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Small molecule innate immune
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Immunotherapy has proved to be a breakthrough in cancer treatment. So far, a

bulk of the approved/late-stage cancer immunotherapy are antibody-based.

Although these antibody-based drugs have demonstrated great promise, a

majority of them are limited due to their access to extracellular targets, lack of

oral bioavailability, tumor microenvironment penetration, induction of antibody

dependent cytotoxicity etc. In recent times, there has been an increased research

focus on the development of small molecule immunomodulators since they

have the potential to overcome the aforementioned limitations posed by

antibodies. Furthermore, while most biologics based therapeutics that are in

clinical use are limited to modulating the adaptive immune system, very few

clinically approved therapeutic modalities exist that modulate the innate immune

system. The innate immune system, which is the body’s first line of defense, has

the ability to turn cold tumors hot and synergize strongly with existing adaptive

immune modulators. In preclinical studies, small molecule innate immune

modulators have demonstrated synergistic efficacy as combination modalities

with current standard-of-care immune checkpoint antibodies. In this review, we

highl ight the recent advances made by smal l molecule innate

immunomodulators in cancer immunotherapy.
KEYWORDS

small molecule immunomodulators, cancer immunotherapy, innate immunity,
immuno-oncology, small molecule
Introduction

Immunotherapy is a type of therapy which uses a patient’s own immune system to fight

the disease (1, 2). Recent advances in cancer therapy have highlighted the emergence and

frequent use of immunotherapy as an alternative for hard to treat, refractory/relapse cases

(3). Current immuno-oncology therapeutics are based on antibodies that target various

proteins and receptors. These act as immune checkpoints to block immune activation in the

tumor microenvironment (TME) (3–5).
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Several monoclonal antibodies that target immune checkpoints

are clinically approved for cancer therapy (6). Antibodies targeting

immune checkpoints such as programmed cell death-1 (PD-1) and

its ligand PD-L1 are now approved for various advanced cancers

(7–10). In general, the immunoglobulin backbone poses PK

challenges such as long half-life (9-21 days), natural killer

mediated antibody-dependent cellular cytotoxicity which

increases the chances of adverse events and poor bioactivity (11–

14). Lack of oral bioavailability and limited solubility leads to

feasibility challenges like maximal administrable volume for the

intravenous (IV), intramuscular (IM), subcutaneous (SC) or

intratumor (IT) delivery (13, 15). Apart from these concerns,

antibody therapy is challenged by poor anti-tumor efficacy in

some solid tumors due to lack of cell permeability resulting in the

inability to recognize intracellular targets (16).

In contrast to therapeutic antibodies, small molecule

immunomodulators have superior drug-like characteristics in

terms of pharmacokinetic properties such as oral bioavailability,

reasonable half-life, and membrane permeability (17–19). Apart

from this, patient adherence is trickier with antibody therapy due to

the intravenous administration while small molecules are often

administered orally as a pill or tablet form allowing for better

patient compliance. Interestingly, various preclinical and clinical

studies have reported that small molecule immunomodulators

when used as combination modalities with antibody therapy

demonstrates synergistic anti-tumor efficacy and also used as

adjuvants in cancer treatment (20–23). Surprisingly, majority of

the focus has so far been towards harnessing the adaptive immune

system by inhibiting the immunosuppressive signaling with

immune checkpoint inhibitors. Tumor microenvironment (TME)

comprises of multiple components such as the adaptive immune

cells like (T and B cells) and innate immune cells like macrophages,

dendritic cells, myeloid-derived suppressor cells, neutrophils,

natural killer cells. Cell types such as macrophages, dendritic cells

and natural killer cells that perform the routine surveillance are the

first to encounter cancer cells (24, 25). In this review, we summarize

the recent advances in small molecules innate immunomodulators

being developed for treating cancer.
Innate immune system in cancer

Innate immune cells detects and processes cancer antigens and

can directly eradicate tumors by its effector responses such as

cytotoxicity and phagocytosis (26–31). Various pathways are

involved in triggering the innate immune pathways (Figure 1).

