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Osteoarthritis (OA) is a prevalent clinical condition affecting the entire joint,

characterized by its multifactorial etiology and complex pathophysiology. The

onset of OA is linked to inflammatory mediators produced by the synovium,

cartilage, and subchondral bone, all of which are closely tied to cartilage

degradation. Consequently, OA may also be viewed as a systemic

inflammatory disorder. Emerging studies have underscored the significance of

T cells in the development of OA. Notably, imbalances in Th1/Th2 and Th17/Treg

immune cells may play a crucial role in the pathogenesis of OA. This review aims

to compile recent advancements in understanding the role of T cells and their

Th/Treg subsets in OA, examines the immune alterations and contributions of

Th/Treg cells to OA progression, and proposes novel directions for future

research, including potential therapeutic strategies for OA.
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1 Introduction

Osteoarthritis (OA) is a common joint disease characterized by the degeneration of the

articular cartilage. OA mainly involves the knee joint, hip joint, and distal interphalangeal

joint. The articular cartilage, subchondral bone, ligament, joint capsule, synovium, and

muscles around the joint are typically affected (1–3). Globally, OA is recognized as one of the

main causes of morbidity and disability (4, 5). It has been estimated that by 2032, the

proportion of people, aged 45 years and over, medically diagnosed with OAwill increase from

26.6% to 29.5% (knee osteoarthritis (KOA) from 13.8% to 15.7%, and hip osteoarthritis from

5.8% to 6.9%) (6). In the early stage, OA is characterized by increased bone remodeling, a loss

of bone structure, and slow subchondral bone densification (7). Chronic intra-articular

inflammation and cartilage degeneration follow. Eventually, intractable joint pain and joint

deformities occur, which in turn, seriously affect the quality of life and the ability to work of

the patients (8, 9). Traditionally, OA was considered a non-inflammatory disease involving

anatomical joint damage and reduced function caused by cartilage degeneration. The

pathogenesis was mainly attributed to age, body mass, sex, and abnormal joint loading, as
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well as articular cartilage damage caused by joint injury,

misalignment, and other mechanical factors (10, 11). Most scholars

have focused on the molecular biology of promoting cartilage

interstitial synthesis, inhibiting cartilage stroma decomposition, and

inhibiting chondrocyte apoptosis, as well as the biomechanics of joint

injury and tissue engineering for promoting cartilage repair. To date,

the potential mechanism of cartilage repair remains unclear (12–14).

While researchers have acknowledged the significance of cartilage

degeneration in the development of OA, there is still limited

understanding of the concurrent inflammatory reaction. More in-

depth research on the pathogenesis of OA is needed to advance

clinical treatment. More recently, the pathophysiology of OA has

shifted from a degenerative “wear” disease of the articular cartilage to

being recognized as a multi-factorial disease involving all joint tissues,

with an underlying complex pathophysiology (15). Although OA has

historically been defined as a type of non-inflammatory arthritis,

many patients with OA exhibit inflammation-related symptoms,

such as morning stiffness, fever, pain, and joint effusion. Increasing

numbers of studies have shown that the inflammatory mediators

produced by the synovium, cartilage, and subchondral bone are

associated with cartilage injury in the pathogenesis of OA (16).

Therefore, OA is becoming more recognized as a systemic

inflammatory disease. Moreover, OA is being described as a

persistent state of low-grade inflammation, rather than a passive

degenerative disease or so-called abrasive disease (17, 18).

A variety of immune cell infiltration is found in the synovium of

patients with OA. This established that a relationship exists between

orthopedic presentations and immunology. Consequently, the

pathogenesis of OA involves immune inflammatory reactions, and

thus, can be classified as bone immunology dysfunction (19, 20). The

continuous intersection between immune cells and bone metabolism

has attracted more and more attention to bone immunology. An

understanding of the relationship between immune cells and bone

metabolism is warranted. In patients with OA, the synovium often

shows inflammatory cell infiltration. At present, T cell, B cell,

macrophage, mast cell, and NK cell infiltration have been most

commonly found in the synovium of patients with OA (21, 22).

Moreover, innate immune components, such as complements,

macrophages, proinflammatory cytokines, and chemokines, as well

as adaptive immune cells, such as T cells and B cells, play important

roles in the development of OA (15, 23, 24). Although the specific

pathological mechanism of T cells in OA is not clear, the OA

synovium has been shown to possess a greater abundance of T cells

than a healthy synovium (20). OA has been associated with many

types of T cells, including helper T cells (Th) and regulatory T cells

(Treg), suggesting that abnormal Th/Treg cells may be an important

factor in its pathogenesis (15). Hence, scientists are now gaining a

better understanding and acknowledging the significance of immune

cells like T cells in osteoarthritis. While some research has been

conducted in the past, further in-depth studies on the mechanisms

and pathophysiology are required to fully grasp their role. This review

explored the progress of T cells and their subsets (Th/Treg) in OA,

discussed the role and changes in T cells including Th/Treg in disease

progression, and proposed future research directions and the

potential for new OA treatment.
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2 T cells and OA

T cells play an important role in maintaining body health and

preventing diseases. They are the main cellular components of the

adaptive immune system and are responsible for mediating cell-

based immune responses to prevent the occurrence of various

diseases (25). T cells originate from hematopoietic stem cells in

the bone marrow and undergo differentiation, development, and

maturation in the thymus, facilitated by the influence of specific

thymic factors such as cytokines and hormones (Figure 1). T cells

are effector cells involved in the adaptive immune response of

proliferation, cytokine production, cytotoxicity, and differentiation

(26). Under normal circumstances, the number of T cells and their

subsets in the surrounding tissue is relatively stable. Immune

abnormality is regarded as a change in the ratio or absolute value

of the total number of T cells or their subsets. This immune

abnormality is closely related to the occurrence and development

of some diseases (27). It has been confirmed that pro-inflammatory

cytokines play an important role in the pathogenesis of OA.

