeficiency, and Antigen processing and

presentation (Figure 2B).Interestingly, the patients in the high GPI-

anchored biosynthesis group exhibited augmentedmetabolic pathways,

characterized by the Estrogen signaling pathway and AMPK signaling

pathway, as well as the enhanced Fatty acid metabolism and Cortisol

synthesis secretion (Figure 2B). In addition, GSEA analysis showed that

as the GPI-score increased, protein secretion and estrogen response

were elevated, peroxisome metabolism and oxidative phosphorylation

pathway were enhanced. However, IL2-STAT5 signaling, IL6-JAK-

STAT3 signaling, TNFA signaling, Interferon Gamma response and

Inflammatory response were downregulated (Figure 2C). We also

examined the abundance of 22 immune cells in different groups.

Surprisingly, the group of patients with high GPI-score showed a

decrease in adaptive immune function, with a decrease in T cells CD8 ,

T cells CD4 memory activated, T cells follicular helper, T cells

regulatory (Tregs),and T cells gamma delta. It was also accompanied

by an increasing of M2 macrophages (tumor-promoting) and

monocytes (Figure 2D) (33). Simultaneously, the analysis of

ESTIMATE scores and immune checkpoints revealed that patients

with higher GPI-anchored biosynthesis exhibited a diminished

immune status and response (Figure 2E). Additionally, these patients

exhibited decreased stromal cell infiltration in their tumor tissues but

elevated levels of tumor purity (Figures 2F, G).
3.3 The correlation between GPI-anchored
biosynthesis and T-cell exhaustion

GPI-score is negatively correlated with T cell CD8, T cell CD4

memory activation, Treg, B cell memory, and T-cell follicular helical

(P<0.001), while showing a positive correlation with M2 macrophages

(P<0.001) (Figure 3A). As it is depicted in Figure 3B, the expression of

the majority of genes involved in GPI-anchored biosynthesis exhibited
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a significant negative correlation with diverse immune cell populations.

Then, consensus clustering analysis was employed to categorize BC

patients based on the specific TEX pathway which includes TNF, IL-2,

IFN-g, and CTL. We identified 4 clusters of patients with different T-

cell exhaustion status in the TCGA-BC cohort (C1-C4)

(Supplementary Figure 1). The heat map also shows the change of

other molecular pathways of TEX in different groups, including TGFB,

IL10, chemokines, transcription factors (TCF7, TBX21, Tox), CYT

scores, and the abundance of infiltrating lymphocytes (Activated B cell,

Activated CD4 T cell, Activated CD8 T cell, Effector memeory CD4 T

cell, Effector memeory CD8 T cell, Th1, Th2, and Th17) (Figure 3C).

Consistently, these characterized pathways of TEX including CYT and

CD4 T cell and CD 8 T cell showed a decreasing trend in C1-C4

(Figures 3D–F), suggesting that the four TEX subgroups identified in

this study accurately represent the biology of the TEX grading stage.

Interestingly, the intensity of GPI-anchored biosynthesis increases with

the severity of the TEX (Figure 3G). Based on the KEGG enrichment

analysis, we compared the differences in biological function between

the groups with the greatest differences in the degree of TEX (C1 and
Frontiers in Immunology 05
C4), and surprisingly, alterations in GPI-anchored biosynthesis were

the most significant change between the two groups, topping the list in

terms of magnitude of change (Figures 3H, I).
3.4 Single-cell analysis of GPI-anchored
biosynthesis in TME

We identified 14 major cell types using annotations from the

Cell Marker database, including CD4 T cells, CD8 T cells,

Exhausted CD8 T cells, B cells, Epithelial cells, Fibroblasts,

Myeloid cells, Innate Lymphocytes (ILCs), Dendritic cells,

Monocytes, Neutrophils, Mast cells, Endothelial cells and

Macrophages (Figure 4A). Projecting the clinical information of

the samples onto various cell subpopulations to trace the cellular

origin, the exhausted CD8 T cells were predominantly present in

tumor tissues (Figure 4B). Compared with the normal mammary

microenvironment, the proportion of various types of cells in TME

was significantly altered, in which the proportion of B cells,
A B

C

FIGURE 1

Prognostic analysis of GPI-score in multiple cancer types. (A) The boxplot shows GPI-score in 33 tumor types from TCGA and GTEx databases (ns, p ≥