Antigen presenting cells such as dendritic cells and macrophages

utilizes a specific type of DNA sensor known as cGAS/STING

pathway. The cGAS/STING pathway senses chromosomal

instabilities, double stranded breaks and fragmented DNA in

cancer cells (32–34). Tumor derived DNA fragments resulting

from genomic instability, mitochondrial dysfunction, and

oxidative stress are sensed by the cGAS protein. cGAS converts

ATP and GTP into a cyclic dinucleotide (CDN) known as 2’3’-

cGAMP, a secondary messenger which acts as a ligand for STING

protein and results in activation of the pathway (35–39). Various
Frontiers in Immunology 02
studies have demonstrated that tumor derived 2′3′-cGAMP

molecules act as an immune activator and directly trigger anti-

tumor immunity (40–44). Ecto-nucleotide pyrophosphatase/

phosphodiesterase-1 (ENPP1/NPP1), a membrane-bound

nucleotide hydrolase hydrolyzes 2’3’-cGAMP and dampen the

STING-dependent anti-tumor innate immune response

(Figure 1). ENPP1 acts as a negative regulator for the STING

pathway (45). Interestingly, higher expression of ENPP1 has been

directly linked with cancer progression, metastasis, and poor

response to immunotherapy (46–48).

Besides the cGAS/STING pathway, other immunomodulatory

mechanisms involved in cancer include Toll-like receptor (TLRs),

RIG-I, NLRP3, and CD47-SIRPa pathways (Figure 1) (49–51). TLRs

are damage or pattern recognition molecules responsible for immune

activation. For e.g., TLR-3, TLR-7 and TLR-9 are widely explored for

their role in dendritic cell maturation (52). TLR-7 agonists have

demonstrated significant immunostimulatory and anti-tumor

efficacy in various cancer models (53). Alternative strategies for

igniting the innate immune response and warming up cold tumors

include RIG-I and NLRP3 (54, 55). MDA5 and RIG-I have different

preferences for RNA ligands, while having comparable structures and

causes upregulation of type I interferon signaling (54, 55).

Endogenous RNAs are modified to escape the response triggered

by the RNA sensors present in the cytosol. Adenine to Inosine

conversion is one such modification catalyzed by the protein

Adenosine deaminase acting on RNA (ADAR) (56). Tumors with

high interferon signature are ADAR1 dependent, and transcripts

induced by interferon contributes to accumulation of dsRNA in the

cytoplasm (57). ADAR1 depletion resulted in upregulation of

interferon stimulated genes (ISGs) in a RIG-1, MDA5 dependent

manner (58, 59). Further, deletion of ADAR1 also rendered these

cells more prone to immuno-therapy and overcame resistance to

immune checkpoint blockade (60), demonstrating ADAR1 as a new

immuno-oncology target. Apart from the RIG-I pathway, the NLRP3

inflammasome is a pattern recognition receptor which is activated by

both exogenous and endogenous stimuli, leading to a downstream

inflammatory response (61, 62). Reports have shown that NLRP3

inflammasomes are necessary for anti-tumor effect during radiation

(61). Upon activation, NLRP3 triggers IL-1 mediated maturation of

dendritic cells resulting in cross-priming and T-cell immune response

(63). Cancer cells escape the innate immune response by means of

SIRPa-CD47 interaction which provides a ‘‘don’t-eat-me’’ signal to

the effector immune cells like neutrophils and macrophages (64).

Increasing evidence suggests that SIRPa-CD47 immune checkpoint

blockade enhances the efficacy of cancer immunotherapy (65–68). In

this review, we discuss about various small molecule modulators

(Summarized in Table 1) of targets such as STING/ENPP1, TLR,

NLRP3, and SIRPa-CD47 which are key players in the innate

immune system working against cancer.
Small molecule STING agonists

STING agonists activate the STING pathway, leading to the

production of type I interferon and proinflammatory cytokines,

resulting in anti-tumor immunity (112, 113). Vadimezan
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(DMXAA) – A vascular disrupting agent was the first STING agonist

extensively evaluated pre-clinically. DMXAA demonstrated a potent

anti-tumor immune response in murine tumor models when

administered intratumorally (114). However, the lack of translation

of this efficacy in clinical trials led to the termination of the trial (115).

A detailed study later showed that DMXAA is a direct ligand for

murine STING but does not bind to human STING (116). Several

cyclic dinucleotides based (CDN) compounds such as ADU-S100,

TAK-676, MK1454, BMS-986301, SB11285, BI-1387446, IMSA-101,

etc. were the first generation of STING agonist being developed

(Table 1). These CDN compounds progressed to clinical trials in

accessible solid tumors amenable to intratumoral/intravascular/

intramuscular delivery. However, their poor ADME properties and

stability, lack of substantial anti-tumor effects in the clinical trials and

risks of cytokine release syndrome led to discontinuation of several of

the trials (117). Recent years have witnessed the development of

several small molecule non-CDN based STING agonists (Table 1).