Inflammatory responses aggravate the severity of OA by inducing

cartilage degradation (28). The cell types involved in OA include

osteoblasts, osteoclasts, chondrocytes, synovial fibroblasts, T cells,

macrophages, and mesenchymal stem cells (MSCs) (29). Acquired

immune cells, such as T cells, B cells, and NK cells, play an

important role in the pathogenesis of OA (30, 31). In particular,

T cells is critical in adaptive immunity. In the disease

microenvironment, T cells are activated to produce a large

number of cytokines and inflammatory mediators. Activated T

lymphocytes are associated with the occurrence, development,

and prognosis of OA (32, 33). Importantly, the immune

responses associated with activated T cells or abnormal T cells are

related to bone loss and bone destruction in arthritis. An increase in

CD4+T, Th1, Th1/Th2 ratio, and Th17 enhance osteoclastic

activities, while an increase in CD8+T cells, Treg, and CTLA-4

inhibit osteoclasts (34).Bone is a dynamic organ. It is in a dynamic

equilibrium of continuous reconstruction or remodeling during the

lifespan. To maintain the balance required in bone structure,

osteocytes, osteoblasts, and osteoclasts coordinate and cooperate

during bone remodeling (35). In arthritis, activated T cells regulate

bone loss and joint destruction by regulating the equilibrium

between the receptor activator of nuclear factor kappa-B ligand

(RANKL) and osteoprotegerin (OPG). The expression of OPG in T

cells is recruited by antigen receptors, indicating that activated T

cells can affect bone metabolism through OPG and RANKL (36,

37). In a T cell-dependent mouse arthritis model, the blocking of

RANKL with OPG can prevent the destruction of bone and

cartilage, but cannot inhibit inflammation (38). Abnormal T cell

immunity promotes the abnormal expression of inflammatory

cytokines, such as TNF- a, which leads to osteoclast-mediated

bone erosion and osteoporosis in autoimmune arthritis. Hence, it

has become clear that the immune responses from activated or

abnormal T cells induce bone loss and bone destruction in

arthritis (39).

In the early stage of OA, inflammation occurs with

inflammatory factor infiltration in the synovium. The degree of
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synovitis is closely related to the symptoms of OA and the

progression of the disease (40, 41). Prior research has shown that

the primary immune cells found in the synovial tissue, synovial

fluid, and subpatellar fat pad of individuals with osteoarthritis are T

cells, macrophages, and synovial tissue resident macrophages

(STRM) (42–44). In the early stage of OA, CD4+T cells induce

synovitis by secreting TNF- a and IL-6, and the levels of these

cytokines are significantly correlated with pain and dysfunction

clinically (45). In a study using mice with gene knockout of CD8+T

lymphocytes and anterior cruciate ligament transection, Hsieh et al.

(46) found that the proliferation, hypertrophy, and granulation of

the synovial tissue decreased on the 90th day, suggesting that there

is a correlation between T lymphocytes in the synovial tissue and

the progression of OA, although the specific mechanism is not clear.

Scholars have found that T cell recruitment may be related to the

enzymatic process. Using enzyme-linked immunosorbent assay

(ELISA) to detect the supernatant of synovial cells with T cell

deletion, researchers have found that T cell deletion decreases

matrix metalloproteinase (MMP)-1, MMP-3, and MMP-9 levels,

indicating that activated T cells in the synovium can induce the

release of MMP and accelerate the process of cartilage destruction

(45). These results confirm that T cells can induce OA directly or

indirectly by secreting cytokines. Further study into the relationship

between T cells and OA may provide new ideas for enhancing the

diagnosis and treatment of OA.
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3 Th cells and OA

3.1 Th1 cells

Th1 cells are a lineage of the CD4 effector T cells, which can

phagocytize and clear antigens by activating macrophages and other

immune cells. Th1 cells play an important role in identifying and

clearing intracellular pathogens, such as viruses and bacteria (47).

Th1 cells mainly secrete IFN-g, TNF-a, and IL-2 cytokines, which

can promote the further proliferation of other Th cells, leading to

cellular immunity (48, 49). Initial CD4+T cells differentiate into

Th1 cells under the action of IL-12 and IFN-g. Importantly, Th1

cells play an anti-intracellular pathogen role in infections (50, 51).

IL-2 and TNF-a, secreted by Th1 cells, can activate osteoclasts (52).

Moreover, TNF-a can delay osteoclast apoptosis, aggravate

subchondral bone destruction, localize bone remodeling after

bone destruction, and subsequently, lead to the formation of new

osteophytes (53).In early OA, inflammation occurs in the

synovium. Rosshirt et al. (33) analyzed synovium samples from

40 patients with early OA by flow cytometry. The results showed

that chemokine receptor (CXCR3/CCR5), cytokine (interferon-g,
preferentially expressed in Th1 cells), and CD161 (preferentially

expressed in IL-17-producing Th17 cells) were significantly

increased, indicating that the infiltration of inflammatory Th1

cells in early OA. This direct cellular interaction, combined with
FIGURE 1

T cells originate from hematopoietic stem cells in the bone marrow and undergo differentiation, development, and maturation in the thymus.
Differentiated into distinct cell subpopulations under the influence of specific thymus factors such as cytokines and hormones. Th2 and Treg cell
subsets play an anti-inflammatory role by secreting cytokines IFN-g, IL-4, IL-10 and TGF-b, delaying joint degeneration and cartilage injury, while
Th1, Th9, Th17 and Th22 cell subsets promote joint inflammation.
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humoral immunity, is involved in the pathogenesis of early OA.

