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Different eukaryotic cell organelles (e.g., mitochondria, endoplasmic reticulum,
lysosome) are involved in various cancer processes, by dominating specific
cellular activities. Organelles cooperate, such as through contact points, in
complex biological activities that help the cell regulate energy metabolism,
signal transduction, and membrane dynamics, which influence survival
process. Herein, we review the current studies of mechanisms by which
mitochondria, endoplasmic reticulum, and lysosome are related to the three
major malignant gynecological cancers, and their possible therapeutic
interventions and drug targets. We also discuss the similarities and differences
of independent organelle and organelle—organelle interactions, and their
applications to the respective gynecological cancers; mitochondrial dynamics
and energy metabolism, endoplasmic reticulum dysfunction, lysosomal
regulation and autophagy, organelle interactions, and organelle regulatory
mechanisms of cell death play crucial roles in cancer tumorigenesis,
progression, and response to therapy. Finally, we discuss the value of organelle
research, its current problems, and its future directions.
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1 Introduction

The cell is the basic unit of living activity; within eukaryotic
cells, structural organelles with specific morphologies and functions
carry out essential activities. Among them, mitochondria,
endoplasmic reticulum (ER), lysosome, and others play key roles
in the development of cancer-like diseases through their
cellular activities.

Mitochondria are the main source of metabolic energy required
for cellular function in aerobic eukaryotic cells, with roles in
providing energy, regulating the cell cycle and programmed cell
death, influencing metabolic processes including calcium signaling
and the citric acid cycle, and often undergoing fission and fusion to
help adapt their number and size to the metabolic activities of the
cell (1). Mitochondria, the leading cancer-programming organelles,
regulate nuclear function by controlling levels of various
metabolites that affect gene expression. They are also critically
involved in cancer development, proliferation, invasion, and
metastasis, by altering the activity of cancer-related gene
transcription and signaling pathways to impact mitochondrial
dynamics, energy metabolism, mitochondrial apoptosis, and other
cellular changes (2, 3). ER is a classical membrane organelle whose
main functions include serving as a protein synthesis site for
secreted and integrated membrane proteins as well as a
subpopulation of cytoplasmic proteins involved in the synthesis
of proteins and lipids, calcium regulation, and interactions with
other organelles (4). Protein processing, modification, and folding
in the ER are important regulatory processes that dominate cell
function, fate, and survival; these can be mediated by changes in the
response pathways to ER stress (ERS), which contributes to growth
and metastasis in tumor-like diseases (5). The ERS response
pathway is vulnerable to the influences of hypoxia, Ca®*
homeostasis, and other conditions under which ER proteins are
misfolded and continuously accumulate, and which activates the
unfolded protein response (UPR) (6). UPR activation is closely
related to cancer cell survival regulation, angiogenesis, invasion,
metastasis, and drug resistance (7). Lysosome is a key organelle that
mediates active cellular processes like autophagy, apoptosis,
necrosis, senescence, pyroptosis, and cancer cell ferroptosis (8).
Lysosome cause cell mutations, degrade macromolecules (which
provide nutrients for cancer cell proliferation), and produce
hydrolase (which helps carcinogens destroy cell division
regulation) (9). Therefore, the lysosome is also considered to be a
regulator of homeostasis in cancer cells and organisms.

Although each organelle has specific, independent functions,
they also coordinate to accomplish a series of important
physiological functions; together, they constitute an organelle
interaction network of fine labor divisions, collaborations, and
close contacts (10). Almost all organelles can interact with one
another, by forming membrane contacts, tight juxtaposition regions
between different organelles, or different membrane types between
intracellular membrane compartments (11, 12).

Mitochondrial autophagy, which interferes with the biogenesis
of lysosome during mitochondrial dysfunction, is an important
representative organelle interaction. Mitochondrial autophagy is a
selective cellular autophagic process, in which mitochondria adapt
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to changes in their surroundings from external stimuli [e.g.,
nutrient deficiencies, reactive oxygen species (ROS) clustering,
cellular senescence] which causes damage, triggers mitochondrial
autophagy, and ultimately eliminate damaged mitochondria by
targeted scavenging with lysosomes (13, 14). A specific cancer cell
metabolic adaptation is the ability to apply specific autophagy
forms, especially mitochondrial autophagy, which recycles
intracellular components under conditions of metabolic stress or
during anti-cancer therapy, affecting therapeutic resistance (15).

In addition, cell proliferation, invasion, metastasis, and other
cellular activities occur in response to different stimuli. Thus,
exploration based on different cell processes, which determine cell
fate, is a better approach to addressing the urgent need for major
medical treatments.

As the main site of ROS production during physiological
cellular metabolism, mitochondria may be the main target of
ROS-induced oxidative damage, and the close proximity of
mtDNA to the respiratory chain as well as the absence of histone
proteins and effective repair mechanisms have been suggested to be
responsible for the greater susceptibility of mtDNA to oxidative
damage than nuclear DNA (16). In the intraovarian environment,
oocytes are the most abundant body cells in the mitochondria and
rely primarily on these organelles for their ability to fertilize and
early embryonic development, although they are highly susceptible
to an oxidative environment that results in an imbalance in the
levels of proteins required to maintain oocyte health and
maturation (17, 18). Ovarian function is also closely controlled by
mitochondrial protein homeostasis and mitophagy, and the
initiation of the mitochondrial unfolded protein response
(UPRmt) and mitochondrial autophagy maintains or restores
ovarian and mitochondrial function (19). The changes in cervical
tissue are often referred to as remodeling of the extracellular matrix,
and the whole process is the result of a close relationship between
biochemical and molecular pathways, tightly controlled by
inflammatory and endocrine factors (20). Oxidative stress occurs
when the production of ROS exceeds the antioxidant capacity; that
is, the excess production of ROS overwhelms the antioxidant
defense system and destroys lipids, proteins, and DNA, which
leads to cell damage and cervical tissue dysfunction. For
endometrial tissue, it has been shown (21) that excessive
mitochondrial fission hinders endometrial stromal cells (ESCs)
migration and induces apoptosis in ESCs. Storage and release of
Ca”" in oocyte maturation and fertilization are noteworthy features
of the ER in female ovarian tissues, and appropriate calcium
signaling responses can initiate oocyte development and
embryogenesis, with the ER being central to initiating calcium
signaling (22). For cervical tissues, it has been shown (23) that
disrupting Ca>* homeostasis and leading to ERS-associated cell
death has a close impact on HeLa cell survival. Meanwhile, the UPR
Ire-Xbpl signaling pathway can be activated in metaphase cells
(24). The lysosomal system, which degrades organelles and large
protein aggregates that are impaired by endometrial growth, may be
involved in the cyclic remodeling of endometrial cells by inducing
apoptosis, which is most pronounced during the secretory phase,
especially in the late secretory phase (25). The autophagy-lysosome
pathway is an evolutionarily conserved process in eukaryotic cells
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that involves the transport of damaged organelles and proteins from
the autophagosome to the lysosome, where they form autophagic
lysosomes for degradation and are involved in the critical biological
process of protecting primordial follicles that form the ovarian
reserve (26). Autophagy-lysosome is closely related to HeLa cell
viability (27). Thus, mitochondria, endoplasmic reticulum, and
lysosomes all play different regulatory roles in the normal
function of gynecological organs.

