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Tendinitis, characterized by the inflammation of tendons, poses significant

challenges in both diagnosis and treatment due to its multifaceted etiology

and complex pathophysiology. This study aimed to dissect the molecular

mechanisms underlying tendinitis, with a particular focus on inflammasome-

related genes and their interactions with the immune system. Through

comprehensive gene expression analysis and bioinformatics approaches, we

identified distinct expression profiles of inflammasome genes, such as NLRP6,

NLRP1, and MEFV, which showed significant correlations with immune

checkpoint molecules, indicating a pivotal role in the inflammatory cascade of

tendinitis. Additionally, MYD88 and CD36 were found to be closely associated

with HLA family molecules, underscoring their involvement in immune response

modulation. Contrary to expectations, chemokines exhibited minimal correlation

with inflammasome genes, suggesting an unconventional inflammatory pathway

in tendinitis. Transcription factors like SP110 and CREB5 emerged as key

regulators of inflammasome genes, providing insight into the transcriptional

control mechanisms in tendinitis. Furthermore, potential therapeutic targets

were identified through the DGidb database, highlighting drugs that could

modulate the activity of inflammasome genes, offering new avenues for

targeted tendinitis therapy. Our findings elucidate the complex molecular

landscape of tendinitis, emphasizing the significant role of inflammasomes and

immune interactions, and pave the way for the development of novel diagnostic

and therapeutic strategies.
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1 Introduction

Tendinitis, characterized by the inflammation of tendons,

represents a common musculoskeletal disorder that significantly

impacts the quality of life and productivity of affected individuals

(1–3). It is a condition that spans a wide demographic, from athletes

to the elderly, and frommanual laborers to office workers, making it

a prevalent concern in both sports medicine and general healthcare

(4, 5). The etiology of tendinitis involves a complex interplay of

mechanical overuse, age-related degeneration, and inflammatory

processes, yet the precise molecular mechanisms underlying its

pathogenesis remain insufficiently understood (6, 7).

The inflammatory response in tendinitis is a critical aspect of its

pathology. Inflammasomes, as intracellular multiprotein

complexes, play a pivotal role in the innate immune system by

regulating the activation of inflammatory processes and cytokines

such as IL-1b and IL-18 (8, 9). These complexes are involved in

detecting pathogenic microorganisms and stress signals, thus

initiating an inflammatory response (10). The involvement of

inflammasomes in various autoimmune and inflammatory

diseases has been extensively documented, yet their specific roles

in tendinitis are not fully elucidated (11, 12).

Recent advancements in high-throughput genomic technologies

and bioinformatics tools have opened new avenues for exploring the

complex biological networks underlying tendinitis (13, 14). Gene

expression profiling, coupled with systems biology approaches such

asWeighted Gene Co-expression Network Analysis (WGCNA), has

proven instrumental in identifying key molecular players and

pathways involved in various diseases (15, 16). These

methodologies allow for the exploration of gene co-expression

networks, identification of disease-associated genes, and

elucidation of the molecular mechanisms underlying pathological

conditions. Furthermore, the integration of multi-omics data,

including transcriptomics and proteomics, with advanced

computational analyses, has the potential to reveal novel insights

into the pathophysiology of tendinitis (17, 18). Understanding the

gene expression patterns and molecular pathways differentially

regulated in tendinitis can provide a foundation for identifying

novel biomarkers and therapeutic targets (19, 20).

Given the significant burden that tendinitis places on

individuals and healthcare systems worldwide, and the gaps in

our understanding of its molecular underpinnings, this study aims

to dissect the complex molecular landscape of tendinitis. By

leveraging high-throughput gene expression data and employing

comprehensive bioinformatics analyses, including differential

expression analysis, pathway enrichment, and network analysis,

we seek to uncover the key molecular pathways and regulatory

networks involved in tendinitis. Specifically, we focus on the role of

inflammasome genes and their interaction with the immune system,

hypothesizing that they play a crucial role in the pathogenesis of

tendinitis. The rationale for this study is rooted in the need for a

deeper understanding of tendinitis at the molecular level, which

is essential for developing more effective diagnostic and

therapeutic strategies.
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2 Materials and methods

2.1 Data acquisition

In our comprehensive investigation into the molecular

mechanisms underlying tendinitis, we began by sourcing relevant

datasets from the Gene Expression Omnibus (GEO), a public

repository that aggregates high-throughput gene expression data.