Timo et al (54) evaluated the pain and function of the knee joint in

47 patients with OA, who underwent knee arthroplasty. The

patients’ peripheral blood (PB), synovium (SM), and synovial

fluid (SF) were sampled and different Th subsets were analyzed

by flow cytometry. The results showed that synovial infiltration of

Th subtypes (Th1, Th2, Th17) was significantly related to OA-

induced dysfunction. Additionally, infiltration of CCR5+ and CCR3

+ Th cells in the synovium was associated with osteoarthritic knee

pain and dysfunction. Lathrati et al. (15) detected Th1 cells in the

peripheral blood of patients with hyaluronic acid injection by flow

cytometry. It was confirmed that the level of activated Th1 cells in

the treatment group was significantly higher than that in the healthy

controls. Monasterio (55) confirmed that Th1 cells are enriched in

OA lesions and that these cells may activate subchondral osteoclasts

through the RANKL/RANK signaling pathway to accelerate the

inflammatory response. Thus, resulting in further aggravation of

OA in patients. In their ACLT model rat study, Castrogiovanni (56)

intervened by using physical exercise as a treatment. Results from

the synovial analysis revealed that the levels of IL-4 and IL-10 in the

ACLT model rats were significantly higher than those in OA model

rats, while the levels of TNF- a and MMP-13 were decreased. These

studies confirmed that Th1 cells are closely associated with the

entire OA process, especially in the early stage of OA. The presence

of Th1 cells can accelerate joint inflammatory responses, leading to

cartilage matrix degradation and destroying joint homeostasis.
3.2 Th2 cells

CD4+T cells differentiate into Th2 cells under the action of

cytokines, such as IL-4. Activated Th2 cells can produce cytokines

including IL-4, IL-5, IL-10, and IL-13. These cytokines can promote

the proliferation of Th2 cells and inhibit the proliferation of Th1

cells (41, 57). However, the researchers found that only low levels of

IL-4 and IL-10 could be detected in the peripheral blood and

synovial fluid of patients with OA by flow cytometry (58, 59). In

a study of 18 patients with OA and 13 patients with RA, the

researchers found that IL-10 transcription could be detected in the

synovium of patients with OA and RA, but IL-4 and IL-5 were not

detected (60). In a study that examined chemokine receptors and T

cells in OA, the researchers found that compared with paired bone

marrow, the cells expressing CC chemokine receptor 2 (CCR2) in

the peripheral blood were significantly up-regulated and T cells

CXC chemokine receptor 3 (CXCR3) were significantly down-

regulated. In contrast, CCR4 was not significantly up-regulated.

These observations suggest a tilt in the Th2 phenotype of patients

with OA (61). Another study (62) confirmed that calcitriol can

affect the differentiation of T cell subsets by inhibiting the

proliferation of immature CD4+T cells to Th1 cells and

promoting the maturation of Th2 cells, thus affecting the balance

between osteoblasts and osteoclasts. In addition, vitamin D3

increases the production of anti-inflammatory cytokines (IL-4, IL-

5, and IL-10) by Th2 cells, while inhibiting their production of pro-

inflammatory cytokines (IL-2 and INF- g). In this way, vitamin D3

regulates the immune balance of Th1/Th2 and limits the destructive
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effect of Th1 cells on tissue. In a clinical study (63), Javad compared

the peripheral blood of 40 patients with OA treated with the natural

drug, Krocina TM (containing crocin) and compared the results

with the same number of patients who took a placebo. Real-time

quantitative polymerase chain reaction (RT-PCR) was used to

detect the expression of T-BET, GATA3, ROR- g t, and FOXP3 as

transcription factors specific to T cell subsets. The results

demonstrated that after Krocina TM treatment, the expression of

related genes (GATA-3 and FOXP3) increased. The result was

significant for GATA-3 but not FOXP3, indicating that GATA-3 is

a unique transcription factor that can differentiate T cells into Th2

subsets. Furthermore, expression of the GATA-3 gene is

significantly increased in patients with osteoarthritis after crocin

treatment, suggesting that crocin can affect Th2 subsets and

enhance the anti-inflammatory state. Although previous studies

have shown that the levels of cytokines related to Th2 cells in the

synovium, synovial fluid, and peripheral blood of patients with OA

are low, while the expression of IL-10 is occasionally increased,

these findings did not suggest that the inflammatory response of

Th2 cells is not associated with the pathogenesis of OA (64). Th1

cells produce pro-inflammatory factors, such as IL-2, IFN-g, and
TNF- a, while Th2 cells produce anti-inflammatory factors, such as

IL-4 and IL-10. Th2 cells promote tissue repair by secreting IL-4 to

promote the function of M2 macrophages and inhibit cell-mediated

production of Th1 cells. Hence, the responses of Th1 cells and Th2

cells are considered pro-inflammatory and anti-inflammatory,

respectively (65). In individuals who are in good health, there is a

delicate equilibrium between Th1 and Th2 cells that helps the

immune system eliminate pathogens efficiently without causing too

much inflammation. However, in cases of OA, this balance is

frequently disrupted, leading to an increased Th1 response and a

decreased Th2 response. In sum, an imbalance in the Th1/Th2 ratio

can activate osteoclasts and accelerate the inflammatory response,

resulting in cartilage matrix degradation and destroying the

homeostasis in cartilage (66).
3.3 Th9 cells

Th9 cells are a subgroup of effector CD4+T lymphocytes, which

are differentiated from initial CD4+T cells induced by cytokines,

such as IL-4 and TGF-b, and can also be induced by TGF-b alone.