These possess novel pharmacophores to address the ADME, PK and
Frontiers in Immunology 03
stability concerns associated with the first-generation CDN based

compounds (113). Ramanjulu et al. group reported the

amidobenzimidazole (ABZI) as a non CDN based STING agonist

with systemic activity in mice (75). ABZI binds in the cGAMP

binding pocket with two bound molecules per STING dimer with

each ABZImolecule close in space, projected across the STING dimer

interface and lacked interactions with the protein. Subsequently, SAR

modification at N1-hydroxyphenethyl moiety with a linker between

the two molecules to identify a dimeric amidobenzimidazole ligand

(diABZI), which showed substantial increase in binding affinity.

diABZI induced dose dependent activation of STING and secretion

of IFN-b (EC50 = 130 nM). Compound 3 demonstrated satisfactory

plasma concentrations and significant antitumor efficacy at a dose of

1.5 mg/kg intravenously in a CT-26 tumor model (75). Pan et al.

group identified MSA-2 (benzothiophene- oxobutanoic acid) as an

orally bioavailable non-nucleotidic human STING agonist. MSA-2

showed dose dependent anti-tumor effect by intratumoral,

subcutaneous or oral administration in-vivo which synergized with
FIGURE 1

Schematic representation of the various innate immune pathways: Innate immune cells consists of a battery of sensors which equip them to fight
against infection and cancer. Activation of STING and RIG-I pathways exerts a robust interferon response which allows the immune system to act
against cancer and also curtail infection. Release of type 1 interferons, cytokines and chemokines facilitates the trafficking of the T cells to the TME
and primes their activation. The cross-talk between innate and adaptive immune cells enables a potent anti-tumor immunity.
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TABLE 1 List of innate immune modulators in cancer immunotherapy.

STING AGONISTS

ID Structure Indication Reference

DMXAA
(Non-CDN analog)

Advanced urothelial carcinoma (Phase II, withdrawn);
Non-small cell lung cancer (Phase III, terminated)

NCT01071928
NCT00738387;

ADU-S100
(CDN analog)

Advanced/metastatic solid tumors or lymphomas
(Phase Ib; Terminated)

NCT02675439
NCT03172936

(69)
(70)

TAK-676
(CDN analog)

Solid tumors (Phase I)
NCT04879849

(71)

Ulevostinag
(MK1454)

(CDN analog)

Advanced/metastatic solid tumors or lymphomas (Phase II)
NCT03010176
NCT04220866

(72)

BMS986301
(CDN analog)

Not disclosed Advanced solid cancers
(Phase I)

NCT03956680

SB-11285
(CDN analog)

Not disclosed Melanoma, head and neck squamous cell carcinoma, Solid
tumor

(Phase IA/IB)
NCT04096638

(73)

BI-1387446
(CDN analog)

Not disclosed Advanced solid tumor (Phase I) NCT04147234

IMSA-101
(CDN analog)

Not disclosed Advanced treatment refractory malignancies (Phase I/IIA) NCT04020185

GSK3745417
(Non-CDN analog)

Not disclosed Leukemia, Myeloid, Acute (Phase I)
Neoplasms (Phase I)

NCT05424380
NCT03843359

SNX281
(Non-CDN analog)

Not disclosed Advanced solid tumors and Lymphoma (Phase I) NCT04609579

E7766
(Non-CDN analog)

Lymphoma and advanced solid tumors (Phase I/IB)
NCT04144140

(74)

HG-381
(Non-CDN analog)

Not disclosed Advanced solid tumor (Phase I) NCT04998422

ABZI
(Non-CDN analog)

Preclinical (75)

di-ABZI
(Non-CDN analog)

Preclinical (75)

MSA-2
(Non-CDN analog)

Preclinical (76)

(Continued)
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TABLE 1 Continued

STING AGONISTS

ID Structure Indication Reference

MSA-2 Dimer
(Non-CDN analog)

Preclinical (76)

SR717
(Non-CDN analog)

Preclinical (77)

CRD5500
(Non-CDN analog)

Not disclosed Preclinical (78)

SHR1032
(Non-CDN analog)

Preclinical (79)

aEGFR-172ADC Preclinical (80)

CD47 inhibitor

NCGC00138783 Leukemia (Preclinical) (81)