We specifically retrieved dataset GSE26051, which consists of gene

expression profiles from 23 tendinitis samples and 23 control

samples from normal tendons. Additionally, we selected dataset

GSE167226 to augment our control group with 19 additional

samples of normal tendons. To deepen our analysis, we

incorporated a specialized gene set related to inflammasome

pathways, curated from the Gene Set Enrichment Analysis

(GSEA) official website (21). This set included three distinct

pathways known to be associated with inflammasome activity.

Through a meticulous process of deduplication, we distilled this

information into a list of 26 unique genes directly involved in

inflammasome-related functions.
2.2 Data preprocessing and
batch correction

We combined the datasets from GSE26051 and GSE167226 to

increase the robustness of the analysis. The sva package’s ComBat

function was employed for batch normalization (22). This process

was crucial in mitigating batch effects that are often present when

merging datasets from different studies or platforms. We used the

boxplot function to visualize the distribution of sample expression

levels before and after batch removal. This visualization

was instrumental in confirming the efficacy of the batch

correction process.
2.3 Principal component analysis

Post batch correction, we conducted Principal Component

Analysis (PCA) using the FactoMineR and factoextra packages.

PCA is a statistical procedure that transforms the data into a set of

linearly uncorrelated orthogonal components, providing insight

into the underlying structure of the data.
2.4 Weighted gene co-expression
network analysis

We performed WGCNA using the WGCNA package to

construct a gene co-expression network. Setting the soft-

thresholding power to 4 allowed us to achieve a scale-free

topology fit (R^2 = 0.8), which is indicative of a naturally

occurring network. The analysis included the construction of a

topological overlap matrix and subsequent module identification.
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These modules were then correlated with tendinitis to identify genes

most associated with the condition.
2.5 Expression correlation analysis and
gene interaction

Expression correlation analysis was conducted to determine the

relationships between core tendinitis genes and the 26 inflammasome-

related genes. We used the ggplot2 and dplyr packages to conduct the

analysis and generate heatmaps for visualization (23). Additionally, we

evaluated the interactions and biological processes associated with

these genes through GENEMANIA, an online tool for predicting

protein-protein interactions, focusing on Toll-like receptors and the

inflammasome assembly processes (24, 25).
2.6 Chromosomal distribution

The chromosomal positions of the tendinitis-associated

inflammasome genes were depicted using a bar chart, created

with the ggplot2 package. This chromosomal mapping provided a

genomic context for the inflammasome genes, potentially

facilitating further investigations into the genetic basis of tendinitis.
2.7 Dataset splitting and machine
learning analysis

The consolidated gene dataset was partitioned into training and

validation sets utilizing the caret package, with a 70:30 split ratio.

This stratification facilitated the development of a robust diagnostic

model. We then applied a suite of 12 machine learning algorithms

for variable selection and model construction. The algorithms

included Lasso, NaiveBayes, Support Vector Machine (SVM),

glmBoost, Elastic Net (Enet), Partial Least Squares Regression

(plsRglm), Extreme Gradient Boosting (XGBoost), Linear

Discriminant Analysis (LDA), Stepwise Generalized Linear Model

(Stepglm), Ridge Regression, Random Forest, and Gradient

Boosting Machine (GBM).
2.8 Model calibration and decision
curve analysis

The predictive model, constructed using the 12 inflammasome-

related genes, underwent calibration using the rms package to

generate calibration curves for both the training and validation

sets. This step was critical to assess the model’s accuracy and

reliability. Furthermore, we employed the rmda package to

perform Decision Curve Analysis (DCA), which quantifies the

clinical benefits of the diagnostic model across a range of

threshold probabilities.
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2.9 Differential pathway analysis

To elucidate the disparity in molecular pathways between

tendinitis-afflicted and normal tendons, we conducted differential

expression analysis using the limma package. Gene Set Enrichment

Analysis (GSEA) for Gene Ontology Biological Processes (GO-BP)

was performed with the clusterProfiler package, while pathway

clustering and visualization were executed using aPEAR.
2.10 KEGG pathway enrichment