Activated Th9 cells are mainly characterized by the production of

cytokines, such as IL-9 and IL-10 (67, 68). Th9 cells mainly

accumulate in the synovial fluid and peripheral blood of patients

with OA. IL-9 can maintain and increase the pro-inflammatory

environment of OA, which leads to the migration and proliferation

of inflammatory cells (26, 62). A study of psoriatic arthritis (PsA)

and rheumatoid arthritis (RA), with OA as the control group, found

that IL-9 promoted the growth and survival of locally activated T

cells in an inflammatory environment. Although there was far less

IL-9 in OA synovium than in PsA and RA, some infiltration was

observed (69, 70). The results found that the number of Th9 cells

and the level of serum IL-9 in patients with OA were significantly

higher than those in healthy individuals (71). IL-9 is also an

important growth factor for T cells, mast cells, and hematopoietic
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1393418
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wen et al. 10.3389/fimmu.2024.1393418
stem cells, and can inhibit apoptosis. Kundu-Raychaudhuri et al

(69) used Western blots to detect the signal proteins related to the

survival of Th9 in the synovial fluid and peripheral blood of patients

with OA. The results demonstrated a high level of IL-9 in the

synovial fluid and peripheral blood and suggested that the high level

of IL-9 was produced by the activation of purified CD3+T cells. It

has been suggested that part or all of the IL-9 in the synovial fluid

and peripheral blood of patients with OA comes from CD3+T cells.

Qi et al. (72) detected the number of T cells in the peripheral blood

of 25 patients with OA and 13 healthy controls by flow cytometry.

The results showed that the number of Th9 cells in the peripheral

blood of patients with OA was significantly higher than that of the

healthy controls. The level of serum IL-9 was also higher than that

of the healthy controls. Moreover, the number and level of Th9 cells

were positively correlated with the osteoarthritis index score

(WOMAC) of Ontario and McMaster University in patients with

OA and also with their clinical symptoms and joint function.

Hence, the number or level of Th9 cells has been suggested as a

possible marker for judging the severity of OA. Furthermore,

current studies have confirmed that Th9 cells show obvious

activation and aggregation in the synovial fluid and peripheral

blood of patients with OA (70, 73). Overall, IL-9 cytokines can

stimulate inflammatory and autoimmune responses, promote

chondrocyte apoptosis, and inhibit cartilage repair, thus

aggravating OA. Research findings indicate that Th9 cells may

play a significant role in the development of osteoarthritis (OA),

providing insights into the impact of immune response and

inflammation on OA. This suggests a potential novel treatment

strategy involving the modulation of Th9 cell function to control

inflammation and enhance the well-being of individuals with OA.

Therefore, targeted therapy for Th9 cells may offer a potentially new

treatment direction for OA.
3.4 Th17 cells

Th17 cells are a unique and important subgroup of Th cells.

Their function depends on the ability of the immune system to

produce and secrete key cytokines, such as IL-17, IL-21, and IL-22

(74, 75). Th17 cells differentiate from resting T cells in the

microenvironment where TGF-b and IL-6 inflammatory factors

coexist, and play an important role in immune responses, especially

those associated with inflammatory injury relating to anti-

extracellular pathogen infections, and mediating autoimmunity

(76). Th17 cells also play an important role in OA. In patients

with OA, the number of Th17 cells and the level of serum IL-17 are

significantly higher than those in healthy controls (72). IL-17, a key

factor produced by Th17 cells, can destroy homeostasis within the

extracellular matrix. Notably, IL-17 is a key mediator in

the pathogenesis of chronic inflammatory diseases and one of the

central cytokines of arthritis. IL-17 contributes to joint

inflammation by promoting the production of inflammatory

cytokines and attracting additional immune cells, such as

neutrophils (77). IL-17 induces inflammatory cytokines, including

TNF-a, IL-1b, IL-6, and matrix metalloproteinases, that can

aggravate joint destruction. IL-17 can also increase the expression
Frontiers in Immunology 05
of RANKL, thereby activating osteoclasts, resulting in joint bone

loss (55, 78). The increased expression of Th17 cells was found in

the peripheral blood of patients with OA, and the concentration of

IL-17 in the serum and knee joint synovial fluid of patients with

KOA was positively correlated with KOA severity (KL grade). The

level of Th17 cells and their cytokines have been suggested as a

potentially important index for evaluating the severity of OA (79,

80). The most direct impact of IL-17 is in cellular immune

responses, along with the membrane surface antigens of

chondrocytes and synovial fibroblasts. Together, they promote the

infiltration and tissue destruction of many kinds of immune cells,

participate in the proliferation, maturation, and chemotaxis of

neutrophils, and co-stimulate the activation of T cells (81). Won

et al. (82) collected peripheral blood mononuclear cells (PBMC)

and SF (SFMC) from healthy individuals and patients with

ankylosing spondylitis (AS). In this study, the effect of C

chemokine ligand 20 (CCL20) on the migration of Th17 cells was

verified by a cross-hole migration experiment. The in vivo effect of

CCL20 inhibition was evaluated using a SKG mouse model, which

is primarily a model for rheumatoid arthritis (RA), rather than OA.

It was found that CCL20 could significantly reduce joint

inflammation by affecting the migration of Th17 cells and

inhibiting CCL20. Jung et al. (83) used the collagen-induced

arthritis (CIA) model, which is a prototype RA model, rather

than an OA model, to study arthritis in a mouse model by

collagen. The proportion of Th17 cells in the spleen of normal

and high salt diet mice was detected by flow cytometry, and the

expression of IL-17 in the joint and intestinal tissues was detected

by immunohistochemistry. The effect of sodium chloride on the

differentiation of peripheral blood mononuclear cells into Th17 in

CIAmice and the contents of sodium and IL-17 in the synovial fluid

of these mice were analyzed. It was found that sodium chloride

aggravated arthritis by promoting the differentiation of mouse Th17

cells in a dose-dependent manner.