Mitochondrial autophagy, the classical mitochondrial-
lysosomal organelle interaction mode, is a selective cellular
autophagic process. Under the effects of external stimuli like
nutrient deficiency, ROS clustering, and cellular senescence,
mitochondria adapt to environmental changes, triggering quality
impairment, autophagy, and ultimately eliminating damaged
mitochondria via lysosome-targeted scavenging (13, 14). Also, the
role of mitochondrial autophagy in cancer is complex and may
influence cancer development through Parkin-PINKI1-related
signaling pathways and oxidative stress changes affecting cellular
processes such as apoptosis, growth, proliferation, migration, and
invasion. To ensure functional interactions between different
organelles, organelles often communicate with each other through
membrane contact sites. Among them, the mitochondria-ER
interaction of mitochondria-associated ER membranes (MAM) is
its representative mode, which plays an important role in Ca*"
exchange, mitochondrial dynamics, lipid metabolism,
mitochondrial autophagy, and ERS. Ca®* easily passes through
the mitochondrial calcium unidirectional transporter (MCU)
located in the ER and is later taken up by the mitochondria; and
will promote the onset and development of different diseases
represented by tumor-like diseases using related proteins, such as
DRP1, PINK, GRP75, and Erolo, as a starting point (28, 29).
Therefore, organelle interactions have a special role in tumor
diseases under normal conditions of action.

Ovarian, endometrial, and cervical cancers are considered the
three most significant gynecological malignancies. Their incidences
have increased in recent years, contributing to their status as
significant silent global killers. Due to its hidden anatomical
location and lack of clinical symptoms, ovarian cancer is mostly
found in the advanced stage, often with metastasis and poor
prognosis, with the 5-year survival rate of only 49%; cervical cancer
and endometrial cancer have earlier clinical symptoms, with early
stage in the majority of patients, and have a better prognosis, with the
5-year survival rate of more than 80%. However, once the tumor
metastasis and recurrence occur, the prognosis will drop sharply, and
the 5-year survival rate is less than 20%. The metastatic characteristics
of the three clinically common gynecological malignancies are
different: cervical cancer is dominated by direct spread; ovarian
cancer is dominated by abdominal dissemination; and lymphatic
metastasis of endometrial cancer is the most common clinical
metastatic mode (30-32). Inhibiting gynecological malignancies is
thus a major current medical challenge. Because mitochondria, ER,
lysosome, and other independent organelles and organelle-organelle
interactions are not only vital to the normal function of gynecological
organs but also drive the development and fate of gynecological
malignant cancer cells through direct participation in their energy
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metabolism (Figure 1), intervening in their signaling and guidance of
cellular processes, promises to reduce the incidence of these cancers
and lead to novel therapeutic interventions.

Mitochondria supply energy requirements mainly by their own
oxidative phosphorylation reactions, while undergoing constant
cell-based division and fusion. Under the influence of conditions
like hypoxia and Ca®" homeostasis, protein folding errors occur and
accumulate, resulting in ER stress (ERS) and activation of unfolded
protein response (UPR). Hydrolyzing enzymes in the lysosome
constantly help regulate cell division. The three organelles work
independently and in collaboration, triggering mitochondrial
autophagy, mitochondria-associated ER membrane, and other
organelle interactions to participate in a variety of biological
processes to determine the fate of the three major gynecological
malignancies, including ovarian, cervical, and endometrial cancers.
Cell proliferation is the process by which a cell grows and divides
into daughter cells in a rapid tissue growth mechanism. Apoptosis is
the active cellular self-destruction action, generally including
endogenous and exogenous apoptosis. Cell invasion is their ability
to migrate from one area to another via the extracellular matrix, and
is a normal response of both normal and cancer cells to chemical
and mechanical stimuli. Metastasis begins when cancer cells leave
the primary site and invade normal tissues or organs. Other cellular
processes include ferroptosis and necrotic apoptosis, which are
involved in guiding cell fate, along with cell proliferation,
apoptosis, invasion, and metastasis. Table 1 summarizes the
abbreviation mentioned in the whole article.

2 Mechanisms of cellular organelles in
ovarian cancer pathogenesis and
therapeutic process

2.1 Mitochondria

2.1.1 Ovarian cancer cell invasion

Sirtuin direct homolog SIRT6 can promote extracellular signal
regulated kinasel/2 (ERK1/2), driving activation and
phosphorylation of mitochondrial fission-associated protein
DRPI1, which positively regulates mitochondrial fission and
reduces cell invasion by decreasing formation of stress fibers in
ovarian cancer cells (33). Epithelial-mesenchymal transition (EMT)
promoter Etsl can promote EMT/invasion through DRPI-
mediated mitochondrial fragmentation of ovarian cancer (34).

2.1.2 Ovarian cancer cell proliferation

Carnitine palmitoyltransferase 1A (CPT1A) is characterized by
regulating mitochondrial fission and function through the
mitochondrial fission factor (MFF) succinylation mechanism to
promote the proliferation of ovarian cancer cells (35). Protein
phosphatase 2A (PP2A) is both a key negative regulatory
molecule in cancers and an upstream molecule of protein kinase
B (PKB/Akt), which is involved in cancer cell proliferation with the
PP2A/AKT signaling axis (36). Major forms of cancer cell energy
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FIGURE 1

Independent organelles and organelle interactions determine cell fate in gynecological malignancies.

metabolism include aerobic glycolysis and oxidative
phosphorylation (OXPHOS) pathways, by which they produce
large amounts of ATP to meet the energy requirements for rapid
proliferation. Leukocyte-associated immunoglobulin-like receptor-
1 (LAIR-1), an inhibitory receptor containing immunoreceptor
tyrosine inhibitory motifs expressed on most immune cells, is
involved in macrophage formation by negatively regulating
peroxisome proliferator-activated receptor y (PPARY), which
regulates the promotion of both mitochondrial OXPHOS and
glutamine metabolism to increase mitochondrial bioenergetic
metabolism (37-40). Related experiments (41) have shown that
under hypoxic conditions, expression of LAIR-1 in ovarian cancer
HO8910 cells are significantly increased in a time- and dose-
dependent manner, and that downregulation of LAIR-1 in
HO8910 cells promotes cell proliferation and colony formation,
and significantly increases ATP production, basal respiration, and
maximal respiration; this also suggests that LAIR-1 is involved in
mitochondrial bioenergetic metabolism regulation in ovarian
cancer HO8910 cells.

2.1.3 Ovarian cancer cell apoptosis

AKT, a serine/threonine kinase, is the direct upstream molecule
of DRP1. It continuously regulates DRP1 activity and induces DRP1
phosphorylation based on Akt-DRP1 interaction, which is followed
by mitochondrial division; thus, it is speculated that the PP2A/
AKT/DRP1 signaling pathway is closely related to ovarian cancer
cell mitochondrial division and apoptosis (42-45). This has been
corroborated by relevant experiments (46).

Frontiers in Immunology

2.1.4 Ovarian cancer cell metastasis

Cancer-type organic anion transporting polypeptide 1B3 (Ct-
OATPIB3), a SLCO1B3 family member, can directly interact with
IGF2BP to trigger a series of changes that increase mitochondrial
fatty acid B-oxidation (FAO) and OXPHOS activity, promoting
metastasis of high-grade serous ovarian cancer (47).

2.1.5 Ovarian cancer cell resistance

Drug-resistant ovarian cancer cells undergo a metabolic shift to
OXPHOS, coordinated with mitochondrial network reorganization
and component accumulation. Since peroxisome proliferator-
activated receptor-gamma coactivator-1 alpha (PGClo), a major
mitochondrial biosynthesis regulator, is a key molecule in
integrating and coordinating the transcriptional machinery of
nuclear and mitochondrial DNA, it may be a target for improving
chemotherapy efficacy and mediating ovarian cancer cell
participation in cisplatin-resistant OXPHOS via nuclear-
mitochondrial transcriptional feedback (48). Platinum-induced
mitochondrial OXPHOS also contributes to ovarian cancer stem
cell enrichment (49).