The 12 inflammasome-related genes were subjected to KEGG

pathway enrichment analysis with the clusterProfiler package. The

resultant data were visualized using a bubble plot generated by

ggplot2, providing a succinct representation of the pathways

enriched with the genes of interest.
2.11 Immune cell abundance and
correlation analysis

The relative abundance of immune cells in tendinitis samples

compared to controls was quantified through ssGSEA, performed

with the GSVA and GSEABase packages. The graphical

representation of immune cell distributions was rendered using

ggpubr to create half-violin plots. Subsequent correlation analyses

between the 12 inflammasome-related genes and the altered

immune cells were conducted using the limma and ggExtra

packages, yielding scatter plots that reveal the relationship

between gene expression and immune cell changes.
2.12 Tumor microenvironment and
immune process assessment

To evaluate the tumor microenvironment, we employed the

estimate package to calculate scores reflecting the stromal and

immune cell compositions of the tendinitis samples. Correlation

analyses were then performed using the ggplot2 and dplyr packages

to elucidate the relationships between the expression levels of genes

and the microenvironmental scores. These scores were instrumental

in reflecting the underlying immune and stromal components,

which could potentially influence the immunopathogenesis

of tendinitis.

Subsequently, we conducted a single-sample Gene Set

Enrichment Analysis (ssGSEA) using the GSVA and GSEABase

packages to quantify the relative enrichment of different immune

processes. To visually represent the intricate associations between

the 12 inflammasome-related genes and these immune processes,

radar charts were created with the fmsb package, revealing the

immunological activity and relevance of these genes.
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2.13 Immune activity molecule
correlation analysis

The relationship between the tendinitis-associated

inflammasome genes and various immune activity molecules was

explored through a correlation analysis. We utilized the ggplot2 and

dplyr packages to construct heatmaps. These visualizations

provided a comprehensive overview of the connections between

genes and numerous immune checkpoints, as well as the

associations between MYD88, CD36, and HLA family molecules.

This analysis highlighted the genes’ interactions with immune

checkpoints and the i r potent ia l regula tory ro les in

immune responses.
2.14 Transcription factor prediction and
drug analysis

For the prediction of transcription factors regulating the

inflammasome-related genes, we accessed the ChEA3 website,

which facilitates the identification of transcription factor-gene

interactions. The identified top ten transcription factors were then

visualized using a bar chart created with ggplot2 to rank them based

on their mean rank score.

To elucidate the transcriptional regulatory network, we used

Cytoscape software (version 3.9.1) to construct an interaction

diagram. This visual tool allowed us to display the complex

regulatory relationships between the transcription factors and the

inflammasome genes.

Lastly, we explored potential therapeutic agents targeting the

inflammasome-related genes by querying the DGIdb database. This

database provided a list of drugs with the potential to modulate the

activity of these genes. The drug-gene interactions were then

depicted in a Sankey diagram, generated using the ggalluvial

package, which mapped the predicted therapeutic connections,

thereby informing potential tendinitis treatment strategies.
2.15 Quantitative real-time PCR

This study was approved by the ethics committee. From

December 2023 to January 2024, five patients with tendinitis and

five healthy control patients were recruited from the hospital.

Peripheral blood mononuclear cells (PBMC) were isolated from

the blood samples of these patients using previously described

methods. Total RNA was extracted from PBMC samples using

the FastPure Cell/Tissue Total RNA Isolation Kit (Vazyme). The

extracted RNA was then reverse-transcribed into cDNA using the

ReverTra Ace qPCR RT Master Mix and gDNA Remover Kit.

Quantitative real-time PCR (qRT-PCR) was performed using

SYBR Premix Ex Taq II in a real-time fluorescence quantitative PCR

system, with GAPDH selected as the endogenous control for

mRNA. The reaction conditions were as follows: initial

denaturation at 95°C for 10 minutes, followed by 45 cycles of 95°

C for 5 seconds and 60°C for 30 seconds. Amplifications of the
Frontiers in Immunology 04
target genes and the internal reference gene were conducted for

each sample. Each group of samples included three replicate wells.