Research has demonstrated that pharmacological agents,

including steroids and anti-tumor necrosis factor inhibitors, can

impede the differentiation of Th17 cells, consequently mitigating

the symptoms associated with osteoarthritis (OA). Additionally,

other biologic therapies, such as anti-IL-17 and anti-IL-23

antibodies, may also be relevant in the treatment of OA. While

the majority of investigations have concentrated on the role of Th17

cells in rheumatoid arthritis (RA), current evidence indicates that

targeting Th17 cells may represent a promising avenue for future

therapeutic strategies in the management of OA.
3.5 Th22 cells

Th22 cells are a subgroup of cells differentiated from helper T

cells under the action of IL-6, IL-1b, and TNF-a (84). Th22 cells

mainly express cytokines, such as IL-22 and IL-13. These cells were

named Th22 because of their ability to produce IL-22 is significantly

higher than that of other Th subsets (85, 86). Many studies have

confirmed the role of Th22 cells in immune and neoplastic diseases

(87, 88). In one study, Th22 cells isolated from RA peripheral blood

and monocytes were co-cultured with macrophage colony
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stimulating factor and nuclear factor receptor activator KB ligand.

The results showed that Th22 cells were more effective in inducing

osteoclast formation than Th1 cells and Th17 cells (85).

Interestingly, Miyazaki et al. (89) observed significant infiltration

of Th22 cells in the synovium of patients with active RA, but no

similar phenomenon was found in patients with OA. In another

study, the researchers found that the number of Th22 cells and the

level of IL-22 in the peripheral blood of patients with RA and AS

were higher than those of patients with OA and healthy controls.

Lejon (90) analyzed the level of T cell subsets, the related cytokines,

and clinical characteristics of patients with AS versus controls from

northern Sweden, and confirmed that an increased Th22 level was

related to AS. Ahmad et al. (91) used CXCR3-specific antagonist

NBI-74330 to block T cell-mediated signal transduction in DBA/1J

mice with collagen-induced arthritis. It was found that NBI-74330

could significantly reduce the expression of IL-22 mRNA in the

knee joint tissue of CIA mice. The anti-inflammatory effect of NBI-

74330 may be related to a reduction in Th22 cell expression. While

direct evidence linking Th22 cells to OA is currently sparse, their

established roles in synovitis and bone destruction in RA suggest

that similar pathways may be at play in OA. However, further

research is essential to explore and confirm any such associations

between Th22 cells and OA. Th22 cells are known to promote

inflammation and autoimmune responses by secreting cytokines

like IL-22, which may have implications for the progression of OA

in settings yet to be fully understood.
4 Th1/Th2 cells imbalance and its
relation with OA

Th1 and Th2 cells are two types of CD4+ T helper cells that play

distinct roles in the host immune response. Th1 cells primarily

release IFN-g and tumor TNF-a, which are known for their role in

enhancing cel l-mediated immune response and tissue

inflammation. In contrast, Th2 cells predominantly generate IL-4,

IL-5, and IL-13, which are responsible for regulating humoral

immune response and the anti-inflammatory process (92). The

balance between Th1 and Th2 cells is typically carefully controlled

by the immune system to ensure its normal function. However, this

balance is disrupted in various conditions such as rheumatoid

arthritis (93, 94), asthma (95, 96), inflammatory skin disorders

(97), and allergies (98). While there is no direct evidence linking

Th1/Th2 cell imbalance to OA, this connection can be inferred by

measuring Th1 and Th2 levels in OA patients. Imbalances in Th1/

Th2 cells have been implicated in the pathogenesis of osteoarthritis,

contributing to inflammation and disease progression (99). This

suggests an increased propensity toward inflammation.

Furthermore, researchers have observed a significant increase in

the levels of Th1 cells and the pro-inflammatory cytokines they

produce, such as IFN-g and TNF-a, in the synovial fluid and

synovium of OA patients (100). Teng (101) conducted an

extensive examination utilizing bi-directional Mendelian

randomization and Bayesian co-localization techniques. Their

studies revealed that the upregulation of TNF-a, which is secreted

by Th1 cells, stimulated the generation of various pro-inflammatory
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cytokines and inflammatory mediators. This process initiated a

series of inflammatory reactions, leading to joint inflammation and

cartilage degradation, ultimately contributing to the progression of

osteoarthritis. The cytokines produced by Th1 cells have the ability

to suppress the activation of Th2 cells and their associated anti-

inflammatory responses (102). Subsequent research has shown a

notable reduction in both the quantity and activity of Th2 cells in

individuals with OA, leading to a diminished anti-inflammatory

capacity and an increased prevalence of pro-inflammatory

reactions, These shift in immune response dynamics hinders

effective management of joint inflammation and tissue damage in

OA patients (29). In chronic bone immune disorders, such as fatty-

degenerative osteonecrosis (FDOJ), over 80% of a study’s 197

patients exhibited metastasis of Th2 cells. Among these, 167

subjects had an elevated Th1/Th2 ratio, suggesting that the

dysregulation of Th1/Th2 cells plays a significant role in immune

impairment (103).

