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Lactate and lactylation in
macrophage metabolic
reprogramming: current
progress and outstanding issues
Bangjun Xu, Yi Liu, Ning Li* and Qing Geng*

Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
It is commonly known that different macrophage phenotypes play specific roles

in different pathophysiological processes. In recent years, many studies have

linked the phenotypes of macrophages to their characteristics in different

metabolic pathways, suggesting that macrophages can perform different

functions through metabolic reprogramming. It is now gradually recognized

that lactate, previously overlooked as a byproduct of glycolytic metabolism, acts

as a signaling molecule in regulating multiple biological processes, including

immunological responses and metabolism. Recently, lactate has been found to

mediate epigenetic changes in macrophages through a newfound lactylation

modification, thereby regulating their phenotypic transformation. This novel

finding highlights the significant role of lactate metabolism in macrophage

function. In this review, we summarize the features of relevant metabolic

reprogramming in macrophages and the role of lactate metabolism therein.

We also review the progress of research on the regulation of macrophage

metabolic reprogramming by lactylation through epigenetic mechanisms.
KEYWORDS

lactate, lactylation, Post-translational modification (PTM), macrophage, metabolic
reprogramming
1 Introduction

Traditionally, both tissue-resident and recruited macrophages polarize into two

simplified distinct phenotypes stimulated by microenvironmental factors in pathological

conditions: the classically activated phenotype (M1) and the alternatively activated phenotype

(M2) (1). M1 macrophages, which are typically activated by lipopolysaccharide (LPS) or Th1

cytokines (e.g., IFN-g, GM-CSF), are pro-inflammatory and produce high levels of pro-

inflammatory cytokines (2). In contrast, M2-type macrophages can be polarized by Th2

cytokines (e.g., IL-4, IL-13, IL-10) to possess anti-inflammatory properties. IL-4 and IL-13

activate STAT6 via IL-4Ra, whereas IL-10 activates STAT3 via IL-10R, leading to the

polarization of M2 macrophages (3). M2 macrophages exhibit anti-inflammatory effects
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through the expression of various anti-inflammatory molecules and

endocytosis receptors, such as scavenger receptors (4). Besides, M2

macrophages generate profibrotic and pro-repair factors like PDGF,

VEGF, THBS1, and TGF-b1. They also play a role in inducing the

epithelial-mesenchymal transition (EMT) in alveolar epithelial cells,

as well as the fibroblast-to-myofibroblast transition (FMT),

contributing to fibrosis and tissue repair (5, 6). Beyond the

traditional M1 and M2 macrophage phenotypes, macrophages

recruited into the tumor microenvironment (TME) during

tumorigenesis and progression are referred to as tumor-associated

macrophages (TAM). In the early stages of tumorigenesis, TAM

typically exhibits an immune-promoting phenotype with pro-

inflammatory and anti-tumor effects, resembling the M1 phenotype

(7). However, as tumors progress, factors like an acidic environment

and hypoxia in the TME can induce a metabolic reprogramming of

TAM towards an immunosuppressive phenotype akin to the M2

phenotype. This shift promotes tumor growth, angiogenesis, and

metastasis, which is correlated with a poorer prognosis (8–10).

In macrophages, metabolic reprogramming refers to adaptive

changes in the cell’s energy metabolism during its differentiation

and activation (11). Macrophages with different phenotypes have

some degree of metabolic heterogeneity in pathways such as

glycolysis, the pentose phosphate pathway (PPP), oxidative

phosphorylation (OXPHOS), the tricarboxylic acid cycle (TCA

cycle), fatty acid synthesis (FAS), arginine metabolism, and

glutamine metabolism. This heterogeneity of metabolic profiles

correlates with the heterogeneity of macrophage phenotypes (12).