RRx-001 Small cell lung cancer
(Phase 3)

NCT05566041

(82)

Metformin Breast cancer
(Preclinical)

(83)

4-
Methylumbelliferone

(4Mu)

HCC
(Preclinical)

(84)

JQ1 Lymphoma
(Preclinical)

(85)

Gefitinib NSCLC
(Preclinical)

(86)

SEN177 Melanoma
(Preclinical)

(87)

(Continued)
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TABLE 1 Continued

STING AGONISTS

ID Structure Indication Reference

CD47 inhibitor

PQ912 Melanoma
(Preclinical)

(87)

ISM8207 NA TNBC
(Phase 1)

(88)

NLRP3 Agonist

MCC950
BMS986299

HNSCC
(Preclinical)

(89)

Advanced solid cancers
(Phase 1)

NCT03444753

HEI3090 Lewis lung carcinoma (LLC)
(Preclinical)

(90)

Andrographolide (Andro) colitis-associated cancer (CAC)
(Preclinical)

(91)

TLR agonists

Imiquimod
(TLR7)

Basal cell carcinoma (Marketed)
Lentigo Maligna Melanoma (Head or Neck); Phase III

NCT00314756
NCT01720407

Guretolimod
DSP-0509
(TLR7)

Neoplasms (Phase I/II) NCT03416335

JNJ-
64794964

(TQ-A3334; TLR7)

Not disclosed NSCLC (Phase I/II) NCT04273815

LHC-165
(TLR7)

Neoplasms (Phase I/Ib) NCT03301896

Telratolimod
MEDI-9197
(TLR 7/8)

Solid tumors (Phase I) NCT02556463

(Continued)

TABLE 1 Continued
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TABLE 1 Continued

STING AGONISTS

ID Structure Indication Reference

TLR agonists

Motolimod
VTX-2337
(TLR8)

Ovarian cancer
(Phase I/II)

NCT02431559

GSK1795091
CRX-601
(TLR4)

Solid tumors (Phase I) NCT02798978

24e
(TLR 7/8)

Preclinical (92)

CUCPT17e
(TLR3/8/9)

Preclinical (93)

SMU-C80
(TLR1/2)

Preclinical (94)

ENPP1 Inhibitors

a-Borano-b,g-
methylene-ATP

Preclinical (95)

a,b-methylene-g-thio-ATP Preclinical (96)

4i Preclinical (97)

5g Preclinical (98)

QPS1 Preclinical (99)

7c Not disclosed Preclinical (100)

(Continued)

TABLE 1 Continued
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anti-PD1 therapy (76). Molecular mechanism of action studies

revealed that in solution, MSA-2 exists in equilibrium as a non-

covalent dimer of MSA-2. Therefore, a series of covalently linked

MSA-2 dimers were synthesized and compound 3 has shown

enhanced binding affinity to STING (IC50 = 23 ± 7 nM; cGAMP

displacement assay) and (EC50: 70 ± 50 nM; Secretion of IFN- b)
(76). Chin et al. group identified SR-717 as a non-nucleotide STING

agonist (EC50 = 2.1 µM) that demonstrated potent antitumor activity

and promoted the activation of CD8+ T, NK and dendritic cells in

vivo (77). Co-crystal structure revealed that SR-717 induced cGAMP

mimetic closed conformation with STING. Moreover, SR-717 also

induced the expression of clinically relevant targets, including PD-L1

in a STING-dependent manner (77). Banerjee et al. recently

discovered CRD-5500 (Bicyclic benzamides; Structure not available)
Frontiers in Immunology 08
as a non-nucleotide STING agonist that activates major human

STING variants and generates a strong pro-inflammatory response

(78). CRD-5500 demonstrated antitumor activity in-vivo and a

synergistic effect with anti-PD1 (78). Several other groups have

reported Non-CDN based small molecule STING agonists

(Table 1)). However, systemic administration of STING agonists

causes cytokine release syndrome (immunotoxicity) due to the

ubiquitous expression of STING in normal and tumor tissues

which impedes its clinical translation. In order to minimize the risk

of toxicity, tumor targeted delivery of STING agonists using

Antibody- drug conjugates (ADC) are being explored as potential

cancer immunotherapeutics. Chen et al. group reported STING ADC

(aEGFR-172ADC) for their molecule IMSA172 that demonstrated

potent antitumor efficacy in-vivo and promoted activation of
TABLE 1 Continued

STING AGONISTS

ID Structure Indication Reference

ENPP1 Inhibitors

STF-1084 Breast cancers
(Preclinical)