0.05; *p< 0.05; **p< 0.01; ***p< 0.001). (B) Univariate Cox regression analysis of GPI-scores with OS, DSS, PFI and DFI in patients with different cancers.
(C) Kaplan–Meier (KM) curves of 10 cancer types (COAD, BRCA, LGG,LUAD, LIHC,HNSC,LUSC,MESO,READ and KIRC) in TCGA with significant
survival differences.
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endothelial cells, macrophages, and monocytes was elevated while

the CD4 T cells and CD8 T cells were decreased and replaced by a

substantial increase in exhausted CD8 T cells (Figure 4C). This

observation suggests that the T-cell exhaustion is a rare occurrence

in normal breast tissue, but frequently manifests in tumor tissue.
Frontiers in Immunology 06
Then, we defined 127 malignant cells in the tumor epithelial cell

population using the InferCNV algorithm (Figures 4D, E;

Supplementary Table 5) and compared the differences of

GPI-anchored biosynthesis between the malignant epithelial cells

and normal breast epithelial cells. Interestingly, the GPI-anchored
A B

C

D

E

F G

FIGURE 2

Functional enrichment analysis of the GPI-anchored biosynthesis. (A) Heat maps of Differential gene in patients with high and low GPI-score(|log2
fold change (FC)|≥1 and p< 0.05). (B) KEGG enrichment analyses of Up-regulated differential genes(up) and down-regulated differential genes(down).
(C) GSEA analysis, the first 15 statistically significant pathways were presented. (D) The abundance of 22 immune cells in patients with high and low
GPI-score from TCGA databases with CIBERSORT. (E) Expression of 24 immune checkpoints in different subgroups. (F, G) Immune infiltration scores
and Tumor Purity score for different groups. (*p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001).
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biosynthesis was instead reduced in malignant epithelial cells

(Figure 4F). We compared the alterations of GPI-anchored

biosynthesis in other tumor-derived cell populations, we found

that remarkably differences could be only observed between CD8 T
Frontiers in Immunology 07
cells and exhausted CD8 T cells (Figure 4G; Supplementary

Figure 2). The GPI-anchored biosynthesis was much stronger in

exhausted CD8 T cells compared to normal CD8 T cells. Similarly,

GSVA analysis of KEGG biological pathways showed there is no
A B

C

D E

F G

H I

FIGURE 3

Characterization of TEX heterogeneity within the TME of BC. (A) The correlation between GPI-score and the abundance of 22 immune cells. (B) The
correlation of GPI-anchored biosynthesis related genes with immune cells. (C) TCGA BC patients were divided into four subgroups according to the
specific TEX pathway. (D) CYT scores for the four clusters. (E, F) Boxplots depict the relative abundance of infiltrating T lymphocytes across distinct
clusters. (G) Expression of GPI-score among the four TEX subgroups. (H) Heat maps showing the first 10 differential pathways in patients with C1
and C4 clusters. (I) The volcano plot displays the log fold change of differential pathways in patients from C1 and C4 clusters.
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difference in GPI-anchored biosynthesis between malignant and

non-malignant epithelial cells (Figure 4H), whereas this difference

was evident in CD8 T cells and exhausted CD8 T cells (Figure 4I).
3.5 Pseudotime analysis of GPI-anchored
biosynthesis related genes in TME