Data analysis was performed using the 2^(-DDCt) method. Primer

sequences are provided in Supplementary Table 1.
2.16 Statistical analysis

We performed all analyses and visualization in R software

(version 4.2.1), unless otherwise stated.
3 Result

3.1 Data integration and batch correction

The integration of two datasets was followed by batch

correction using the Combat function from the sva package. The

boxplot results indicated a clear difference in the average expression

levels of samples from the two datasets before batch correction.

However, after batch correction, the levels were nearly aligned on

the same line (Figure 1A). The PCA results post-batch correction

showed a uniform mix of sample features, making them suitable for

further analysis (Figure 1B).
3.2 Network analysis with WGCNA

The WGCNA (Weighted Gene Co-expression Network

Analysis) results were set with an R^2 value of 0.8. A soft

threshold of 4 met the conditions for a scale-free network with

good connectivity (Figure 1C). Through the calculation of

topological matrices and the merging of similar modules, a total

of 16 gene modules were identified, each represented by a different

color (Figure 1D). The correlation matrix revealed that the genes

in the yellow module had the highest correlation with tendinitis,

with a correlation coefficient of 0.3 and a p-value < 0.05

(Figure 1E). Further analysis of the 1269 genes in the yellow

module, using a module membership cutoff of 0.8 and gene

significance of 0.2, retained only three genes: ADNP, MSH6,

and ZMPSTE24, identified as the most tendinitis-associated

genes (Figure 1F).
3.3 Inflammasome gene analysis

An expression correlation analysis was conducted between

these three key tendinitis genes and inflammasome-related genes.

The results showed that 12 inflammasome genes were related to the

three core tendinitis genes, suggesting these 12 genes are associated

with tendinitis-related inflammasomes (Figure 2A). The expression

correlation analysis among these 12 tendinitis-associated

inflammasome genes showed significant and strong correlations

for most gene pairs (Figure 2B). Analysis using GENEMANIA

indicated extensive protein-protein interactions among these
frontiersin.org
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genes, primarily involved in biological processes related to

Toll-like receptors and inflammasome assembly (Figure 2C). A

chromosomal bar chart showed that the 12 tendinitis-associated

inflammasome genes were mainly located on chromosomes 1, 3, 4,

6, 7, 9, 11, 16, and 17 (Figure 2D).
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3.4 Diagnostic model development

For further use of these tendinitis-associated inflammasome

genes in diagnosing tendinitis, the combined gene set was split into

training and validation sets. The caret package was used to divide
A B

D

E F

C

FIGURE 1

Batch correction and network analysis of tendinitis gene expression. (A) Boxplots showing sample average expression levels before and after batch
correction. Initially, clear differences are observed between the datasets. Following batch correction using the Combat function of the sva package,
expression levels align, demonstrating effective normalization. (B) Principal Component Analysis (PCA) of post-batch correction samples. The PCA
plot shows a uniform distribution of sample features across datasets, indicating successful batch effect mitigation and suitability for further analysis.
(C) Analysis of network topology for various soft-thresholding powers in Weighted Gene Co-expression Network Analysis (WGCNA). The left panel
shows scale independence as a function of the soft-thresholding power, with a chosen power of 4 achieving the criteria of R^2 = 0.8 for scale-free
topology. The right panel displays mean connectivity, affirming the network’s robustness. (D) Heatmap of module-trait relationships from WGCNA.
Sixteen color-coded gene modules are correlated with tendinitis traits, with the yellow module showing the highest correlation (correlation = 0.3, P
< 0.05), suggesting a significant association with tendinitis. (E) Dendrogram of genes identified by WGCNA, clustered based on dynamic tree cut,
with module colors indicated below. This dendrogram and color band illustrate the gene modules resulting from hierarchical clustering of gene
expression data. (F) Scatterplot of Module Membership vs. Gene Significance in the yellow module. Genes with a module membership > 0.8 and
gene significance > 0.2 are highlighted, identifying ADNP, MSH6, and ZMPSTE24 as key genes associated with tendinitis within this module.
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them into training and validation sets at a ratio of 70% and 30%,

respectively. Subsequently, 12 machine learning methods were

employed, including Lasso, NaiveBayes, SVM, glmBoost, Enet,

plsRglm, XGBoost, LDA, Stepglm, Ridge, RandomForest, and

GBM, to perform variable selection and model construction. The

variable selection process required a minimum of 2 remaining

variables, and only 45 combinations of models were retained.