Mitochondrial apoptosis is a main mechanism in studies
assessing cancer cell chemoresistance. Hexokinase 2 (HK2) defense
protects mitochondria from apoptosis by maintaining mitochondrial
permeability transition pore (MPTP) integrity and preventing
apoptosis through mitochondrial expression and voltage-
dependent anion channel 1 (VDACI) binding (50). PGClol can
regulate apoptotic signaling by interacting with mitochondrial
proteins; heat shock protein 70 (HSP70), an important member of

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1393852
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Shen et al.

TABLE 1 Acronym list.

Abbreviation

Full English name

Endoplasmic reticulum ER

ER stress ERS
Unfolded protein response UPR
Reactive oxygen species ROS
The mitochondrial unfolded protein response UPRmt UPRmt
Endometrial stromal cells ESCs
Mitochondria-associated ER membranes MAM
Mitochondrial calcium unidirectional transporter MCU
Extracellular signal regulated kinase1/2 ERK1/2
Epithelial-mesenchymal transition EMT
Carnitine palmitoyltransferase 1A CPT1A
Mitochondrial fission factor MFF
Protein phosphatase 2A PP2A
Protein kinase B PKB/Akt
Oxidative phosphorylation OXPHOS
Leukocyte-associated immunoglobulin-like receptor-1 LAIR-1
Peroxisome proliferator-activated receptor ¥ PPARY
Cancer-type organic anion transporting polypeptide 1B3 Ct-OATP1B3
Fatty acid B-oxidation FAO
Peroxisome proliferator-activated receptor-gamma PGCla
coactivator-1 alpha

Hexokinase 2 HK2
Mitochondrial permeability transition pore MPTP
Voltage-dependent anion channel 1 VDACI1
Heat shock protein 70 HSP70
Spliced XBP1 sXBP1
Lysosomal protein transmembrane 5 LAPTM5
Epidermal growth factor EGF
Epidermal growth factor receptor EGFR
B-galactosidase B-gal
Transcription factor EB TFEB
Bcl-2/adenovirus E1B 19kDa interacting protein 3 BNIP3
Outer mitochondrial membrane OMM
Light chain 3-II LC3-1I
5 AMP-activated protein kinase AMPK
Mitochondria-associated ER membrane MAM
Leucine zipper/EF hand-containing transmembrane-1 LETM1
carboxy-terminal modulator protein CTMP
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TABLE 1 Continued

Full English name Abbreviation

Cytochrome ¢ cytc
Apoptotic protease-activating factor-1 Apaf-1
Lysosome-associated membrane protein 3 LAMP 3
Uterine corpus endometrial carcinoma UCEC
Inner mitochondrial membrane IMM
Niclosamide NIC
Interleukin-24 IL-24
Mitochondrial carrier 1 MTCHI1
Mitochondrial-mediated ferroptosis MMF
Benzyl isothiocyanate BITC
Human papillomavirus HPV
High-risk HR
Histone deacetylase HDAC
Maslinic acid MA
Cathepsin D CTSD
Cathepsin L CTSL

the HSP family, transports proteins to mitochondria (51-54).
Experiments have shown (54) that PGCla knockdown decreases
HSP70 levels and decreases HK2 and VDACI binding. Increased
HK2 binding to VDACI and mitochondrial membrane potential
after simultaneous use of a PGClo inhibitor and overexpression of
HSP70 suggests that PGClo. may affect HK2 and VDACI binding
via HSP70 regulation. Thus, PGClo. may act on mitochondria to
regulate the HSP70/HK2/VDACI signaling pathway and reduce
apoptosis, promoting cisplatin resistance in ovarian cancer. This
may be a new mechanism for cisplatin resistance in ovarian cancer,
providing theoretical support for the clinical application of PGClo
inhibitors. It may also provide novel approaches for cancer
screening biomarkers.

Mitochondria are mainly involved in the ovarian cancer cellular
process by mitochondrial fission and auto-oxidative phosphorylation;
changes also occur to nuclear-mitochondrial transcription and
mitochondrial membrane potential, to control cell proliferation,
invasion, and apoptosis. Mitochondrial fission regulation mainly affects
DRP1 phosphorylation, which is mediated by ERK1/2, Ets1, and AKT,
and MFF succinylation, which is mainly dependent on CPTIA. In
contrast, LAIR-1 regulation of PPARY, interaction of Ct-OATP1B3 with
IGF2BP, and nuclear-mitochondrial transcriptional mediation of
PGClo. affect mitochondrial OXPHOS activity. In addition, PGClo.
promoted cisplatin resistance by modulating the HSP70/HK2/VDAC1
signaling pathway, affecting the binding of HK2 to VDACI, causing
alterations in mitochondrial membrane potential, and reducing the
apoptosis of ovarian cancer cells. Figure 2 summarizes mitochondrial
relations with ovarian cancer development and treatment.
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Mitochondrial relations with ovarian cancer development and treatment.

2.2 ER

ERS targets are involved in cancer cellular processes. Hypoxia,
nutrient deficiencies, and a low pH tumor microenvironment can
all cause accumulation of misfolded or unfolded ER proteins. This
activates ERS and UPR, restoring cellular homeostasis or leading to
cell death.

2.2.1 GRP78 and UPR

Currently, the most important protein in this pathway is
GRP78. With ERS, GRP78 expression increases and binds to the
unfolded protein, causing dissociation of the three UPR sensors
(e, IREL, PERK, and ATF6), and initiating unfolded UPR protein
responses through their respective signaling pathways (55).
Elevated GRP78 levels in patients with ovarian cancer are
associated with poor prognosis; they are also weakly expressed in
cisplatin-sensitive ovarian cancer cells, mediating cisplatin-induced
senescence (56).

2.2.2 Ovarian cancer cell FOXK2 and
stemness regulation

FOXK2, a stemness-specific transcription factor highly
expressed in ovarian cancer, can bind to the intronic regulatory
element of the target gene ERNI to directly upregulate IRElo
expression; this leads to selective splicing of XBP1, after which
spliced XBP1 (sXBP1) acts as a transcription factor to further
promote other gene transcriptions. This suggests that the IRE1o/
XBP1 axis promotes expressions of stemness-related genes,
promoting ovarian cancer cell stemness, and that its regulation by
FOXK?2 is via the IRE10//XBP1 axis (57).

2.2.3 HERPUD1 and ovarian cancer cell apoptosis

HERPUDI, an important early ERS marker, also promotes
ovarian cancer cell survival by maintaining autophagy and
inhibiting apoptosis through the PI3K/AKT/mTOR and p38
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MAPK signaling pathways (58). Non-apoptotic paraptosis is a
novel mode of ovarian cancer cell death, the morphological
features of which include ER and mitochondrial swelling and
cytoplasmic vacuolization; initiated protein synthesis and ERS
play important roles in this process, which also has a central role
in ovarian cancer cells (56, 59, 60).

2.3 Lysosome

Lysosome, an organelle responsible for degrading cellular waste,
recycling nutrients, and maintaining intracellular stability, is closely
associated with ovarian cancer progression.