The differentiation trajectories of CD8 T cells and epithelial cells

were constructed to observe the process of CD8 T cell exhaustion and
Frontiers in Immunology 08
metabolic remodeling of GPI-anchored biosynthesis during

tumorigenesis. In the pseudotiming analysis, CD8 T cells were

initially located along the trajectory path and gradually transitioned

into exhausted CD8 T cells (Figures 5A, B). We calculated the dynamic

expression levels of GPI-anchored biosynthesis related genes in CD8 T

cells and exhausted CD8 T cells along the pseudotemporal transition,

and the gene heat map suggested that PIGP, PIGC, PIGU, PIGW,

PIGV, and GPAA1 were highly expressed at the end of the trajectory

path (Figure 5C), which means that these genes are highly expressed in

exhausted CD8 T cells. Two-dimensional map shows the dynamic
A B

C D E

IF

G

H

FIGURE 4

The signature of GPI-anchored biosynthesis with Single-cell analysis in TME of BC. (A, B) Dimensional reduction plot of single cells (A) 16 cell types, (B) tissue
origins (tumor, normal). (C) The proportion of different types of cells in TME. (D) Identification of malignant epithelial cells by InferCNV algorithm. The CNV of
epithelial cells in cluster 1, 3, 4, 8, 9, and 10 was significantly increased, and the tumor-derived epithelial cells in these clusters were defined as malignant
epithelial cells. (E) Two-dimensional dot plot of malignant epithelial cells, non-malignant epithelial cells, and others. (F, G) Expression levels of GPI-score in
different cell populations. (*p< 0.05; ****p< 0.0001) (H, I) Differential analysis of KEGG biological pathways in different cell populations.
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expression of genes in CD8 T cells (green) and exhausted CD8 T cells

(blue) (Figure 5D). These results suggest that the expression of GPI-

anchored biosynthesis related genes is heterologous during the CD8 T

cell state transition. Figures 5E, F represent the pseudotemporal

developmental trajectories of epithelial cells. We calculated the GPI-

scores in the cells and present them in a two-dimensional plot, where

we can see that the overall level of GPI-anchored biosynthesis in

exhausted CD8 T cells is always higher than that in non-exhausted

CD8 T cell, and that metabolic intensity increases as CD8 T cell

become more exhausted (Figure 5G). However, the intensity of GPI-

anchored biosynthesis is lower in tumor epithelial cells than in normal

epithelial cells (Figure 5H). Thus, it is worth considering whether GPI-

anchored biosynthesis related genes could serve as a potential

biomarker for predicting T cell exhaustion in BC patients.

Interestingly, we did not observe this phenomenon in the metabolic

landscape of exhausted CD4 T cells. It is worth noting that
Frontiers in Immunology 09
GPI-anchored biosynthesis levels are lower in exhausted CD4 T cells

compared to non-exhausted CD4 T cells (Supplementary Figure 3).
3.6 Machine learning-based model for the
diagnosis of T cell exhaustion

Correlation analysis was performed between the GPI-score and

TEX-score in Metabric and TCGA BC cohort, with correlation

coefficients (r-values) of -0.49 and -0.51 respectively (Figures 6A,

B). Then, a variational analysis was performed in Metabric BC

cohorts with the model_profile function in the XGBoost algorithm,

assessing the association between the expression of GPI-anchored

biosynthesis related genes and the states of T cell exhaustion in BC

patients. The Partial Dependence profile demonstrates the impact

of individual gene expression on the predictive ability of the
A
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H

FIGURE 5

The pseudotime analysis of GPI-anchored biosynthesis related genes in TME. (A, B) Differentiation trajectory of CD8 T cells, colorcoded for pseudotime (A) and
sub-cell types (B). The direction of cell differentiation was CD8 T cells to exhibited CD8 T cells. (C) Pseudo-heatmap of genes altered in the differentiation
process of CD8 T cells in BC (D) Dynamic changes of the expression of 21 GPI-anchored biosynthesis related genes in CD8 T cells and exhibited CD8 T cells.
(E, F) Differentiation trajectory of epithelial cells in BC, colorcoded for pseudotime (E) and sub-cell types (F). (G, H) Two-dimensional plots showing the
dynamic expression of GPI-anchored biosynthesis score during the T cell transitions (G) and epithelial cells transitions (H) along the pseudotime.
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XGboost model (Figure 6C). Figure 6D illustrates the magnitude of

the impact of each GPI-anchored biosynthesis related gene on the

states of T cell exhaustion in Metabric BC patients, it can be

observed that PIGQ exerts the most significant influence on

severe T cell exhaustion states in patients, followed by GPAA1.