(101)

STF-1623 Pancreatic cancers
(Preclinical)

(101)

MV-626 Not disclosed Pancreatic cancers,
Colon cancer
(Preclinical)

(102)

AVA-NP-695 Not disclosed Breast Cancer
(Preclinical)

(103)

SR-8314 Not disclosed Melanoma,
Colon cancer
(Preclinical)

(104)

ZXP-8202 Not disclosed Colon cancer
(Preclinical)

(105)

ZX-8177 Not disclosed Colon cancer
(Preclinical)

(106)

ISM5939 Not disclosed Colon cancer
(Preclinical)

(107)

RBS2418 Not disclosed Advanced unresectable, recurrent or metastatic tumors;
(Phase 1, NCT05270213)

(108, 109)

TXN10128 Not disclosed Locally advanced (unresectable) or metastatic solid tumors
(Phase 1, NCT05978492)

(110)

SR-8541A Not disclosed Advanced/Metastatic Solid Tumors
(Phase 1, NCT06063681)

(111)

TABLE 1 Continued
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dendritic cells, T cells, natural killer cells, natural killer T cells, as well

as promotion of M2 to M1 polarization of tumor-associated

macrophages. The STING ADC also showed synergistic effect with

anti-PD-L1 (80). ADCs have emerged as a promising alternative to

address cytokine related toxicity concerns, and extensive work is

currently ongoing which is beyond the scope of this review.
ENPP1 inhibitors

ENPP1 has emerged as a promising therapeutic target in cancer

immunotherapy and inhibition of ENPP1 augments anticancer

immunity via STING-mediated innate immune activation (46,

101, 118–120). Nucleotide-based ENPP1 inhibitors have been

developed (Table 1); however, these possess low oral

bioavailability, high acidity of the phosphate backbone, moderate

stability and potential off-target biological effects (119). To address

the existing concerns several groups have identified and developed

series of non-nucleotide based ENPP1 inhibitors (Table 1). An

isoquinoline derivative based ENPP1 inhibitor has been reported by

Ausekle et al. with IC50 values of 0.36 mM using p-NP-TMP as a

substrate (97). Chang et al. reported a thioacetamide inhibitor with

Ki value of 5 nM against human ENPP1 using p-Nph-5’-TMP as

substrate (98). Patel et al. reported a quinazoline-piperidine-

sulfamide ENPP1 inhibitor (QS1) with an IC50 of 36 nM using

ATP as a substrate (121). Carozza et al. designed a phosphonate

analog of QS1, STF-1084 with Ki,app = 110 nM. A quinazoline-4-

piperidine sulfamide compound, QPS1 with Ki = 59 ± 5 nM is

reported by Patel and coworkers as a selective non-competitive

ENPP1 inhibitor (121). Using QPS1 as the lead compound,

Forcellini et al. developed quinazoline-4-piperidine sulfamide

analogues based ENPP1 inhibitors with Ki < 105 nM against

human ENPP1 (100). STF-1084 is a potent, specific, and cell

impermeable ENPP1 inhibitor (42). Another cell-impermeable,

nontoxic specific ENPP1 inhibitor is STF-1623 (Ki,app = 16 nM in

an in vitro assay) which delayed tumor growth in Panc02 syngeneic,

pancreatic tumor model. STF-1623 resulted in a decreased rate of

locoregional failure of breast cancer models treated with surgery

and radiation (122).

Other small molecule ENPP1 inhibitors with promising

preclinical results have been reported (Table 1), however, the

structure for these inhibitors have not been disclosed yet. MV-

626 is a selective ENPP1 inhibitor developed by Mavupharma (Ki: 5

nM) with 100% oral bioavailability in rats and mice. In-vivo, MV-

626 in combination with radiation treatment delayed tumor growth

in syngeneic Panc02 tumor model. Further, the combination of

MV-626 with anti-PD-L1 enhanced overall survival in the MC38

murine colon carcinoma model (102). Another preclinical

candidate AVA-NP-695, from Avammune Therapeutics is a

selective and highly potent ENPP1 inhibitor, which apart from its

immunomodulatory effect also modulates cancer metastasis. AVA-

NP-695 has demonstrated strong synergy with PARPi, resulting in

superior tumor growth inhibition and reduced metastasis in

syngeneic 4T1 breast cancer mouse models (103, 123). SR-8314 is

a potent ENPP1 inhibitor with a Ki value of 0.079 µM, which
Frontiers in Immunology 09
increases IFNb, ISG15 and CXCL10 expression in THP1 cells. In-