Among these, SVM, used for both gene selection and modeling,

achieved the highest diagnostic efficacy with an average AUC of
Frontiers in Immunology 06
0.858 under the ROC curve (Figure 3A). The predictive model

constructed using these 12 tendinitis-associated inflammasome

genes demonstrated good calibration in both training and

validation sets, as shown by the calibration curves (Figures 3B,

C). The DCA curves indicated that the diagnostic model could

facilitate better clinical decision-making (Figures 3D, E). The qPCR

results showed that CD36 (Figure 4A) andMYD88 (Figure 4B) were

significantly elevated in patients with tendinitis compared to

healthy controls.
A

B

D

C

FIGURE 2

Inflammasome gene correlations and chromosomal localization in tendinitis. (A) Correlation heatmap of core tendinitis genes (ADNP, MSH6,
ZMPSTE24) and twelve inflammasome-related genes. The heatmap indicates significant positive correlations, suggesting their involvement in
inflammasome pathways related to tendinitis. (B) Expression correlation matrix for the 12 tendinitis-associated inflammasome genes. The matrix
reveals significant correlations between most gene pairs, highlighting potential interactions contributing to the disease mechanism. (C) Network
visualization from GENEMANIA analysis showing extensive protein-protein interactions among the 12 inflammasome genes, primarily related to Toll-
like receptor signaling and inflammasome assembly. (D) Chromosomal distribution map of the 12 tendinitis-associated inflammasome genes,
illustrating their primary localization on chromosomes 1, 3, 4, 6, 7, 9, 11, 16, and 17, providing insights into their genomic context.
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3.5 Differential pathway analysis
in tendinitis

The differences between tendinitis and normal tendons were

analyzed through GO-BP GSEA enrichment analysis of differential

expression results from both groups. The cluster diagram indicated

that tendinitis is primarily associated with the upregulation of

processes such as intrinsic apoptosis, spindle assembly, and

lymphocyte activation, while calcium-related pathway transport
Frontiers in Immunology 07
was downregulated (Figure 5A). The 12 tendinitis-associated

inflammasome genes were mainly enriched in KEGG pathways

related to Toll-like receptors and Nod-like receptors (Figure 5B).
3.6 Immunological aspects in tendinitis

ssGSEA was used to estimate the relative abundance of immune

cells, revealing that tendinitis samples had fewer B cells, mast cells,
A B

FIGURE 4

Expression levels of CD36 (A) and MYD88 (B) in patients with tendinitis.
A B

D E

C

FIGURE 3

Machine learning models for tendinitis diagnosis based on gene expression. (A) Heatmap displaying the performance of 45 machine learning model
combinations using various algorithms, including Lasso, NaiveBayes, and SVM. Models are ranked by the average AUC of the ROC curve, with SVM-
based models showing the highest diagnostic performance (average AUC = 0.858). (B, C) Calibration curves for the predictive model built using the
12 tendinitis-associated inflammasome genes. Curves for both training and validation sets indicate good calibration, suggesting the model’s accuracy
in predicting tendinitis. (D, E). Decision Curve Analysis (DCA) for the tendinitis prediction model. The DCA curves demonstrate the model’s clinical
usefulness across different threshold probabilities, indicating its potential in improving clinical decision-making.
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and Tfh cells, but more Treg cells compared to control samples,

potentially reflecting the immunological environment associated

with disease development (Figure 6A). To explore whether the 12

tendinitis-associated inflammasome genes were related to changes

in these immune cells, a correlation analysis was conducted. B cells

showed a positive correlation with the expression of TLR6

(Figure 6B), mast cells were negatively correlated with MYD88

(Figure 6C), and Tfh cells were negatively correlated with CD36 but

positively correlated with MEFV, NLRP1, and NLRP6 (Figures 6D–

G). Treg cells were negatively correlated with ATAT1 and TLR6 but

positively correlated with MYD88 (Figures 6H–J).
3.7 Tumor microenvironment analysis
in tendinitis

An analysis of the tumor microenvironment indicated that

CD36 and MYD88 were significantly positively correlated with

several microenvironment scores, suggesting their role in

promoting the formation of an immune-supportive environment.