The aforementioned research indicates a potential

dysregulation of Th1/Th2 cells in both the synovial fluid and

peripheral blood of individuals with OA. This imbalance is

associated with the onset and progression of the condition. Given

the significance of Th1/Th2 cell imbalance in OA (Figure 2),

investigating the pathophysiological mechanisms of immune cells

during the early stages of OA is highly valuable, as this phase

presents the greatest potential for effective treatment and

intervention. Rosshirt et al (33) conducted a quantitative analysis

of the migration and activation of CD4+ T cells in peripheral blood

(PB), synovial fluid (SF), and synovial membrane (SM) of

individuals with early osteoarthritis using flow cytometry. The

study revealed a significant increase in the expression of the

cytokine IFN-g in Th1 cells, while the expression of CCR3 and

CCR4, primarily associated with Th2 cells, did not show a notable

increase. This observation supports the notion of an altered Th1/

Th2 cell balance in early knee osteoarthritis (KOA). Certain drugs,

such as Sesamol (104), can regulate the balance between cellular

immune responses and Th1/Th2, thereby exerting various

pharmacological effects such as anti-inflammation and immune

regulation. Low molecular weight polypeptide 7 (LMP7) serves as

an immune proteasome subunit that influences the proliferation

and specialization of T cells and modulates the balance between

Th1/Th2 and Th17/Treg subsets (105). Therefore, the dysregulation

of Th1/Th2 cell balance is a significant factor in the pathogenesis

and progression of OA. Modulating the equilibrium of Th1/Th2

cells represents a promising therapeutic strategy for managing OA.

By conducting thorough research on the functionality and

interaction mechanisms of Th1 and Th2 cells, as well as

investigating novel approaches to modulate this cellular

equilibrium, a fresh outlook and efficient intervention for OA

treatment could potentially be established. Some scholars (106)

have constructed an autoantigen type II collagen peptide (CII250-

270C) and the immunomodulator leflunomide (LEF) within a

phosphatidylserine liposome vaccine (CII250-LEF-PSL) as a

therapeutic approach for RA. This vaccine aims to promote the

activation of regulatory T cells (Treg) by inducing tolerant dendritic

cells (TolDC). They found that CII250-LEF-PSL effectively

stimulates the differentiation of Th1 cells, modulates the Th1/Th2
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balance, ameliorates synovial and cartilage damage, and

consequently alleviates the symptoms of RA. Thus, the potential

application of a co-delivery system involving autoantigen peptide

and immunomodulator for the prevention and treatment of OA,

aiming to ameliorate OA symptoms through modulation of the

Th1/Th2 balance, is a promising area for further investigation.
5 Treg cells and OA

In the mid-1990s, a group of Th cells with regulatory functions

was identified and named regulatory T cells (Treg) (107). Treg cells

are actively controlled immune tolerance cells in the body’s immune

system. They play a negative role in the activation and proliferation of

T cells. They contribute to the maintenance of immune tolerance,

prevention of autoimmune diseases, anti-graft rejection, and tumor

immunity (108, 109). Treg cells can be divided into natural regulatory

T cells (nTregs) and induced adaptive regulatory T cells (aTregs or

iTregs). These cells can function by interacting through direct contact

with cell surface molecules rather than cytokines. For instance,

cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) interacts

with CD80/CD86, and glucocorticoid-induced tumor necrosis

factor receptor (GITR) interacts with GITR ligand (GITRL),

facilitating immune regulation. Tregs can also inhibit autoimmune

diseases by producing inhibitory cytokines (such as TGF- b, IL-10,
IL-35) (86, 110, 111). For example, by secreting IL-10, Treg cells

inhibit inflammation and autoimmune reactions, thereby

contributing to immunosuppression and alleviating OA symptoms.

Tregs may be an ideal cell type for the targeted treatment of OA. Kim

(112) studied the use of lipid nanoparticles to regulate Treg cells in an

antigen-specific manner. It was found that lipid nanoparticles can

regulate the expression of cytokines and reduce the infiltration of
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immune cells in joints, thus inhibiting apoptosis and matrix

degradation in OA chondrocytes, and relieving pain. The

differentiation of Treg cells inhibited the pathogenesis of OA.

In an OA rat model study, Kwon et al. (113) treated the OA rats

with an intraarticular injection of Gukangning. The gene expression

was detected by real-time fluorescence quantitative polymerase

chain reaction and the protein expression was detected by

immunohistochemistry. The results demonstrated that Gukangning

inhibited cartilage osteoclasts and activated joint Treg cells, thus

reducing OA pain and improving cartilage destruction. Synovitis

interacts with Treg cells in the early stage of OA. Keller (114) used

three horse-cultured OA models to co-culture synovial cells and

chondrocytes in the Transwell system to establish normal joint and

osteoarthritis models. Keller found that Treg cells can increase the

expression of IL-10 and IL-4 in synovial cells and chondrocytes and

increase the expression of the TIMP1 gene in synovial cells and

chondrocytes, indicating their potential role in protecting cartilage.

Additionally, although in vitro results suggest enhanced Treg

function upon IL-6 blockade, further studies are needed to confirm

these effects in vivo and assess their impact on the progression of OA.