2.3.1 Molecules associated with invasive ovarian
cancer cell migration

E-cadherin expression downregulation and upregulated
expressions of N-cadherin, vimentin and other EMT-related
indexes result in cell polarity changes, reduced intercellular
adhesion, loss of normal morphology, and enhanced migration
and cellular invading abilities. Lysosomal protein transmembrane 5
(LAPTM5) can upregulate OVCAR3 expression, affecting EMT
progression and altering cell migration and invasion (61).

2.3.2 Specific enzyme actions

Abnormal glycosylation is a cancer cell characteristic, with a
prevalent alteration being the enrichment of modified 0.2,6-
linked sialylation of N-glycosylated proteins directed by
ST6GALI-sialyltransferase. ST6GAL1 is upregulated in many
malignancies, including ovarian cancer, and its activity
regulates epidermal growth factor (EGF) receptor (EGFR)
transport dynamics following EGF-induced receptor activation
via EGFR sialylation, which enhances cell surface post-activation
receptor recirculation, while inhibiting lysosomal degradation to
regulate ovarian cancer cells (62). B-galactosidase (B-gal), a
hydrolyzing lysosome enzyme, serves as another important
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biomarker for cellular senescence and primary ovarian
cancer (63).

2.3.3 TRPML 1/TFEB calcium signaling pathway
and ovarian cancer cell resistance

Transcription factor EB (TFEB), a member of the MiT/TFE
family of transcription factors, is a major regulator of lysosomal
biogenesis and autophagy, binding directly to lysosomal and
autophagy gene promoters. Cisplatin induces TFEB nuclear
translocation, upregulates downstream PD-L1 and PD-L2, and
forms an immune-suppressive cancer microenvironment; this
mediates cancer immune escape and drug resistance, and can be
used to target TFEB inhibition to increase ovarian cancer cell
cisplatin sensitivity (64). Lysosome can initiate calcium signaling
through the TRPML 1/TFEB pathway, which promotes lysosomal
cytotoxicity and clearance of accumulated material; lysosomal
calcium channel inhibition attenuates lysosomal cytotoxicity and
sensitizes drug-resistant ovarian cancer OVCARS cells to cisplatin
treatment (65).

2.4 Organelle interactions

Though organelles have fine labor divisions, they also collaborate
via close contacts to perform various biological processes under
different cellular conditions. Dysfunctions in these interactions are
closely related to the development of a variety of diseases.

2.4.1 Interactions between mitochondria
and lysosome

Mitochondrial autophagy is a well-described selective cellular
process. Under the effects of external stimuli like nutrient
deficiency, ROS clustering, and cellular senescence, mitochondria
adapt to environmental changes, triggering quality impairment,
autophagy, and ultimately eliminating damaged mitochondria via
lysosome-targeted scavenging (11, 12). Mitochondrial autophagy is
the classical mode of mitochondrial-lysosomal interactions. After
detachment from the mother tumor, ovarian cancer cells are in a
hypoxic environment; these cells initiate mitochondrial autophagy,
which avoids hypoxic cellular damage and thus plays a key role in
their generation of new metastases and establishment of blood
supplies. Under specific conditions, Bcl-2/adenovirus E1B 19kDa
interacting protein 3 (BNIP3) (an outer mitochondrial membrane
[OMM] protein), interacts with the microtubule-associated protein
1 light chain 3-II (LC3-II) to mediate formation of autophagic
vesicles and digestion of mitochondria (66). Experimental studies
have shown (67) that expressions of BNIP3 and LC3-II, and
mitochondrial autophagic activity, are significantly increased in
ovarian cancer HO-8910PM cells under hypoxic conditions, thus
initiating mitochondrial autophagy to maintain cell migration and
invasion. BNIP3 expression inhibition significantly decreases LC3-
IT expression, suppressing mitochondrial autophagy in hypoxic
environments; this results in typical hypoxic cell injury and
inhibits cell migration and invasive functions. Thus, BNIP3 is
hypothesized to be an important target in ovarian cancer
metastasis. Depletion of the well-defined E3 ubiquitin ligase
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CRL4CVMAIPDBL yregulates phosphorylation of 5° AMP-

activated protein kinase (AMPK)a™r172 and MFFSert72/sertde.
enhance mitochondrial fission, which in turn recruits DRP1 into
mitochondria; its absence stimulates mitochondrial autophagy via
the PINKI1/parkin pathway, degrading dysfunctional and
fragmented mitochondria and manipulating ovarian cancer cell
chemoresistance (68).

2.4.2 Interaction between mitochondria and ER

ER-associated interactions are also important to ovarian cancer cell
survival. The Ca>* regulatory network, centered on the ER, maintains
intracellular Ca** homeostasis through coordinated interactions with
mitochondria, lysosome, other organelles, and the plasma membrane.
Ca”* homeostasis dysregulation is closely related to malignant cancer
occurrence and development. Increased cytoplasmic Ca®* from the
extracellular space or ER can trigger mitochondrial Ca** uptake,
especially since the ER and mitochondria are physiologically and
functionally interconnected at multiple sites. This MAM is involved
in multiple processes, including Ca** homeostasis regulation, the main
mechanism by which IP3R and VDAC promote mitochondrial Ca**
uptake in the OMM (69). MAM formation, promoted by GRP75, is
another potential target for overcoming ovarian cancer cisplatin
resistance (70). The mitochondrial PHB2/OMAI1/DELE] pathway
also coordinates during ERS to promote ovarian cancer responses to
chemotherapeutic agents (71).

3 Cellular organelle mechanisms in
endometrial cancer pathogenesis and
therapeutic processes

3.1 Mitochondria

3.1.1 Endometrial cancer cell migration
and invasion

Expression of mitochondrial endometrial protein leucine zipper/
EF hand-containing transmembrane-1 (LETM1) is higher in
endometrial carcinoma tissues compared with atypical hyperplasia
tissues, and higher in atypical hyperplasia tissues compared with
normal tissues. Moreover, silencing LETM1 downregulates carboxy-
terminal modulator protein (CTMP), reducing the activity,
migration, and invasion, and inhibiting the malignant progression,
of endometrial cancer (72). MCU upregulation enhances
mitochondrial activity and promotes clone formation and
migration of endometrial cancer cells; it also interacts with
VDACI to enhance regulation of mitochondrial calcium uptake
and promote endometrial cancer progression (73). Glucose
metabolism in endometrial cancer cells is complex and mediated
by glycolysis and mitochondria to ensure energy requirements.
Factors affecting glucose metabolism may influence the initiation
and progression of endometrial cancer and, unlike many other
cancers that primarily exhibit increased glycolysis, it is more
heavily OXPHOS-dependent. Endometrial cancer stem cells
display higher mitochondrial membrane potentials, ROS, ATP
levels, and rates of oxygen consumption, and their increased
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glucose uptake is associated with decreased lactic acid production
and mitochondrial OXPHOS (74). Simultaneously, reduction of
OXPHOS or complex I expression in different endometrial cancer
types may contribute to less aggressiveness, in which the OXPHOS
profile is associated with better disease outcomes, lower grading and
staging, and endometrioid histology (75).

3.1.2 Endometrial cancer cell apoptosis

Apoptosis is another major pathway for inducing effective cell
death in cancer therapy. Its specific mechanism is mitochondrial
regulation of the interactions among Bcl-2 family members,
inhibiting Bcl-2 and activating Bax, which later induce
formation of mitochondrial pores, leading to altered mitochondrial
osmotic pressure and transmembrane potential loss, which releases
mitochondrial membrane cytochrome ¢ (cyt ¢) into the cytoplasm,
where it binds to apoptotic protease-activating factor-1 (Apaf-1),
forms apoptotic bodies, leads to caspase-9 precursor activation and
subsequent cleavage with caspase-3 activation, degrading a range of
cellular substrates and causing cell death (76-79). Release of high
ROS levels in mitochondria and other initiators also stimulate the
death receptor pathway, signaling different apoptotic systems and
leading to apoptosis (80).