In contrast, CPTP and TLR6 showed significant negative

correlations with these scores (Figure 7A). Given the context of

tendinitis, it is crucial to understand these correlations as they

highlight how certain genes might influence the inflammatory and

immune responses within the tendinitis microenvironment. To

further elucidate these associations, ssGSEA was used to evaluate

the relative abundance of different immune processes and calculate

the correlations of 12 tendinitis-associated inflammasome genes

with various immune processes, as illustrated in radar charts. The

results revealed that, except for DHX33, NLRC3, and TLR6, the
Frontiers in Immunology 08
remaining genes were correlated to varying degrees with immune

processes, indicating their high immunological activity and

relevance (Figures 7B–M).
3.8 Correlation with immune
activity molecules

The correlation between the 12 tendinitis-associated

inflammasome genes and immune activity molecules was further

evaluated. NLRP6, NLRP1, and MEFV showed significant positive

correlations with several immune checkpoint molecules

(Figure 8A). MYD88 and CD36 exhibited the most positive

correlations with expressions of HLA family molecules

(Figure 8B). Chemokines had fewer expression correlations,

l a ck ing s ign ificant corre l a t ions wi th inflammasome

genes (Figure 8C).
3.9 Regulatory transcription factors of
inflammasome genes

The top ten transcription factors regulating the 12 tendinitis-

associated inflammasome genes were identified as SP110, CREB5,

TET2, BATF2, NFE4, FLI1, ELF4, FOXP3, ZNF831, and SP140L

(Figure 9A). An interaction diagram displayed the regulatory

relationships between these transcription factors and the 12

inflammasome genes (Figure 9B). The DGidb database predicted

21 drugs with therapeutic potential against the inflammasome genes,

which could be used for the treatment of tendinitis (Figure 9C).
A B

FIGURE 5

Differential pathway activation in tendinitis via GSEA and KEGG analysis (A) Network plot from Gene Set Enrichment Analysis (GSEA) showing clusters
of gene sets associated with tendinitis. Gene sets related to intrinsic apoptosis, spindle assembly, and lymphocyte activation are upregulated (red
nodes), while pathways involved in calcium ion transport are downregulated (blue nodes), indicating distinct pathway activation profiles in tendinitis.
(B) Bubble plot of KEGG pathways enrichment analysis for the 12 tendinitis-associated inflammasome genes. Bubble size corresponds to pathway
size, and color indicates the normalized enrichment score (NES). Toll-like receptor and Nod-like receptor pathways are significantly enriched,
highlighting their potential involvement in tendinitis pathogenesis.
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4 Discussion

The findings of this study shed light on the complex molecular

underpinnings of tendinitis, highlighting the significant role of

inflammasome-related genes and their interactions with the

immune system. The integration and comprehensive analysis of
Frontiers in Immunology 09
gene expression data have provided valuable insights into the

pathophysiological mechanisms of tendinitis, offering potential

avenues for novel diagnostic and therapeutic strategies.

Our analysis revealed a distinct expression profile of

inflammasome-related genes in tendinitis, with NLRP6, NLRP1,

and MEFV showing significant correlations with immune
A

B D

E F G

IH J

C

FIGURE 6

Immune cell abundance and gene correlation in tendinitis. (A) Boxplots showing the distribution of immune cell types in tendinitis versus control
samples, estimated by ssGSEA. A decrease in B cells, mast cells, and Tfh cells, and an increase in Treg cells in tendinitis samples suggest alterations
in the immune cell composition linked to the disease’s immunological environment. (B) Positive correlation between B cells and TLR6 expression.
(C) Negative correlation between mast cells and MYD88 expression. (D–G): Various correlations between Tfh cells and the genes CD36, MEFV,
NLRP1, and NLRP6. (H–J): Correlations of Treg cells with ATAT1, TLR6, and MYD88, illustrating complex relationships between inflammasome gene
expression and immune cell changes in tendinitis.
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checkpoint molecules. This is consistent with existing literature that

underscores the involvement of inflammasomes in various

inflammatory and autoimmune conditions. For instance, studies

have demonstrated the pivotal role of NLRP3 in gout and

pseudogout, highlighting the therapeutic potential of targeting

inflammasome pathways in inflammatory diseases (26, 27). The

positive correlation between certain inflammasome genes and

immune checkpoint molecules observed in our study further

emphasizes the intricate link between inflammasome activation

and immune regulation in tendinitis.