Macrophages display plasticity in both their metabolic and

functional characteristics, with their metabolic processes being

modulated by the surrounding microenvironment, subsequently

influencing their activation and polarization states (13). This

phenotypic plasticity is emerging as a novel therapeutic tool for

the treatment of tumors and chronic inflammatory diseases such as

atherosclerosis and rheumatoid arthritis, by regulating macrophage

signaling and metabolic pathways as well as reprogramming the

macrophage phenotype (14–17). However, different phenotypes of

macrophages have varying degrees of plasticity. M2 macrophages

are highly plastic, enabling them to easily repolarize to the M1

phenotype. Meanwhile, M1 macrophages are unable to repolarize

to the M2 phenotype due to the damaging effect of NO produced

by arginine metabolism on the mitochondrial oxidative

phosphorylation process. Consequently, the plasticity of

macrophage phenotypes is intricately linked to their metabolic

features (18).

Lactate is the end product of glycolysis, and it has long been

recognized as a waste product of metabolism (19). However,

evidence is now mounting that lactate has multiple biological

functions. Lactate can act as a signaling molecule to regulate

various processes such as metabolism, immune response, and

intercellular communication (20). Lactylation is a novel histone

post-translational modification first discovered and proposed by

Zhang D et al. in 2019. In macrophages, Zhang D et al. found that

the intracellular lactate accumulated both endogenously via the

glycolytic pathway and exogenously by taking up from the

extracellular milieu, can lactylate histone lysine through an
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endogenous “lactate clock” mechanism, which regulates the

transcriptional expression of related genes that transform

macrophage phenotypes (21). As a newly discovered post-

translational modification, lactylation has been found in both

histones and non-histone proteins. Histone modifications can

regulate gene transcription and expression by altering chromatin

structure, while non-histone modifications on proteins including

transcription factors and metabolic enzymes can regulate their

functions, such as protein stability, activity, interactions, and

localization (22, 23). It has been known that covalent histone

modifications like acetylation and methylation can achieve

chromatin remodeling by affecting histone-DNA, histone-histone,

and histone-chaperone interactions (24). Alterations in the relaxed/

condensed state of chromatin can affect the binding of transcription

factors to promoters, thereby affecting gene transcription and

expression (25). In Zhang D et al.’s study, the ChIP-seq data

showed that both lactylation and acetylation at the histone

H3K18 site were enriched in the promoter region. In addition,

they demonstrated that the H3K18la modification at the promoter

during M1 polarization can directly promote the transcription of

homeostatic genes (21). Nonetheless, further evidence is needed to

support the molecular mechanism through which lactylation

regulates the transcription of target genes.

There are two different isomers of lactate: L-lactate and D-

lactate. These correspond to two lactylation pathways, L-lactylation

(direct lactylation) and D-lactylation (indirect lactylation). L-lactate

and its lactylation modification process are primarily utilized to

regulate physiological and pathological processes such as signal

transduction (26). Therefore, unless otherwise specified, “lactate”

herein generally refers to L-lactate. D-lactate is mainly produced

from methylglyoxal (MGO), a byproduct of glycolysis, via the

glyoxalase pathway (27). In 2020, Gaffney DO et al. found that

lactoylglutathione (LGSH), which is not able to produce D-lactate

in the absence of glyoxalase 2 (GLO2), indirectly modifies non-

histone proteins, such as glycolytic metabolic enzymes, through

non-enzymatic lysine lactylation, thereby regulating metabolic

pathways such as glycolysis through negative feedback

mechanism (26, 28). D-lactate can also act as a signaling molecule

in the regulation of macrophage polarization, but the direction of

macrophage polarization depends on the signaling pathways

regulated by L-lactate (29, 30). Studies also demonstrated that

HDAC1–3 serve as major cellular delactylases, which reversibly

and dynamically regulate histone lactylation. In addition, the

delactylase activities of HDAC1 and HDAC3 are site-specific (26).