3.2ER

3.2.1 ER factor expression

Compared with normal endometrial tissues, positive expressions
of derlin-1 and PAX2 proteins related to ER degradation are higher
in endometrial cancer tissues. Moreover, on multivariate logistic
regression analysis, International Federation of Gynecology and
Obstetrics stages III-1V, differentiation degree medium-to-low, and
lymph node metastasis were all independent risk factors for positive
derlin-1 protein expression (81). ERS-induced ER peroxidase
PRDX4 and the important molecular chaperone GRP78 are highly
expressed in endometrial cancer tissues, indicating synergistic
relations; their co-expression is an independent risk factor for
endometrial cancer prognosis and overall survival (82).

3.2.2 ERS

Metabolic disorders are a recognized risk factor for endometrial
cancer. Impaired glucose metabolism accelerates dyslipidemia and
promotes endometrial cancer progression due to ERS and
hyperinsulinemia and saturated fatty acid-induced dyshomeostasis
of Ca** and ERS (83). Risk profiles including TRIB3, CREB3L3,
XBP1, and PPPIRI5A are effective for predicting prognosis and
immune relevance in patients with endometrial cancer (84).

3.3 Lysosome

3.3.1 Lysosome factor expression
Like ER, lysosome-associated membrane protein 3 (LAMP 3) is
expressed more highly in uterine corpus endometrial carcinoma

(UCEC) compared with normal tissues. This is primarily regulated
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by a specific ceRNA network, the differential expression profile of
which is closely associated with clinical and pathological
features. Patients exhibiting high LAMP 3 expression tend to
have shorter survival expectancies, making it a potent UCEC
biomarker and potential diagnosis, treatment, and prognostic
assessment candidate (85).

3.3.2 Cancer factor regulation

Cancer changes in protein glycosylation are strongly associated
with metastatic potential and immune evasion. One study
comparing endometrial cancer and normal tissue samples
observed 121 upregulated and 296 downregulated glycopeptides,
with upregulation of approximately 80% of those involved in the
lysosomal pathway (86). Genes associated with lysosomal
biogenesis, including LAMP3, LAMPI1, RIN3, and NPC2, are
PAXS targets, and regulating PAX8-DDX5 interactions promotes
c-MYC-associated cell cycle progression in endometrial cancer in
patients with the TP53 mutation (87).

3.4 Organelle interactions

Organelle interactions play an important role in endometrial
carcinoma development and progression.

3.4.1 Mitochondrial degradation with
lysosome participation

Mitochondrial autophagy is a cytoprotective mechanism that
allows cells to restore homeostasis by selectively removing damaged
mitochondria, in response to lethal oxidative stress. A systematic study
characterizing mitochondrial autophagy in endometrial cancer, to
predict tumorigenesis and prognosis, showed that the endometrial
cancer oncogene TOMM40 promotes cancer progression through
mitochondrial autophagy-related pathways (88). KIF4A, in the kinesin
protein superfamily, is closely related to mitochondrial autophagy; it
interacts with TPX2, a protein involved in DNA damage repair in
response to replication stress, to inhibit TPX2 ubiquitylation and
enhance genomic stability in endometrial cancer cells (89).

In dysfunctional mitochondria, PINKI is unable to import into
the inner mitochondrial membrane (IMM) for cleavage and
degradation, forcing it to stabilize on the damaged OMM (90, 91).
Parkin, activated by PINK1 kinase activity, is an E3 ubiquitination
ligase capable of labeling specific substrates for ubiquitination,
thereby recruiting autophagosomes and encapsulating damaged
mitochondria to complete mitochondrial degradation through
fusion with lysosome (92, 93). In endometrial cancer, abnormal
PINK1/parkin pathway expression promotes cancer occurrence and
development. Mitochondrial autophagy process inhibition involved
in the PINK1/parkin pathway induces apoptosis and inhibits cancer
cell growth and proliferation. The mitochondrial autophagy gene
E2F1 is also highly expressed in endometrial cancer, and its
expression level is closely associated with poor prognosis in
patients with UCEC or TP53 mutations (94).

The X chromosome protein-coding gene TIMMS8A affects
mitochondrial autophagy to influence immune infiltration and
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prognosis in UCEC (95). Enhanced chemodynamic therapy mediated
by cancer-specific catalysts synergize with mitochondrial autophagy
inhibition to improve endometrial cancer treatment efficacy (96).
Estrogen regulation of intracellular calcium homeostasis in
endometrial cancer cells originates from extracellular calcium
endocytosis, rather than ER release, to regulate lysosomal activity
and mitochondrial ROS, promoting endometrial cancer
progression (97).

3.4.2 ER and mitochondria coordination

INF2 protein in the ER can trigger mitochondrial division by
recruiting DRP1 protein, and elevated INF2 has been significantly,
negatively correlated with the hypocancerous FBXO7 protein in
endometrial cancer specimens (98). Under energetic stress
conditions, AMPK induces phosphorylation of INF2 (Ser1077),
leading to its increased localization to the ER, which enhances DRP
recruitment to mitochondria and promotes endometrial cancer cell
growth (99).

Mitochondria-lysosome and mitochondria-endoplasmic
reticulum are the main organelles involved in endometrial cancer
cell progression. The former is mainly because PINK1 cannot be
imported into the mitochondrial inner membrane for cleavage and
degradation, and is forced to stabilize in the damaged mitochondrial
outer membrane. Parkin activated by PINKI kinase activity can
label specific substrates for ubiquitination, thereby trapping the

The substrate
for ubiquitination

Mitochondrion

Lysosom

utophagosome

FIGURE 3
Endometrial cancer and organelle interactions.
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autophagosome, encasing the damaged mitochondria, fusing with
the lysosome, and promoting mitochondrial degradation through
hydrolase, completing mitochondrial autophagy. The latter, based
on AMPK stimulation, increases INF2 localization in the ER and
helps drive Drp1 loop assembly at mitochondrial contraction sites,
triggering mitochondrial division. Figure 3 summarizes endometrial

cancer and organelle interactions.

4 Mechanisms of organelle
involvement in cervical cancer
pathogenesis and

therapeutic processes

4.1 Mitochondria

Overexpression of FIS1 in HeLa cells inhibits cell proliferation and
migration, promotes mitochondrial fission, leading to intracellular
oxidative stress damage, and reduces cellular proliferation and
migration functions (100). Mitochondrial carrier 1 (MTCHL1) is a
central mediator of mitochondrial-mediated ferroptosis (MMF) in
cervical cancer, and its deletion disrupts mitochondrial OXPHOS and
initiates FoxO1-GPX4 axis-mediated retrograde signaling, which
increases ROS and ultimately triggers ferroptosis (101). NF-xB

Mitochondrion

litochondrial

division
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induces expressions of multiple cytokines and chemokines, stimulates
transcription of proliferation-regulated genes, maintains
mitochondrial homeostasis, and controls mitochondrial metabolic
reprogramming to promote tumorigenesis; knockdown of IFI16, the
main NF-kB-activating molecule, inhibits cisplatin-induced NF-xB
(p65) entry into the nucleus and transcription of its target genes (IL-6
and cyclin D1), decreases mitochondrial membrane potential,
exacerbates cisplatin-induced mitochondrial dysfunction, and
increases HeLa cell sensitivity to cisplatin (102).