The analysis of immune cell abundance and gene correlations in

tendinitis provides significant insights into the immune dynamics

associated with the condition. There is amarked decrease in B cells and

T follicular helper (Tfh) cells, which indicates a reduction in T-

dependent B cell responses. This suggests that in tendinitis, there is

an elevated T-independent B cell response, primarily mediated by

Toll-like receptors (TLRs) and MYD88. The predominance of this

pathway underscores the critical role of innate immunity in tendinitis,

highlighting how the interaction between TLRs and MYD88 facilitates

a rapid immune response independent of T cell help. This observation

is essential as it points to potential therapeutic targets within the TLR-

MYD88 signaling axis, which could be leveraged to modulate immune

responses and reduce inflammation in tendinitis. Understanding these

mechanisms provides a clearer picture of the immune landscape in

tendinitis and suggests new avenues for targeted intervention.
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Moreover, the differential expression of HLA family molecules,

particularly in relation to MYD88 and CD36, aligns with previous

findings on the role of HLA genes in immune response and

autoimmune diseases (28, 29). The HLA system’s involvement in

antigen presentation and immune response modulation is well-

documented, and our results suggest a similar mechanism at play in

the context of tendinitis.

The reduced expression of chemokines and their lack of

significant correlation with inflammasome genes in our study

diverges from the established understanding of chemokines as key

mediators of inflammation and immune cell recruitment. This

discrepancy may indicate a unique inflammatory landscape in

tendinitis, where inflammasome activation does not follow the

conventional chemokine-driven pathway, or it may reflect the

complex regulatory mechanisms that govern chemokine

expression in tendinitis.

The identification of key transcription factors, such as SP110

and CREB5, involved in the regulation of inflammasome genes,

provides new insights into the transcriptional control mechanisms

in tendinitis. These transcription factors have been implicated in

immune response regulation and inflammatory processes in other

contexts, suggesting a conserved regulatory network that extends

to tendinitis.

Comparing our findings with existing studies, the role of

inflammasomes in tendinitis appears to be more complex and
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FIGURE 7

Tendinitis microenvironment and immune process associations. (A) Heatmap of the correlation between CD36, MYD88, CPTP, TLR6, and ESTIMATE
scores, which assess the immune and stromal components of the tumor microenvironment. The significant positive correlations of CD36 and
MYD88 suggest their involvement in promoting an immune microenvironment, while CPTP and TLR6 show significant negative correlations.
(B–M): Radar charts depicting the relative abundance of different immune processes and their correlation with the 12 tendinitis-associated
inflammasome genes, as assessed by ssGSEA. The charts reveal varying degrees of correlation, with most genes showing significant immunological
activity and relevance, except for DHX33, NLRC3, and TLR6, providing a comprehensive view of the immune activity associated with these genes.
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multifaceted than previously understood (30, 31). The significant

correlations between inflammasome genes and immune cells,

particularly Treg cells, highlight the dual role of inflammasomes

in both promoting and regulating inflammation. This duality is

crucial for maintaining immune homeostasis and preventing

uncontrolled inflammation, which is a hallmark of tendinitis.

The therapeutic potential of targeting inflammasome pathways,

as suggested by the DGidb database predictions, aligns with

emerging trends in drug development for inflammatory diseases.

The identification of drugs that can modulate the activity of

inflammasome genes offers a promising avenue for the

development of targeted therapies for tendinitis. This approach is

particularly appealing given the limitations and adverse effects

associated with current tendinitis treatments, such as nonsteroidal

anti-inflammatory drugs (NSAIDs) and corticosteroids.