In short, there is increasing evidence that lactate, an important

metabolite of macrophages, can play a role in the metabolic

reprogramming process of macrophages through lactylation

modification to regulate macrophage phenotypes and help them

adapt to different pathophysiological environments. In this

review, we summarize the characteristics of relevant metabolic

reprogramming in macrophages as well as the role of lactate

metabolism therein. Furthermore, we discuss the molecular

mechanisms by which lactylation regulates macrophage metabolic

reprogramming as well as the role of lactylation in the different

pathophysiological processes in which macrophages are involved.
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2 Relevant metabolic reprogramming
of macrophage

2.1 Glycolysis and
oxidative phosphorylation
Glycolysis is commonly recognized as an important metabolic

pathway for cells to produce lactate and energy from glucose under

hypoxic conditions, but pro-inflammatory macrophages and tumor

cells prefer to rely on glycolysis in normoxia (12, 31). Despite being

less efficient than OXPHOS in terms of the amount of ATP yielded,

producing only 2 molecules of ATP per glucose molecule, glycolysis

excels in producing ATP rapidly (32). Generally speaking,

macrophage polarization to M1/M2 phenotype requires glucose

metabolic reprogramming: M1 macrophages exhibit enhanced

aerobic glycolysis and diminished OXPHOS to meet short-term

energy demands of acute inflammation at the early stage of an

infection, while M2 macrophages display enhanced mitochondrial

OXPHOS (33–35). Studies have demonstrated that inhibiting

glycolytic processes prevents macrophage polarization to the M1

phenotype, leading to the attenuation of LPS-induced inflammatory

responses and reduced acute lung injury (ALI) in mice (36, 37).

Hypoxia-inducible factor-1a (HIF-1a) contributes to the regulation
of glycolysis as well as the induction of pro-inflammatory gene

expression, and it plays a crucial role in macrophage activation and

polarization to the M1 phenotype (38, 39). Moreover, Pyruvate

Kinase M2 (PKM2), a key enzyme promoting the Warburg effect,

serves as an important regulator of macrophage polarization,

glycolytic metabolic reprogramming, and IL-1b production (36,

40). The HIF-1a/PKM2 axis plays a crucial role in driving the M1

phenotype transformation and pro-inflammatory activities,

regulating target genes like glucose transporter protein 1

(GLUT1), glycolytic enzymes such as lactate dehydrogenase A

(LDHA) and pyruvate dehydrogenase kinase 1 (PDK1), as well as

pro-inflammatory factors such as IL-1b (38, 41). Meanwhile, PKM2

also promotes the secretion of HMGB1 protein, which mediates

inflammatory responses in activated macrophages (42). Activation

of PKM2 through DASA-58 and TEPP-46 leads to PKM2 activation

via tetramer formation, suppressing the Warburg effect and lactate

production without nuclear translocation. The above phenomenon

is known as “the PKM2 paradox in the Warburg effect”. This

process resulted in the downregulation of M1 phenotypic gene

expression in macrophages regulated by the HIF-1a-PKM2

interaction, attenuating the LPS-induced M1 macrophage

phenotype and promoting a shift towards typical M2 features (40,

43). In conclusion, the Warburg effect is critical for the polarization

and maintenance of the M1 macrophage phenotype (44).

During glycolytic metabolism in macrophages, a series of

glycolytic enzymes play crucial roles in regulating metabolic

reprogramming (Figure 1). The first enzyme that limits the rate

of glycolysis is hexokinase (HK), which catalyzes the transformation

of glucose into glucose-6-phosphate (G-6-P). In sepsis, Yuan Y et al.