42 ER

Benzyl isothiocyanate (BITC) blocks the U14 cell cycle and has a
role in upregulating ERS IRElow gene, Atf4 gene, CHOP gene, and
protein expression; this suggests that ERS plays an important role in
BITC-induced cervical cancer cell apoptosis (103). The encoding gene
CALCOCOL1 binds to ATGS8 family proteins, anchors to the ER and
Golgi, participates in ER and Golgi autophagy, reverses the inhibition
of autophagy after human papillomavirus (HPV) cell integration, and
is mTOR pathway regulation-dependent (104). In vitro and in vivo
model studies have shown that GRP78, a multifunctional calcium-
binding ER protein, interacts with EIF3D to inhibit GRP78, and
reducing EIF3D influence on the Warburg effect (i.e., aerobic
glycolysis) and cell growth in an in vitro cervical cancer model
(105). Knockdown of the ER membrane protein INSIG2 inhibits
cervical cancer cell proliferation, migration, and invasion, while
downregulating EMT-related gene expression levels (106).

4.3 Lysosome

Lysosomal membrane damage releases apoptosis-causing
hydrolytic enzymes (e.g., histone proteases) (107). High-risk
(HR) HPV E6/E7 (viral oncoprotein E6/E7) can inhibit autophagy
by suppressing autophagic lysosome formation, and inhibition of
autophagy diminishes cervical cell HR-HPV clearance, resulting in
persistent infection and promoting cervical carcinogenesis (108). By
activating the ROS/JNK pathway, promoting Bcl-2 phosphorylation,
leading to the dissociation of Bcl-2 from BECNI, and inducing
autophagy, enhanced autophagy lysosome formation can
significantly downregulate cervical cancer cell HPV E6 and E7
expression levels and effectively inhibit their growth (107).
Another study showed that after matrine was added, many
autophagic lysosomes could be seen in Hela and SiHA cells, and
cell proliferation was affected, further confirming that cervical cancer
cell proliferation may be affected by enhancing autophagic lysosome
formation (109).

5 Discussion

5.1 Organelles and cell survival processes

While organelles have unique independent functions, maintenance
of homeostasis and cellular function depends on their mutual contact
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and material transports. Independent organelle-organelle interactions
have thus become a critical cell biology research focus.

5.1.1 Organelles and key ovarian cancer cell
survival processes

Mitochondria play an important role in ovarian cancer cells
survival. Abnormal mitochondrial morphologic and functional
changes are closely related to these cells’ characteristics of
rapid growth, easy diffusion, and metastasis. Activation and
phosphorylation of DRP1 and mitochondrial division-related
proteins (e.g., MFF) regulate mitochondrial division processes and
promote cell growth, proliferation, invasion, and apoptosis (33-35,
46). The SP70/HK2/VDACI signaling pathway is a core mechanism
in MPTP openings, affecting apoptosis (54). LAIR-1 can participate
in ovarian cancer cell mitochondrial bioenergy metabolism and
OXPHOS, to promote cell proliferation (41). UPR activation
regulates ovarian cancer processes, including cell cycling and
chemotherapy resistance. Small molecules specifically targeting
UPR signaling network components are expected to become
potential ovarian cancer therapy interventions (110). The UPR
marker HERPUDI inhibits apoptosis through the PI3K/AKT/
mTOR and p38 MAPK signaling pathways (58). GRP78 in
ovarian cancer tissues is associated with poor prognosis, while
ERS initiates UPR (56). Expressions of some molecules in
lysosomes affect EMT progression and change cell migration and
invasion abilities; thus, it may be an important ovarian cancer
biomarker (61-63). Lysosome can initiate calcium signaling
through the TRPML-1/TFEB pathway and regulate ovarian
cancer cell drug resistance (65). The mitochondrial autophagy-
associated PINKI1/parkin pathway, BNIP3 molecules, and
mitochondrial Ca** absorption promotion in the MAM might all
be used to manipulate ovarian cancer cell metastasis and drug
resistance (68, 70, 71).

5.1.2 Organelles and key endometrial cancer cell
survival processes

Expression of mitochondria-related molecules and OXPHOS
affect endometrial cancer cell migration, invasion, disease severity,
and prognosis (72-75); regulation of mitochondria is thus a
primary way to induce apoptosis in endometrial cancer treatment
(76-80). Expressions of many lysosomal and ER biogenic genes and
factors affect endometrial cancer prognosis, effectively predict
immune associations, and can be used as biomarkers (81, 82, 84,
85, 87). Thus, the diversity of organelle genes and factors diversify
potential endometrial cancer treatment approaches. Organelle
interactions in endometrial cancer mainly reflect the
mitochondrial autophagy process, thus regulating cellular
apoptosis (88, 94).

5.1.3 Organelles and key cervical cancer cell
survival processes

The degree of mitochondrial fission affects HeLa cervical cancer
cell proliferation and migration (100). Regulation of gene
transcription and protein expression can change mitochondrial
membrane permeability, inhibiting cervical cancer cell
proliferation through the mitochondrial apoptosis pathway,
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inducing apoptosis, and increasing HeLa cell drug sensitivity (102).
Transcriptional expression of ERS-related genes and pathway-
related factors induce apoptosis via the ERS pathway (103, 108,
111). Cervical cancer treatment might also be initiated through
other cell death processes, including controlling ferroptosis through
the FoxO1-GPX4 axis and retrograde signal transduction, which
can inhibit cell growth (101).

5.1.4 Organelles and survival processes by the
three primary malignant gynecological cancers

In studies of endometrial, ovarian, and cervical cancers,
mitochondria are important, with a large portion of this literature
addressing the impacts of mitochondria on gynecological tumors.
Mitochondrial dynamics like division, energy metabolism (e.g.,
ATP synthesis via the OXPHOS process), and other cell biology
changes influence cellular health. The ER mainly controls ERS that
occurs through molecular chaperones and respective UPR in
responses to stress inducers (e.g., hypoxia, nutritional
deficiencies) involved in cellular processes like cancer cell
survival, invasion, metastasis, and chemoresistance. Lysosome
specifically plays a prominent role in degradation, thus
participating in tumor cell glycosylation processes and autophagy-
lysosome formation by regulating the EMT process and expressions
of associated proteins, influencing cancer invasive-metastatic
potential and immune evasion. Molecules (e.g., genes, proteins)
specifically targeting these three organelles are associated with
cancer course prediction, development stage, and prognosis.
Organelle interactions, including mitochondrial autophagy and
MAM, also plays a central role in gynecological cancer cell
survival. Different organelles work both independently and are
interconnected to sustain specific cellular processes. This
cumulative evidence provides new strategies and research
directions for developing novel targeted organelle-based
molecular therapies, detection and diagnosis methods, and
approaches to assessing therapeutic efficacy.

5.2 Organelles and treatment

The similarities and differences between independent organelles
and organelle-organelle interactions, as well as their application in
their respective gynecological malignancies, play a crucial role in the
survival and progression of cancer cells. Therefore, based on the
independent organelle/organelle interaction, it is very meaningful to
study the treatment status of ovarian cancer, endometrial cancer,
and cervical cancer from this frontier perspective.

5.2.1 Ovarian cancer treatment

In ovarian cancer treatment, different drugs that target
independent organelle functions or comprehensive organelle
interactions can achieve good efficacy.