Finally, XGBoost and Logistic Regression were used to construct a

T-cell exhaustion diagnostic model associated with GPI-anchored

biosynthesis related genes in two BC cohorts. We evaluated the
Frontiers in Immunology 10
accuracy of these two models in predicting the occurrence of severe

T-cell exhaustion in patients. The area under the ROC curve

represents the accuracy of the model. Compared to the XGBoost

algorithm, the Logistic regression model has greater AUC values in

both the Metabric and TCGA cohorts, with values of 0.688 and

0.684 respectively (Figures 6G, H), while the AUC values for the

XGBoost model are 0.637 and 0.623 (Figures 6E, F). Our results

demonstrated that the GPI-anchored biosynthesis related genes are
A
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FIGURE 6

Machine learning-based models for the diagnosis of T cell exhaustion. (A, B) The correlation between GPI-score and Tex-score in Metabric
(Spearman, r = -0.47, p = 3.2e-107) and TCGA BC queue (Spearman, r = - 0.51, p = 1.8e-72). (C) Partial Dependence Plot of XGboost model, part of
the graph shows the dependence of the change in T-cell exhaustion prediction on each gene variable. (D) The importance of the features ranked in
descending order. (E-H) The ROC curve were established following XGBoost and Logistic regression fed by the GPI-anchored biosynthesis related
genes in Metabric and TCGA BC queue.
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valuable as a tool to predict whether a patient has developed severe

T cell exhaustion.
3.7 Establishment of a prognosis signature
related to GPI-anchored biosynthesis

To validate the prognostic value of GPI-anchored biosynthesis

related genes in BC, we develop a gene signature (GPIS) based on 21

GPI-anchored biosynthesis related genes and the characteristic

factors of T cell exhaustion (TNF, IL-2, IFN-g).The Metabric

dataset, with its high number of patients, served as the training

set, while the TCGA cohort, with its low number of samples, served

as the validation set. We employed a ten-fold cross-validation

framework to train and validate 101 predictive models,

subsequently determining the C-index for each set. Models with

C-index less than 0.5 indicate obvious overfitting problems in the
Frontiers in Immunology 11
construction process and should be excluded. Interestingly, the

optimal model was Random Forest (RSF) with the highest average

C-index (0.767) Figure 7A. Then, the RandomForestSRC algorithm

was utilized to optimize the results of the RSF. Figure 7B represents

the weight ratio of the characterized genes in GPIS, which shows

that PIGV, PIGU, GPAA1, and PGAP1 are the core genes of the

model. By weighting the 13 gene expression values and their

regression coefficients in RandomForestSRC, a risk score was

obtained for each patient (Figure 7C; Supplementary Table 6).

With the optimal thresholds for risk scores determined by the

“surviminer” package, patients were classified into high-risk and

low-risk groups. K-M curves indicate that patients categorized as

high-risk exhibited notably reduced OS duration compared to

individuals in the low-risk cohort (Figures 7D, E). ROC analysis

measured the discrimination of GPIS, and the 3-year, 4-year and 5-

year AUC of training dataset were 0.62, 0.64 and 0.65 (Figure 7F).