vivo efficacy of SR-8314 was confirmed in syngeneic murine tumor

model and increased levels of CD3, CD4, and CD8 T cells were

observed in SR-8314 treated tumors (104). ENPP1 inhibitor, ZXP-

8202 with EC50 value of 20 nM in cell based-assay and ZX-8177

with IC50 of 9.5 nM are reported with 37-60% tumor growth

inhibition (TGI) for ZX-8177 in CT26 syngeneic mouse model.

Synergistic tumor inhibition of ZX-8177 in combination with anti-

PD-L1 in MC38 syngeneic mouse model (TGI of anti-PD-L1

antibody vs. combo treatment is 53% vs. 75%) was observed as

well. (106). ISM5939 is a selective inhibitor of ENPP1 with IC50 of

0.63 nM in the enzymatic assay with ISM5939 monotherapy (30

mg/kg, p.o. BID) having a 67% TGI in MC38 model (107).

A few ENPP1 small molecule inhibitors have advanced to early

clinical stages for potential use as cancer immunotherapeutics that

enhance the STING-mediated immune response (Table 1). The

structures of most of these compounds have not been disclosed yet.

In 2022, the first Phase I clinical trial was initiated for an orally

available small molecule ENPP1 inhibitor, RBS2418 from

Riboscience in combination with pembrolizumab or as a

monotherapy for advanced unresectable, recurrent or metastatic

tumors (108, 109). TXN10128 is another orally available ENPP1

inhibitor in Phase 1 currently being evaluated for solid tumors

(NCT05978492). The IC50 value of selective ENPP1 inhibitor

TXN10128 with cGAMP as substrate was 4 nM. TXN10128 in

combination with anti-PD-L1 antibody inhibited tumor growth in

MC38 syngeneic mouse model (110). SR-8541A is an oral ENPP1

inhibitor candidate from Stingray Therapeutics in Phase 1, being

evaluated in subjects with advanced/metastatic solid tumors

(NCT06063681). In vitro SR-8541A triggers strong immune

responses, with increased expression of IFN-b, ISG15 and

CXCL10 and showed decreased tumor growth in a CT26 colon

cancer model (124).
Small molecule TLR agonists

Toll-like receptors (TLRs) are pattern recognition receptors

(PRRs) involved in the regulation of innate immunity. TLRs play

a pivotal role in recognizing pathogen-associated molecular

patterns (PAMPs) or damage-associated molecular patterns

(DAMPs) and initiating immune responses. The activation of

specific TLRs like TLR1/2, TLR3, TLR5, TLR7/8 and TLR9 have

previously demonstrated antitumor immune responses. Moreover,

TLR agonists like Diprovocim (TLR1/2) (125), 1V270 (TLR7) (22)

and SD-101 (TLR9) (126) have shown synergistic effects with

immune checkpoint inhibitors thus enhancing the tumor

immunogenicity (Table 1). Therefore, TLR agonists present a

promising strategy for cancer immunotherapy (127, 128).

Imiquimod is a small molecule TLR7 agonist being studied in

clinical trials for various tumors such as basal cell carcinoma

(NCT00314756) and melanoma (NCT01720407) (129). Several

other TLR7 agonists are at different stages of clinical development

including Guretolimod (DSP-0509; NCT03416335; Phase I/II) for

the treatment of solid tumors administered as monotherapy and in
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combination with pembrolizumab (130). Others include JNJ-

64794964 (TQ-A3334; NCT04273815; Phase IB) for the treatment

of advanced non-small cell lung cancer (131) and LHC-165

(NCT03301896; Phase I/IB; Terminated) as monotherapy and in

combination with PDR001 in patients with advanced malignancies

(132). Telratolimod (MEDI-9197; NCT02556463) is a TLR7/8

agonist being studied in solid tumors as monotherapy or in

combination with durvalumab and/or palliative radiation therapy

but failed (Table 1) (133). Motolimod (VTX-2337; NCT02431559;