5.2.1.1 Causing or inducing apoptosis in ovarian
cancer cells

Polyphyllin VII-enhanced mitochondrial localization of DRP1 is
mediated by increased PP2A activity and decreased AKT activity,
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while the PP2A inhibitor LB100 attenuates polyphyllin VII-induced
mitochondrial division and cellular apoptosis. Thus, interference with
the mitochondrial translocation of DRP1 through the PP2A/AKT
pathway may explain the effects of polyphyllin VII in ovarian cancer
treatment (46). Cryptotanshinone inhibits mitochondrial complex I
activity, reducing the ratio of NAD*/NADH and inhibiting ATP
production, inducing AMPK activation, and thus controlling the
energy reduction process, inhibiting ovarian cancer cell growth, and
inducing apoptosis (112). In addressing ovarian cancer cell apoptosis
resistance, the newly synthesized novel rhein derivative 4a was found
to cause ERS and induce parapoptosis in ovarian cancer cells;
however, its key targets and apoptotic inhibitory effects require
further investigation (113). The anti-ovarian cancer effects of
pimaric acid are mediated by increased p-PERK, PERK, AT-4,
CHOP, and IRE-1 levels and cytotoxicity, based on ERS (114). The
WEEL inhibitor AZD1775 promotes ERS, upregulates GRP78, and
activates PERK via CHOP to promote apoptotic signaling, while
IRElo-induces sXBP1 and maintains cell survival by inhibiting
apoptosis (115). The autophagy inhibitor elaiophylin triggers
paraptosis and preferentially kills ovarian cancer drug-resistant cells
by inducing MAPK hyperactivation, providing a rational therapeutic
strategy in refractory ovarian cancer (116).

5.2.1.2 Inhibiting ovarian cancer cell proliferation
or migration

In vitro studies have shown that OXPHOS activity is higher in
the SKOV3 cell line, a more aggressive endocrine-responsive
ovarian cancer, than in the less aggressive endocrine-responsive
ovarian cancer OVCAR3. Furthermore, xihuangwan may inhibit
expressions of PGClo and TFAM by elevating ARHI expression in
SKOV3 and HEY cells, increasing their oxidative stress levels,
causing mitochondrial OXPHOS dysfunction, and thus inhibiting
cell proliferation (117). The antimicrobial drug bedaquiline can
target mitochondria to inhibit cancer cell growth, survival, and
migration by decreasing mitochondrial respiration and ATP, and
significantly enhancing cisplatin efficacy; this suggests that ATP
synthase may be a selective target for overcoming cisplatin
resistance in ovarian cancer (118).

5.2.2 Endometrial cancer treatment
Drug therapy for endometrial cancer-targeting organelles has
become a cutting-edge research area.

5.2.2.1 Mitochondria as drug target

Metformin, a standard diabetes mellitus type 2 treatment drug,
has shown promising results in cancer therapy by inhibiting
mitochondrial OXPHOS and regulating AMPK, which reduces cell
growth and proliferation. The mitochondria-targeting agent
salinomycin also inhibits cancer stem cell proliferation, migration,
sphere formation, and tumorigenicity, and induces apoptosis,
including in endometrial cancer stem cells (74). Metformin
treatment also reduces endometrial cancer stem cells by
significantly decreasing mitochondrial membrane potential,
targeting MYC signaling and mitochondrial bioenergetics in stem-
like cells of endometrial cancer origin (119). Dioscin can promote
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human endometrial cancer cell apoptosis through the mitochondrial
pathway, including Bax expression upregulation, Bcl-2 expression
downregulation, ROS level increase, caspase 9/3 (in caspase family of
cysteine proteases) activation, mitochondrial membrane permeability
reduction, and, ultimately, OMM rupture and apoptosis. Dioscin also
effectively activates marker genes and proteins (ie., Fas, TNF-RI,
caspase 8) associated with the death receptor-mediated pathway,
confirming dioscin involvement in both apoptotic pathways (120).

5.2.2.2 ER as drug target

CP41, a novel curcumin analogue, activates the H3F3A/
proteasome-MAPK signaling pathway and significantly induces
ROS levels to activate ERS, leading to apoptosis (121).

5.2.2.3 Lysosome as drug target

Niclosamide (NIC) has emerged as a promising human
endometrial cancer treatment by inducing Bax colocalization with
lysosome and inhibiting Cathepsin B maturation from pro-
cathepsin B, which induces lysosomal membrane permeability
and releases hydrolase enzymes from the lysosome to cytosol,
ultimately leading to cell death (122). Isorhamnetin is a flavonoid
that affects ERS by modulating intracellular ROS levels, activating
the endogenous mitochondrial apoptotic and exogenous death
receptor pathways and ultimately inducing apoptosis, while
inhibiting cell metastasis (123).

5.2.2.4 Gene therapy and nanocatalytic system therapy

In addition to drug therapy research, organelle-based gene and
nanocatalytic system therapies are also cutting-edge. The antitumor
activity of interleukin-24 (IL-24), a unique cytokine cancer
suppressor gene in the IL-10 cytokine family, has been
demonstrated in a variety of tumors. IL-24 increases expressions
of Bax and cyt ¢, but decreases Bcl-2, caspase-9, and caspase-3
expressions. Overexpression of IL-24 inhibits cell proliferation,
migration, and invasion in endometrial carcinoma, but increases
cell apoptosis; thus, it inhibits endometrial cancer cell growth by
inducing apoptosis through the mitochondrial internal signaling
pathway (124). While IL-24 has a specific, lethal effect on cancer
cells, it does not adversely affect normal cells or tissues (125, 126).
Thus, gene therapy may provide a novel approach to endometrial
cancer treatment. ROS play a dual role in redox regulation.
Moderate ROS-induced autophagy enables cancer cells to escape
oxidative damage, while excessive or persistent ROS leads to
autophagy-based cell death (127). Therefore, it is essential to
determine whether autophagy induced by treatment methods
(e.g., chemotherapy, radiotherapy, nanocatalytic system therapy)
exerts cytoprotective or cytotoxic effects. Whether autophagy
enhances or weakens the therapeutic effect is also an important
question. nMIL-100 (Fe) nanocatalyst is catalyzed by H,O, to
produce highly oxidizing -OH. Due to the excessive toxicity of
-OH around normal mitochondria, depolarization of mitochondrial
membrane potential is subsequently initiated, further inducing
mitochondrial oxidative damage and eventually apoptosis.
Combining nMIL-100 (Fe) catalyzed by H,O, with inhibitors of
mitochondrial autophagy (e.g., Mdivi-1) exerts synergistic
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anticancer effects, which may aid development of more effective
cancer therapies (128). Based on synergistic therapeutic inhibition
of mitochondrial autophagy and ROS-based therapy, it will be
important to target development of, for example, the
nanocatalytic system, which can adapt to both enhanced oxidative
attack and decreased antioxidant defenses, and thus may have great
clinical translation value for cancer therapy.

5.2.3 Cervical cancer treatment

To date, few studies have described the mechanisms by which
organelles interact in cervical cancer, and drug research remains the
primary focus. However, targeting independent organelle functions
or comprehensive organelle interactions have been assessed in
cervical cancer drug therapy.

5.2.3.1 Mechanisms of cervical cancer cell
proliferation inhibition

The PINKI1/parkin-mediated ubiquitin pathway is the core
mitochondrial autophagy pathway. Phosphorylation of ubiquitin
leads to parkin activation, while acetylation of ubiquitin inhibits the
formation and extension of ubiquitin chains. Through this
mechanism, histone deacetylase (HDAC) activates mitochondrial
autophagy by mediating parkin acetylation, thereby inhibiting
cervical cancer cell proliferation (129). OMA1, which is present in
the IMM, mediates hydrolysis of OPA1, resulting in the loss of its
IMM fusion ability. Also through this mechanism, maslinic acid
(MA) inhibits HeLa cell proliferation by upregulating cellular
OMAI1 and downregulating OPA1 and Bcl-2 protein expression
levels (130).