The 1-year, 3-year and 5-year AUC in validation dataset were 0.68,
A B C
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H

FIGURE 7

Development and validation of GPIS with 101 machine learning methods. (A) The C-index of GPIS for each algorithm combination in Metabric and TCGA
datset. (B) RandomForestSRC analysis of the genes obtained in RSF. (C) Coefficients of 13 genes obtained in RandomForestSRC. (D, E) K–M plots for
riskscore in Metabric and TCGA sets. (F, G) Time-dependent ROC analysis of GPIS, (F) AUC for 3-, 4-, and 5-year OS in Metabric set. (G) AUC for 1 -, 3 -,
and 5-year OS in TCGA set. (H) The multivariable Cox regression analysis of GPIS.
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0.60 and 0.59 (Figure 7G).The Accuracy of Random Forest model is

0.685, KS score is 0.510, F1 score is 0.645, and Precision is 0.672

(Supplementary Figure 5).
3.8 GPAA1 and PIGU are associated with
poor prognosis and CD8 T cell infiltration
in BC

The multivariable Cox regression analysis revealed that GPAA1,

PIGU, PIGS, PIGQ, and PIGW independently serve as risk factors

for OS (Figure 7H). In the feature weight analysis of the T cell

exhaustion diagnostic model and prognosis model, further

comprehensive investigation is necessary for GPAA1 and PIGU.

We employed the Timer method from the IOBR software package

to conduct immune cell infiltration scoring on 9,406 tumor samples

covering 38 cancer types within the TCGA pan-cancer dataset. The

heat map reveals a strong correlation between GPAA1 and immune

infiltration in 32 cancer types, while PIGU exhibits a significant

association with immune infiltration in 33 cancer types (Figure 8A).

The infiltration of CD8+T cells in breast cancer exhibits a negative

correlation with the expression levels of GPAA1 and PIGU. In

addition, the K-M curve indicates that patients with high expression

of GPAA1 and PIGU have a worse OS (Figures 8B, C). Compared to

normal breast cells (MCF10A), the expression of GPAA1 and PIGU

is relatively high in MCF7, MDA-MB-231 and BT-474 cells

(Figure 8D). SiRNA was employed to downregulate the

expression of PIGU in MCF7 and MDA-MB-231 cells, and the

ability of PIGU to effectively retard proliferation of MCF7 and

MDA-MB-231 cells was confirmed by CCK8 assay (Figure 8E).We

also employed a multiplex immunofluorescence staining technique

to detect the expression levels of GPAA1 and PIGU molecules, as

well as the degree of CD8 T cell infiltration in 25 local breast cancer

tissues. Surprisingly, In multiple microscopic views, the expression

of GPAA1 and PIGU in breast cancer cells was negatively correlated

with the expression of CD8 molecules in neighboring lymphocytes

(Figures 8F, G). When tumor cells high expressed GPAA1 and

PIGU, the fluorescence intensity of CD8 molecules in peripheral

infiltrating lymphocytes noticeably decreased, indicating a

reduction in the number of CD8+ T cells.
4 Discussion

Our study demonstrates the dysregulation of GPI-anchored

biosynthesis to varying extents in the majority of prevalent tumors.

Augmented GPI-anchored biosynthes is not only exhibits a

correlation with an unfavorable prognosis in breast cancer but

also contributes to the exhaustion of CD8 T cells within the TME.

Considering the pivotal role of GPI-anchored biosynthesis in

cellular processes (34), we quantified 21 genes associated with

GPI-anchored biosynthesis to generate a composite score for

assessing the extent of GPI-anchored biosynthesis in tumor

patients. Our findings suggest that elevated GPI-anchored

biosynthesis functions as a prognostic risk factor in BC patients.

Further scoring of the immune status and immune cells suggests
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that the BC patients with high GPI-anchored biosynthesis had

lower levels of immunity, as well as the significant down-regulation

of IL2, TNF, and IFN-g. Studies have shown that during the

persistent infection, CD8 T cells undergo a progressive depletion

of their effector function and proliferative capacity (35, 36), which is

characterized by the upregulation of inhibitory receptors such as

PD-1, CTLA4, and TIM-3, as well as impaired production of TNF,

IFN-g, chemokines, and degranulation ability (37–39). Ultimately,

the effectiveness of CD8 T cells in inhibiting tumor growth becomes

diminished, leading to the immune evasion of tumor cells (40).