An MR study using UK Biobank and GWAS data shows that CD25,

especially CD4+ and CD25+T cells, have a protective effect on OA of

the hip joint (115). Clinical studies (116) have shown that in patients

with osteoarthritis (OA), the frequency of CD4+CD25+Foxp3hi

Tregs is significantly increased in the peripheral blood compared to

healthy controls. However, the secretion of IL-10, which is also

produced by Treg cells, is decreased in these patients. Importantly,

this reduction in IL-10 secretion is associated with decreased

expression of Tim-3 on Tregs. While both Tim-3(-) and Tim-3(+)

Tregs can produce IL-10, the majority of IL-10 secretion is observed

in the Tim-3(+) Treg subset. In another clinical study, the researchers

analyzed Treg cell infiltration in peripheral blood (PB), synovial fluid
FIGURE 2

In individuals with OA, there could be a disparity in the ratio of Th1/Th2 cells, which is associated with the onset and progression of the condition.
Th1 cells predominantly release IFN-g, contributing to cell-mediated immune reactions and tissue inflammation, thereby facilitating the
advancement of OA. Conversely, Th2 cells primarily generate interleukin-4 (IL-4), which plays a role in modulating humoral immune responses and
anti-inflammatory mechanisms, consequently alleviating symptoms associated with OA.
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(SF), and synovial membrane (SM) of 47 patients undergoing knee

arthroplasty by flow cytometry. Knee joint pain and joint function

were evaluated and correlated with the proportion of Treg cells from

different sources (peripheral blood, synovial fluid, synovium). It was

found that the proportion of Treg cells in the joint samples was

significantly higher than that in the peripheral blood samples. A

significant correlation between infiltrating Treg cells and OA-related

symptoms was also observed (117). The above studies confirmed that

an imbalance of Treg cellular immunity occurs in patients with OA.

Treg cells participate in the pathogenesis of OA by modulating

inflammatory responses that contribute to joint degeneration.

Consequently, Treg cells impact OA in significant ways.
6 The imbalance of Th17/Treg cells is
an important mechanism of OA

Th17 cells and Treg cells develop from the same immature CD4

+T lymphocytes. A complex relationship exists between them. Th17

cells promote inflammatory responses and represent the pro-

inflammatory subsets, while Treg cells inhibit inflammatory

responses and antagonize the function of Th17 cells (118). They

also inhibit each other in differentiation. Studies have shown that

Treg cells can inhibit the differentiation of Th17 cells by up-regulating

the specific transcription factor Foxp3 or down-regulating the

expression of IL-23 and IL-17. Similarly, inhibition of Th17 cells

can promote the development of Treg cells (119, 120). The

differentiation of CD4+T cells is a highly complex process.

Activation of the cellular microenvironment and signal pathway

directly determines the differentiation of CD4+T cells into the

different subsets, which in turn, affects the balance of Th17/Treg

cells. Th17 cells mainly secrete IL-17, which is one of the early

initiating factors of joint inflammation, with a strong pro-

inflammatory effect. Treg cells mainly secrete TGF-b and IL-10 to

inhibit the function of self-reactive lymphocytes, thus exerting an

immunosuppressive role (121–123). The balance of Th17/Treg cells

maintains the balance of human immunity, and it is strictly regulated

under healthy conditions (124). In the early stage of OA, the

homeostasis of the joint becomes gradually out of balance under

the stimulation of persistent inflammatory factors. An imbalance of

Th17/Treg cells is found in patients with OA, and the proportion is

closely related to OA progression (118, 125). Mansoori et al. (126)

confirmed that in the ovariectomized mouse model, macrophages

and CD4+T cells not only induce periodontal disease in mice but also

secrete pro-inflammatory cytokines to induce NLRP3 inflammatory

bodies in osteoblasts and increasing the Th17/Treg ratio, thus

aggravating the formation of osteoclasts and aggravating the

destruction of subchondral bone. Other researchers have confirmed

that osteocytes can produce immunomodulatory cytokines through

NLRP3 inflammatory bodies, change the ratio of Th17/Treg cells and

osteoclast production, and thereby, aggravate the immune response,

leading to bone destruction and joint degeneration (122). Ponchel

et al. (71) analyzed the blood of 114 patients with OA and 121 healthy

controls. In this study, Treg cells were significantly lower in patients
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with OA than that in the controls. The results also demonstrated that

CD+T cells differentiated into Th17 cells in the synovium of those

with OA. In another clinical study comparing patients with OA

treated with saffron and a blank control group, the level of Th17 cells

in the peripheral blood of those with OA decreased significantly, but

the level of Treg cells increased (127). These studies confirmed that

under normal conditions, the effects of Treg cells and Th17 cells are

in a relatively balanced state, while an imbalance in the proportion of

Th17/Treg cells is observed in patients with OA. IL-6 plays an

important role in determining the direction of T cell differentiation.

Its absence promotes the differentiation of immature CD4+T cells

into Treg cells, while its existence promotes the differentiation of

Th17 cells (128, 129). In sum, Th17/Treg cells have a key role in the

development of OA, and the imbalance of Th17/Treg cells is involved

in the pathophysiological processes of OA (Figure 3).
7 Regulating the imbalance of Th17/
Treg cells is the key target for the
treatment of OA

Th17 cells are pro-inflammatory CD4+ effector T cells, while

Treg cells are specialized T cell with immunosuppressive and anti-

inflammatory effects (130, 131). In the pathological process of OA,

the balance between Th17 cells and Treg cells is disrupted, leading to

inflammatory reactions and the destruction of the articular cartilage.

Considering this, the Th17/Treg balance may be a potential target for

new OA treatment (129, 132, 133). For example, some studies have

confirmed that the proportion of Th17 cells in the synovial fluid and

peripheral blood of patients with OA increases, while the proportion

of Treg cells decreases, indicating that Th17/Treg imbalance plays an

important role in the pathogenesis of OA. By regulating the balance

of Th17/Treg cells, inflammatory responses are reduced, thus

potentially relieving pain and improving joint function in models

of OA, as suggested by studies (125, 134). At present, many

treatments addresses the imbalance of Th17/Treg cells. Some non-

steroidal anti-inflammatory drugs (NSAIDs) can inhibit the synthesis

of prostaglandins, and thus, reduce the inflammatory response. Using

an induction of spinal arthritis (SPA) mice model, Min et al.

investigated vitronectin-derived bioactive polypeptide NPP-16

combined with celecoxib as treatment and found that VNP-16

combined with celecoxib prevented the progression of SPA by

regulating the balance of Th17/Treg cells and inhibiting the

expression of pro-inflammatory cytokines (135). Another study

found that NSAIDs, such as ibuprofen and indomethacin, can

alleviate pain and inflammation by modulating Th17/Treg

imbalance in OA models (136). Some cytokines, such as IL-1, IL-6,

and TNF- a, modulate the inflammatory responses in OA. Targeted

drugs for these cytokines can regulate the balance of Th/Treg cells

and reduce joint inflammatory responses in OA models, which may

lead to pain relief and improvement in joint function (131, 137, 138).