5.2.3.2 Mechanisms of cervical cancer cell
apoptosis inhibition

Elevated Bax/Bcl-2 ratio leads to mitochondrial dysfunction and
further mitochondria-mediated intrinsic pathway apoptosis, primarily
intervening with MPTP opening, permitting release of cyt ¢ and other
apoptotic effectors, which later bind Apaf-1 and caspase-9 into an
apoptosome complex, inducing cell death. In contrast, eleutheroside B
can signiﬁcantly increase Bax expression, decrease Bcl-2 expression,
and increase the Bax/Bcl-2 ratio to increase cytoplasmic cyt ¢ and
downregulate anti-apoptotic protein survival, implicating the
mitochondrial apoptotic pathway in cervical cancer (131). Similarly,
HelLa cells undergo mitochondria-mediated apoptosis, with breakdown
of mitochondrial membrane potential, significantly increased
cytoplasmic cyt ¢, downregulated Bcl-2 expression, elevated Bax
expression, activated caspase-3/-9, and significantly increased
intracellular ROS; in contrast, ivermectin (IVM) can induce HeLa
cell apoptosis precisely through the mitochondrial pathway (132).

Quercetin induces transcriptional expression of ERS-related factors
PERK, elF2c, ATF4, and CHOP, while transcriptional expression of the
apoptosis-related factors Bax, caspase-3, and cyt-c is also significantly
upregulated, and transcriptional expression of the anti-apoptotic protein
Bcl-2 is markedly inhibited; this cumulatively suggests that quercetin
induces cervical cancer cell apoptosis via ERS (133). Isoquercitrin
promotes expression of GRP78, CHOP, and caspase-12 proteins to
mediate ERS, and to further activate the apoptotic signaling pathway and
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induce cervical cancer cell apoptosis (134). In cervical cancer HeLa cells,
aloe-emodin can produce lysosomal cytotoxicity, damage lysosomal
membranes, increase histone activity, and induce apoptosis.
Concurrently, emodin can enhance Hela cervical cancer cell lysosomal
membrane permeability, decreasing cathepsin D (CTSD) and cathepsin
L (CTSL) activities and increased cytoplasm concentrations and leakage
of lysosomal hydrolases into the cytoplasm, resulting in activation of
caspases and inducing caspase-dependent apoptosis (107).

5.2.3.3 Mechanisms of mitochondrial apoptosis
and autophagy

LvHemB1 has anticancer agent potential via its interactions
with the mitochondrial protein VDACI. It causes mitochondrial
membrane potential loss, increases ROS expression, upregulates
apoptotic proteins (i.e., caspase-9, caspase-3, Bax), and induces
mitochondrial apoptosis (135). Tandem mass tag proteomics
and network pharmacology (136) has shown that Hed may
inhibit advanced cervical cancer cell mitochondrial autophagy
by blocking the autophagy effector fraction through modulation
of the target network, which is dominated by HIF-1a., Src, Akt,
and Stat3. Tanshinone I significantly inhibits cervical cancer
SiHa cell proliferation, migration, and invasive ability in drug
concentration- and time-of-action-dependent manners,
interacting with BNIP3/NIX through hydrogen bonding and
significantly affecting these cells’ differentially expressed gene
profiles and metabolic reprogramming; it also promotes
expressions of mitochondrial autophagy-related proteins
BNIP3, NIX, and optineurin, which promote conversion of
LC3I to LC3II and inhibit expressions of NDP52 and P62 (137).
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5.2.3.4 Mechanism of apoptosis in mitochondria and
ER interactions

In HeLa cells treated with saikosaponin-A, levels of GRP7S,
CHOP, and saspase-12 increase the Bax/Bcl-2 ratio, release cyt ¢
into the cytoplasm, and upregulate HeLa cell caspase-3cleavage. These
results suggest that saikosaponin-A triggers apoptosis through
mitochondrial and ERS pathways (138). Dezocine inhibits Hela cell
viability in a dose- and time-dependent manners, activates ERS by
upregulating expressions of GRP78, IRE1, and p-JNK, and weakens
dezocine-induced apoptosis when the ERS pathway is blocked (139).

The core purpose of organelles in cervical cancer treatment is to
reduce cell proliferation and increase cell apoptosis. PINK1/parkin
mediated ubiquitin pathway-activated mitochondrial autophagy
and OMA1 present in the inner mitochondrial membrane
mediate inner membrane fusion protein OPA1l to control the
mitochondrial fusion process and inhibit cell proliferation. In
contrast, mitochondrial autophagy induces apoptosis through
the opening of the mitochondrial permeability transition pore
(MPTP/PTP), ERS, and lysosomal membrane damage. Figure 4
summarizes the mechanism of organelle action in cervical
cancer treatment.

To sum up, this review shows that development and survival of
ovarian, endometrial, and cervical cancer cell processes are
mediated through the mitochondria, ER, and lysosome, and
through their mutual cooperation. Figure 5 summarizes this
current research literature. Also, we further explored the current
status of the treatments that have been applied to ovarian, cervical,
and endometrial cancers, and the available research literature is
summarised in Figure 6.
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Current organelle research in malignant gynecological cancers
faces three primary problems. First, this research has mainly
focused on certain specific organelles and organelle interaction
modes, with the former dominated by mitochondria, and the
latter relatively confined to mitochondrial autophagy. Second,
research on the organelles and their interactions is still dominated
by laboratory studies, while the efficacy of organelle-targeted
molecular therapies, diagnostic accuracy, and the reliability of
assessing therapeutic efficacy remain open questions in need of
validation through clinical practices and applications. Finally,
cutting-edge research into cellular processes is mainly centered on
cell proliferation, invasion, and apoptosis, without involving
multiple organelle types.

Herein, we content that four research directions remain to be
further developed. First, expand the current research scope to
explore the roles and mechanisms of other organelles (e.g., golgi,
ribosome) and organelle interactions in gynecological malignancies.
Second, highlight therapeutic targets and strategies, conduct
practical efficacy analyses, and translate research results to clinical
applications to improve gynecological tumor diagnostic and
therapeutic qualities. Third, enrich the breadth of researching cell
death regulation modes by other organelles (e.g., necrosis,
ferroptosis) and other organelles that regulate cell death. Finally,
based on the evidence in ovarian, endometrial, and cervical cancers,
explore the specific biological characteristics, pathogenesis, and
treatment options of other gynecological tumors from the
perspective of organelles and their interactions.

6 Conclusions

Our main contribution herein is a summary of the links between
key cell survival processes and the mitochondria, ER, and lysosome in
the occurrence, proliferation, invasion, metastasis, and drug
resistance contexts of the three major malignant gynecological
cancers: ovarian, endometrial, and cervical. We also examined
mitochondrial dynamics and energy metabolism, ER functional
abnormalities, lysosome regulation and autophagy, ER-
mitochondria and mitochondria-lysosome interactions, and the
organelle regulatory mechanisms of cell death. This review revealed
the similarities and differences among organelles and organelle-
organelle interactions in respective gynecological tumor research
and its applications. Current major organelle-targeting drugs and
other therapeutics were also discussed.

We also describe the current dilemmas and difficulties within
existing research and its applications, and propose issues and
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