Interestingly, the characterization of CD8 T cell exhaustion is highly

manifested in patients with high GPI-anchored biosynthesis,

suggesting that there may be a more severe state of T cell

depletion in this patient cluster. This observation motivated us to

deep investigate the potential association between CD8 T cell

exhaustion levels and GPI-anchored biosynthesis intensity in

BC patients.

Referring to the developmental pathway of CD8 T cell

exhaustion defined by Beltra et al (41), we identified four distinct

patterns of T-cell exhaustion based on the abundance levels of IL-2,

TNF, IFN-g, and CTL expression in the BC patients. As anticipated,

the intensity of GPI-anchored biosynthesis in patient clusters

increased with the exhaustion of T cells, showing a high

correlation between the two. To our surprise, single-cell analysis

showed that GPI-anchored biosynthesis was only differentiated in

CD8 T cells and over-activated with the exhaustion of CD8 T cells,

while this phenomenon was not observed in malignant epithelial

and normal breast epithelial cells in TME. This suggests that the

enrichment of GPI-anchored biosynthetic activity is an important

biological change in the progression of CD8 T cells

toward exhaustion.

However, existing studies have not revealed whether

abnormalities in the GPI anchoring process in tumors specifically

affect the exhaustion of CD8 T cells. Katagiri et al. reported that

patients with bone marrow failure (BMF) exhibited T cells deficient

in GPI-anchored protein (GPI-AP), and this subset of defective T

cells demonstrated heightened susceptibility to immunotherapy

(42). More and more studies have proposed that co-expression of

some GPI-APs on CD8 T cell can help identify the T cell subsets

with weakened function and exhaustion during chronic infection.

Such as the co-expression of 2B4, CD160, and KLRG1 with PD-1 on

HCV-specific CD8 T cells is associated with intermediate

differentiation and impaired function (43, 44). The increased

expression of some GPI-anchored inhibitory receptors on T cell

surface associated with progressive CD8 T cell exhaustion in BC

may be attributed to the boost of GPI anchor biosynthesis.

Our findings suggest a clear mechanistic link between the GPI-

anchored biosynthetic pathway and T cell exhaustion, although it

has not yet been fully explored. However, based on the existing

research results and theoretical hypotheses, we can make some

speculations and discuss how GPI-anchored biosynthesis interferes

with CD8 T cell exhaustion.1.The role of GPI-anchored proteins in

T cell signaling (45): GPI-anchored proteins play a crucial role in

signal transduction and cell-cell interactions on the cell membrane.

There may exist GPI-anchored proteins that play key roles in T cell

activation and maintenance of function. Therefore, abnormalities in
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GPI-anchored protein biosynthesis may affect the expression or

function of these proteins, leading to T cell dysfunction.

2.Interaction of GPI-anchored proteins with immune regulatory

factors (46): GPI-anchored proteins may interact with immune

regulatory factors, influencing the immune regulatory function of T
Frontiers in Immunology 13
cells. Abnormal GPI-anchored protein biosynthesis may disrupt

these interactions, thereby affecting T cell activation, proliferation,

and effector function.3. The role of GPI-anchored proteins in T cell

metabolism regulation (47): GPI-anchored proteins may participate

in regulating the metabolic processes of T cells, including energy
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FIGURE 8

Immunocorrelation analysis and biofunctional validation of GPAA1 and PIGU in BC. (A) The correlation of GPAA1 and PIGU with immune cells. (B, C) KM
plots for OS of GPAA1 and PIGU in TCGA BC cohort. (D) The expression of GPAA1 and PIGU in MCF10A, MCF7, MDA-MB-231 and BT-474 cells. (E) CCK8
assays in MDA-MB-231 and MCF-7 cells with PIGU-silenced. (ns, p>0.05; *p<0.01; **p< 0.01; ***p< 0.001). (F, G) Immunofluorescence (IF) staining of GPAA1,
PIGU and CD8.
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metabolism and signaling pathways. Abnormal GPI-anchored

protein biosynthesis may impact the normal functioning of these

metabolic pathways, resulting in T cell dysfunction and exhaustion.