Phase I/II) is a TLR8 agonist being evaluated in combination with

durvalumab and pegylated liposomal doxorubicin for recurrent,

platinum-resistant ovarian cancer (Table 1) (134). GSK1795091

(CRX-601; NCT02798978; Phase I) is a TLR4 agonist being

evaluated for safety, tolerability, pharmacodynamic (PD), and

pharmacokinetics (PK) profile determination in healthy subjects

(135). Wang et al. reported compound 24e (pyrido[3,2-d]

pyrimidine-based) as TLR 7/8 dual agonists with EC50 of 24 nM

hTLR 7 and 10 nM hTLR 8 (92). Compound 24e induced the

secretion of IFN-a, IFN-g, TNF-a, IL-1b, IL-12p40, and IP-10 in

human peripheral blood mononuclear cell assays. Compound 24e

also showed significant tumor growth inhibition as monotherapy in

the CT-26 mouse model which led to complete tumor regression

when combined with anti-PD-L1 antibody (92). Zhang et al.

reported compound 17 e (CU-CPT17e) as multi-TLR agonist that

shown to activate TLR 3, 8 and 9. It induces a strong immune

response via the release of various cytokines in THP-1 cells. It

has also inhibited the growth of HeLa cancer cells in their in vitro

assay (93). Chen et al., reported SMU-C80 as TLR1/2 dual agonist

with an EC50 of 31 nM. SMU-C80 is reported to act through

the MyD88 and NF-kB pathways and mediated cytokine release

and the activation of immune cells to produce antitumor effect

in vitro (94).
CD47-SIRPa interaction blocker

Overexpression of CD47 enables tumor cells to evade immune

surveillance via the blockade of phagocytic mechanisms and is

associated with poor survival in various cancer (136, 137).

Therefore, inhibition of CD47-SIRPa axis has a significant impact

on tumor immunotherapy (138). NCGC00138783 is a small-

molecule inhibitor that directly blocks the binding of CD47 to

SIRPa with an IC50 of ~50 mM (Table 1) (81, 139). Further

optimization of its physicochemical properties as well as its

druggability led to the discovery of its analogues, NCGC00138419

and NCGC00138430 (139). Small-molecule inhibitors that inhibit

CD47 expression at the transcriptional and translational levels are

RRx-001, 4-methylumbelliferone (4-Mu), JQ1, and gefitinib. RRx-

001 suppressed CD47 expression in tumor cells through the

inhibition of c-MYC, a positive regulator of CD47 (140, 141). 4-

Methylumbelliferone (4Mu) is a hyaluronan synthesis inhibitor that

downregulated the expression of CD47 and promoted phagocytosis

of intraperitoneal macrophages of hepatocellular carcinoma (HCC)

cells (84). Combination of 4Mu with adenovirus encoding IL-12
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(AdIL-12) significantly reduced tumor volume (TGI ∼80%) and

largely improved overall survival in an orthotopic HCC mice model

(84). JQ1 is a small-molecule inhibitor of bromodomain and extra-

terminal (BET) proteins. JQ1 suppresses expression of CD47 and

PD-L1 in acute lymphoblastic leukemia, melanoma, and non-small

cell lung cancer (NSCLC) cells through a c-MYC-mediated pathway

(85, 142). An interesting report had highlighted that the role of

Glutaminyl cyclase isoenzyme (QPCTL) is critical for

pyroglutamate formation on CD47 at the SIRPa binding site (87)

and inhibition of QPCTL activity enhances antibody-dependent

cellular phagocytosis and cellular cytotoxicity of tumor cells.

QPCTL inhibitors, SEN177 (IC50 = 0.013 mM for QPCTL) and

PQ912 have been reported for their impact on the CD47-SIRPa
interaction (87, 143). In silico Medicine in collaboration with Fosun

Pharma developed a first-in-class orally available small molecule

ISM8207 (IC50 < 0.5 nM in enzymatic assay) inhibitor of QPCTL.

ISM8207 has advanced to Phase I clinical trials for the treatment of

triple-negative breast cancer (TNBC) and B-cell non-Hodgkin

lymphoma (88).
NLRP3 modulators

Large cytosol ic mult iprotein complexes known as

inflammasomes are involved in the host defence against microbial

infections by mediating important inflammatory innate immune

responses. NLRP3, the best-studied NLRP, is expressed by DCs,

lymphocytes, macrophages, and non-immune populations such as

epithelial cells. In various preclinical and clinical studies, the role of

NLRP3 has been extensively explored and a correlation between

lower expression of NLRP3 and advanced cancer has been

established. Interestingly, both NLRP3 agonists and inhibitors

have shown anti-tumor efficacy (Table 1). The novel NLRP3

agonist BMS-986299 is currently undergoing evaluation in a

phase I clinical trial, both as a standalone treatment and in

combination with nivolumab and ipilimumab, for advanced solid

tumors [NCT03444753] (144). In a murine model of HNSCC, a

novel NLRP3 inhibitor known as MCC950 demonstrated the ability

to delay tumor growth, decrease levels of MDSCs, Tregs, and TAMs,

while also enhancing T cell infiltration within the tumor

microenvironment (TME). Additionally, Douguet et al.