Additionally, our study highlights key molecular pathways,

immune cells, and transcription factors involved in tendinitis, such

as the roles of MYD88, CD36, CREB5, and ELF4. By elucidating the

complex interactions within the immune microenvironment and the

regulatory networks of inflammasome genes, our findings provide

valuable insights into potential new drug targets. These molecular

insights can facilitate the development of more effective and

personalized therapeutic strategies, reducing the reliance on broad-

spectrum anti-inflammatory medications and minimizing their side
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effects. Future research focusing on these identified pathways and

regulatory mechanisms could lead to innovative treatments that

specifically address the underlying molecular causes of tendinitis,

ultimately improving patient outcomes.

Despite the valuable insights provided by this study, several

limitations must be acknowledged. Due to the constraints of using

public databases, we were unable to obtain detailed clinical

information for all patients, such as gender, age matching with

controls, and presence of inflammatory symptoms. This

information is crucial to determine whether the described results

are based on data from patients with inflammatory tendinitis,

tendinitis due to mechanical overuse or overload, or age-related

degenerative conditions. This aspect is key to discussing the context

of the obtained results and answering whether inflammasome

pathways are associated with inflammatory or degenerative

tendinitis. Additionally, the heterogeneity of the samples might

also explain why chemokine-associated genes were less affected,

particularly if the samples were primarily from degenerative

tendinitis cases. Considering these limitations, our findings

should be interpreted with caution, and further studies are

needed to validate and expand upon these results.

In conclusion, our study contributes to a deeper understanding

of the molecular mechanisms underlying tendinitis, with a

particular emphasis on the role of inflammasomes and their
A
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FIGURE 8

Correlations between tendinitis-associated inflammasome genes and immune molecules. (A) Heatmap illustrating the correlation between the 12
tendinitis-associated inflammasome genes and various immune checkpoint molecules. NLRP6, NLRP1, and MEFV exhibit significant positive
correlations with numerous immune checkpoints, suggesting their involvement in immune regulation pathways in tendinitis. (B) Correlation heatmap
showing the relationships between MYD88, CD36, and a spectrum of HLA family molecules. Both MYD88 and CD36 show numerous positive
correlations, indicating their potential role in antigen presentation and immune response in tendinitis. (C) Heatmap displaying the correlations
between chemokines and the 12 tendinitis-associated inflammasome genes. The heatmap suggests minimal expression correlation, indicating a less
significant role for these chemokines in inflammasome-related pathways of tendinitis. *P<0.05, **P<0.01, ***P<0.001.
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interaction with the immune system. The findings highlight the

potential for novel diagnostic markers and therapeutic targets,

paving the way for more effective and targeted interventions in

the management of tendinitis. Future research should focus on

validating these potential targets in clinical settings and exploring

the mechanistic pathways in greater detail to unravel the complex

interplay between inflammasomes, immune cells, and the

inflammatory response in tendinitis.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Ethics statement

The studies involving humans were approved by Second

Affiliated Hospital and Yuying Children’s Hospital of Wenzhou
Frontiers in Immunology 12
Medical University. The studies were conducted in accordance

with the local legislation and institutional requirements. The

participants provided their written informed consent to

participate in this study.
Author contributions

HX: Data curation, Writing – original draft. XL: Data curation,

Writing – review & editing. YY: Data curation, Writing – review &

editing. YFZ: Data curation, Writing – review & editing.

TQ: Writing – review & editing, Conceptualization. YJZ:

Conceptualization, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The work

was funded by Wenzhou Municipal Science and Technology

Program (Y20210401 and Y20210423).
A B

C

FIGURE 9

Transcriptional regulation and drug predictions for tendinitis-associated genes. (A) Bar graph representing the mean rank scores of the top ten
transcription factors (TFs) regulating the 12 tendinitis-associated inflammasome genes. SP110, CREB5, TET2, BATF2, NFE4, FLI1, ELF4, FOXP3,
ZNF831, and SP140L are ranked based on their importance in gene regulation, providing insights into the transcriptional control mechanisms in
tendinitis. (B) Network interaction diagram depicting the regulatory relationships between the identified TFs and the 12 tendinitis-associated
inflammasome genes. The diagram highlights the complex interplay between these TFs and genes, suggesting a multifactorial regulatory landscape
in tendinitis. (C) Sankey diagram derived from the DGidb database, predicting 21 drugs with therapeutic potential targeting the tendinitis-associated
inflammasome genes. The diagram links each gene with corresponding drugs, illustrating potential treatment pathways for tendinitis.
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