4.Association of GPI-anchored proteins with immune checkpoints

(47): GPI-anchored proteins may be associated with immune

checkpoint molecules, influencing the balance between T cell

activation and suppression. Abnormal GPI-anchored protein

biosynthesis may alter the expression or function of these

immune checkpoints, leading to T cell dysfunction and

immune exhaustion.

Furthermore, the persistent presence of a metabolic state, such

as an inflammatory state, in tumor patients can directly influence

the tumor microenvironment. Research indicates that immune cells

in the tumor microenvironment can exhibit metabolic plasticity

based on changes in the TME (48). For example, MRC1+ CCL18+

macrophages in colorectal cancer show enrichment in oxidative

phosphorylation, while macrophages in liver metastasis primarily

rely on amino acid metabolism (49). This metabolic adaptability

directly impacts the function, activation state, and response of

immune cells to the tumor (50). Metabolites derived from

glutamine metabolism, for instance, can promote T cell-driven

immunosuppressive programs (51).In breast cancer patients, the

increased expression of some GPI-anchored inhibitory receptors on

the surface of CD8+ T cells during T cell exhaustion may be related

to cellular responses to changes in the TME, leading to metabolic

reprogramming and potentially promoting increased GPI-anchored

protein biosynthesis.

Overall, the potential mechanistic links between GPI-anchored

protein biosynthesis and T cell dysfunction may involve multiple

aspects, including signal transduction, immune regulation,

metabolic regulation, and immune checkpoints. Future research

can further explore these mechanistic connections to uncover the

specific role of GPI-anchored protein biosynthesis in T cell function

regulation, providing a deeper theoretical basis for the development

of novel immunotherapy strategies.

In addition to suggesting enhanced GPI-anchored biosynthesis,

which is associated with CD8 T cell exhaustion and poor prognosis

in BC, we also observed different perturbations of expression of 21

genes involved in GPI-anchored biosynthetic processes during the

transformation process of CD8 T cell exhaustion. With the further

establishment of BC prediction models for GPI-anchored

biosynthesis-related genes, the role of GPAA1 and PIGU are

pivotal in T cell exhaustion diagnosis and patient prognosis,

suggesting the potential utility of GPI-anchored biosynthesis

related genes as biomarkers for diagnosing T cell depletion status

and predicting prognosis in BC patients.

In fact, it has been shown that GPAA1 and PIGU are defined as

oncogenes in a variety of cancers. For example, GPAA1 facilitates

the advancement of gastric cancer by increasing the expression of

GPI-anchored proteins and augmenting the ERBB signaling

pathway (52). High expression of GPAA1 exacerbates the

progression of hepatocellular carcinoma (53). And PIGU was

recognized as an oncogenic factor of bladder cancer in 2004 (54).

This opens a new door that GPI-anchored bioanabolic activity itself

may be tumorigenic. We also found that GPAA1 and PIGU are

highly amplified in breast cancer cell lines (55), and inhibiting the
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expression of PIGU has a negative impact on cell proliferation. Not

only that, BC tissues with high expression of GPAA1 and PIGU

exhibited suppression of peripheral CD8 T cell infiltration.

In conclusion, our study provides a valuable insight into T cell

exhaustion in BC patients. We strongly recommend the inclusion of

GPI-anchor biosynthesis metabolic pathway as a potential risk

factor for tumorigenesis and progression of T-cell exhaustion.

And we advocate for increased attention to be directed toward

the aspect of GPI-anchor biosynthesis in future research endeavors.

In-depth exploration of the impact of GPI-anchor biosynthesis on T

cell function may contributes to uncovering mechanisms of tumor

immune tolerance and provides a theoretical basis for the

development of novel immunotherapy strategies.
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