demonstrated an alternate way to activate the NLRP3

inflammasome is via P2RX7’s activation (145). HEI3090, a

pyrrolidin-2-one derivative is a positive modulator of the P2RX7

receptor that potentiates anti-PD-1 treatment to effectively control

the growth of lung tumors. This demonstrated complete tumor

regression in 80% of LLC tumor-bearing mice, works by activating

the NLRP3 pathway (90). A small molecule andrographolide

(Andro) protected mice against colitis-associated cancer (CAC) in

the mouse model of (AOM)-dextran sulphate sodium (DSS)

through inhibiting NLRP3 inflammasome activation in

macrophages. The tumor size was reduced by Andro in a dose-

dependent manner and the average tumor load was significantly

decreased in the Andro-treated group (91).
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Discussion

Developing small molecule immunomodulators for the innate

immune system for the treatment of cancer is a fast growing and

active area of research and development. The innate immune

system plays a crucial role in recognizing and eliminating cancer

cells. While small molecule immunomodulators offer several

advantages, they also come with certain disadvantages and

challenges. Small molecules may interact with unintended targets,

leading to off-target effects. This lack of specificity can contribute to

adverse reactions and limit the therapeutic index. For e.g., one

challenge in the development of STING agonists is the potential for

systemic toxicity. Activating the STING pathway can induce a

robust immune response, and balancing this response to avoid

excessive inflammation and off-target effects is critical. STING

pathway hold significant potential in combination modalities like

radiation and chemotherapies which induces double stranded DNA

breaks. Alternatively, ENPP1 inhibition has much more potential to

exert a significant anti-tumor activity with reduced autoimmune

related toxicity concerns. Recent reports have also suggested that

the loss of ENPP1 function in both cancer cells and normal tissues

resulted in a reduced primary tumor initiation and growth. The

phenomenon also hindered metastasis through a mechanism that

relies on extracellular cGAMP and is dependent on STING (46).

Notably, breast cancer patients exhibiting reduced ENPP1

expression demonstrate elevated levels of immune infiltration.

These patients show enhanced responsiveness to therapeutics

affecting cancer immunity at points preceding or following the

cGAMP-STING pathway, such as PARP inhibitors and anti-PD1

treatments. Currently, three phase 1 clinical trials are ongoing with

ENPP1 inhibitors and the potential of these inhibitors will be

analyzed once the study completes. Apart from the STING

pathway, other innate immune pathways also hold significant

potential in cancer immunotherapy. TLR agonists are used as

adjuvants to enhance the effectiveness of cancer vaccines or as

standalone agents to stimulate the innate immune response

against tumors.

Since, innate and adaptive immunity is highly interconnected,

innate immune modulators can play a crucial role in overcoming

immune tolerance and avoid resistance being developed against

immune checkpoint inhibitors. Extensive research is currently

ongoing to evaluate the combination of small-molecule

immunotherapies with various anticancer modalities, as well as

the monotherapy of these agents. For e.g. resistance to Immune

checkpoint inhibitors (ICIs) therapy is frequent, and approximately

only 30% to 40% of patients benefit from ICIs. ICIs, particularly
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monoclonal antibodies that specifically target CTLA-4 and PD-1/

PD-L1, have greatly improved patient outcomes and progressed

cancer treatment. Evidence suggests that combination of small

molecule innate immune modulators with ICIs and other

therapeutic approaches may greatly increase therapeutic efficacy.

With the growing evidence of several immune checkpoint proteins,

efforts need to be made towards development of small molecule

inhibitors against these immune checkpoints. With growing

research and early phase clinical trial along with biomarker

driven study designs, novel pathways and combination strategies

will be identified. Future developments in cancer immunotherapy

appear to be greatly promising when it comes to exploiting these

synergistic combination pathways that simultaneously engage

innate and adaptive immunity.
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