Additionally, some immunomodulatory drugs can regulate Th17/

Treg balance and relieve the symptoms of OA. For example, statins

can inhibit the differentiation of Th17 cells and promote the
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production of Treg cells, thus regulating Th17/Treg balance (139,

140). The differentiation of Treg cells requires the inactivation of

mammalian rapamycin target (mTOR) and the activation of AMP-

activated protein kinase (AMPK). Peroxisome proliferator-activated

receptorg (PPARg) is a nuclear receptor that regulates Th17/Treg

balance. Therefore, Th17 is transferred to Treg cells by activating

AMPK and PPARg, thus regulating Th17/Treg balance (129, 141).

Tawfeek (142) prepared collagen-coated PCL nanofibers and
Frontiers in Immunology 09
characterized them by scanning electron microscope to study the

effect of nanofiber scaffolds on Th17/Treg immunomodulatory

properties of bone marrow mesenchymal stem cells in

osteoarthritis and its mechanism. The nanofiber scaffolds enhanced

the immunomodulatory effect of the bone marrow mesenchymal

stem cells in osteoarthritis by increasing the expression of

intercellular adhesion molecules. The treatment of Th17/Treg cell

imbalance may become a key target of OA (Figure 4). It can relieve
FIGURE 3

The imbalance of Th17/Treg cells is an important mechanism of OA. Th17 cells promote inflammatory responses and represent the pro-
inflammatory subsets, while Treg cells inhibit inflammatory responses and antagonize the function of Th17 cells. The imbalance of Th17/Treg cells is
involved in the pathophysiological processes of OA.
FIGURE 4

Modulating Th17/Treg cell imbalance is a key target for the treatment of OA. Through targeted regulation of cytokines and transcription regulators, the
differentiation of T cells is regulated, and the activation and function of Th17/Treg cells are affected, so as to achieve the purpose of OA treatment.
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pain and improve joint function by regulating Th17/Treg balance and

reducing inflammatory response in OA patients. Therefore,

regulating the imbalance of Th17/Treg cells is the key target for the

treatment of OA. Intervention at different levels that target different

cytokines, transcriptional regulatory factors, and apparent

modifications can affect the activation and function of Th17/Treg

cells. By regulating the inflammatory environment, OA symptoms

are improved. These targets should be considered as potential new

targets for the treatment of OA.
8 Discussion and prospects

Th and Treg cells are important subsets of T lymphocytes. They

are important in the pathogenesis of OA. Th cells mainly include

Th1, Th2, Th9, Th17, and Th22 subsets, which regulate immune

responses by secreting different cytokines. Th1 cells are mainly

involved in cellular immune responses, Th2 cells are mainly

involved in humoral immune responses, and Th17 cells are

mainly involved in inflammatory responses. Treg cells are

important immunomodulatory cells, which can inhibit immune

responses and maintain immune homeostasis. In OA, there is also a

complex interaction between Th/Treg cells and other immune cells.

In the presence of an imbalance inflammatory reactions and joint

injury arise. For example, Th1 and Th17 cells can promote the

activation and differentiation of macrophages, which in turn,

promote inflammatory responses and joint injury. Conversely,

Treg cells can inhibit the activation and differentiation of

macrophages, thus inhibiting inflammatory reactions and joint

injury. Th/Treg cells can also interact with other immune cells,

such as B lymphocytes and natural killer cells, to regulate immune

and inflammatory responses. An increased level of inflammatory

factors, such as IL-1, IL-6, and TNF- a in the synovial fluid of

patients with OA can activate and increase Th1 and Th17 cell

functions, resulting in inflammatory responses and joint injury.

while Treg cells inhibit inflammatory responses and joint injury by

secreting anti-inflammatory factors, such as IL-10. The activation

and function of Th/Treg cells can be affected by regulating the joint

inflammatory environment. By optimizing Th/Treg cell functions,

the symptoms and pathological changes of OAmay be improved. In

conclusion, the dysregulation of Th1/Th2 and Th17/Treg ratios is a

crucial factor in the development of OA. By delving deeper into the

mechanisms of these cell populations and their interactions, we can

uncover fresh insights and potential targets for the early detection

and treatment of OA (143).

As Th/Treg cells play a key role in the pathogenesis of OA,

targeted therapy to optimize Th1/Th2 and Th17/Treg cell balance

may be a potentially new strategy for OA therapy. At present, drugs,

such as anti-tumor necrosis factor (TNF) inhibitors, are being used

to treat patients with OA. These drugs can inhibit inflammation and
Frontiers in Immunology 10
relieve symptoms, such as pain. Further studies to determine if

common treatment of OA, such as glucosamine and chondroitin

sulfate, can promote the repair and regeneration of chondrocytes by

regulating the imbalance of Th/Treg is warranted. Other drugs that

can regulate the activation and function of Th/Treg cells by

inhibiting or promoting the expression level of specific molecular

markers should also be considered. In the future, research is needed

to explore the application prospect of Th/Treg balance therapy in

the treatment of OA.
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