showed that the transcription factor KLF14 suppresses immune

function by inhibiting the transcription of HK2, decreasing
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glycolysis, and causing M1-type macrophages to secrete

inflammatory factors less (45). In their study on autoimmune

thyroid disease, Cai T et al. found that HK3 knockdown or

knockout reduced the proportion of M1 macrophages in both in

vitro and in vivo experiments, supporting the idea that HK3 induces

macrophage polarization toward the M1 phenotype through

metabolic reprogramming (46). The key rate-limiting step in

glycolysis is the transformation of F-6-P to F-1,6-BP, which is

catalyzed by phosphofructokinase 1 (PFK1). Fructose-6-phosphate-

2-kinase/fructose-2,6-bisphosphatase (PFKFB) catalyzes the

transformation of F-6-P to F-2,6-BP, which is the strongest

activator of PFK1 (47). Schilperoort M et al. found that the

PFKFB2-mediated glycolytic pathway is rapidly activated in

macrophages after phagocytosis and that the lactate it produces

promotes the expression of the efferocytosis receptors MerTK and

LRP1 via calcium signaling, thereby driving sustained phagocytosis

(48). Mager CE et al. found that MKP-1 defects mediate increased

PFKFB3 expression via the p38 MAPK pathway in both an E.

coli-infected mouse model of sepsis and an LPS-stimulated

macrophage model, leading to upregulation of macrophage

glycolysis and the development of sepsis (49). The rate-limiting

enzyme of glycolysis, pyruvate kinase (PK), catalyzes the conversion

of phosphoenolpyruvate (PEP) to pyruvate. Its isoform, PKM2, is

a crucial enzyme that stimulates the inflammatory response and

Warburg effect in macrophages (42). PDK1, an important regulator

of glucose metabolism, inactivates pyruvate dehydrogenase (PDH)

by phosphorylation, thereby preventing the production of acetyl-

CoA from pyruvate and facilitating lactate production via the

glycolytic pathway (12). In a study on atherosclerosis, Forteza MJ

et al. found that the promotion of vascular inflammation by the

PDK/PDH axis was associated with M1 macrophage polarization

(50). Furthermore, Semba H et al. found that PDK1 promotes both

M1 macrophage polarization and macrophage migration under

mild hypoxia by inducing glycolysis via the HIF-1a-PDK1 axis (51).
There is ongoing debate concerning the function of glycolysis in

M2 macrophages. It was previously believed that M2 macrophages

had lower glycolysis levels compared to M1 macrophages since they

primarily relied on OXPHOS for glucose metabolism (52).

However, recent studies have revealed a potentially significant

role of glycolysis in M2 macrophage activation through the use of

2-DG, a glycolysis inhibitor. Several studies have found that 2-DG

inhibits glycolysis and OXPHOS, impacting M2 macrophage

activation (18, 53). A study by Covarrubias AJ et al. discovered

an increase in glucose uptake in IL-4-treated BMDM, which

correlated with an AKT-dependent rise in glycolysis and oxidative

metabolism. The researchers found that similar to the b-oxidation
inhibitor Etomoxir, 2-DG reduced the expression of certain M2

genes induced by IL-4 (e.g., Arg1, Retnla, Mgl2), suggesting that

glycolysis is required for M2 macrophage activation. However, their

study also revealed that IL-4 activates ATP citrate lyase (Acly) in a

phosphorylated manner via the AKT-mTORC1 pathway,

independently of the classical JAK-STAT6 pathway. Acly is a key

enzyme for acetyl CoA synthesis, and its expression can be induced

by increasing histone acetylation of the aforementioned M2 genes

(also known as AKT-dependent M2 genes). These findings imply
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that glycolysis is not the only pathway for M2 macrophage

activation (54, 55). Subsequently, Huang SC et al. demonstrated

that IL-4 enhanced glycolysis in BMDM by increasing IRF4

expression through the mTORC2 pathway, thereby activating M2

macrophages. In their research, they found that 2-DG significantly

inhibited the expression of M2-type activation markers such as

RELM-a and PD-L2, and led to a decrease in the glycolytic

indicators like extracellular acidification rate (ECAR) and

glycolytic reserve (GR) (56). However, Wang F et al. showed that

the 2-DG used to block glycolysis in the aforementioned study had a

possible off-target effect: higher doses of 2-DG not only inhibited
Frontiers in Immunology 04
glycolysis and OXPHOS but also suppressed M2-type polarization

of macrophages by reducing intracellular ATP concentration as well

as down-regulating JAK-STAT6 signaling. It was found that the

activation and polarization of M2 macrophages through the JAK-

STAT6 pathway required a threshold level of intracellular ATP,

which could be achieved by accumulating via the glycolysis/

OXPHOS pathway. Therefore, glycolysis was not necessary for

the activation of M2 macrophages when OXPHOS functioned

normally. In their study, they treated IL-4-stimulated BMDM by

glucose consumption or by using galactose instead of glucose and

examined the expression of M2-type activation markers. The results
FIGURE 1

Relevant enzymes in macrophage glycolysis and their regulatory mechanisms (Created with BioRender.com).
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showed that glycolytic inhibition did not affect BMDM activation

when OXPHOS hadn’t been damaged in BMDM (57). In

conclusion, the specific role of glycolysis in activating M2

macrophages requires further investigation.
2.2 Arginine metabolism

Arginine undergoes complex metabolism in the body, serving

as a precursor for various important biological compounds

including nitric oxide (NO), citrulline, ornithine, urea, proline,

glutamate, creatine, and polyamines (58). Different phenotypes of

macrophages are characterized by distinct arginine metabolism. M1

macrophages express iNOS, which converts arginine to NO and

citrulline. NO, along with its reactive nitrogen species derivatives,

play diverse roles in macrophages: (1) They enable macrophages to

exert proinflammatory, antibacterial, and cytotoxic effects (59, 60);

(2) They inactivate iron-sulfur-containing complexes (mainly

complexes I and II) in the mitochondrial electron transport chain

(ETC), attenuates OXPHOS and prevents repolarization of M1-type

macrophages to M2-type (18); (3) NO can participate in the

metabolic reprogramming of the macrophage TCA cycle: NO’s

suppression of ACO2 leads to TCA cycle disruption. Additionally,

NO can inhibit PDH and diminish its carbon flux in ways that are

independent of the HIF-1-PDK1-PDH axis. Since glutaminolysis is

a major anaplerotic pathway in macrophages, the above effects lead

to increased uptake and utilization of glutamine by macrophages to

compensate for the inhibitory effects of NO on ACO2 and PDH (61,

62); (4) NO biphasically regulates iNOS expression in LPS-

stimulated mouse macrophages via NF-kB. That effect depends

on the local concentration of NO and up-/down-regulates the

expression of pro-inflammatory proteins in the body, including

iNOS and IL-6 (63). M2 macrophages express Arg1, which

catabolizes arginine into ornithine and urea, in contrast to M1

macrophages. Ornithine can be catalyzed by ornithine

decarboxylase (ODC) to synthesize polyamines and by ornithine

aminotransferase (OAT) to synthesize proline (58). Meanwhile, the

regulation of humoral immunity, the antiparasitic response, the

allergic response, fibrosis, and wound healing is mediated by Arg1

and its catalytic downstream products (60, 64). Due to the pro-

inflammatory and cytotoxic nature of NO, iNOS competes with

Arg1 for the catabolic pathway of arginine to balance immune

function and its damaging effects (60). Various pathogens,

including Leishmania, Schistosoma mansoni, Toxoplasma gondii,

and Mycobacterium TB, can compete with iNOS for the

catabolization of arginine by upregulating the expression of Arg1,

thereby reducing NO production to facilitate infections (44, 65–67).

Since macrophages have dichotomies similar to the iNOS/Arg1

dichotomy in arginine metabolism in many of the major metabolic

pathways, the classification of M1/M2 phenotypes has been widely

used in the literature as a classic and simple dichotomy. However,

the phenotypic classification of different activated macrophages

based solely on traits related to arginine metabolism is an

oversimplified way of typing. The boundaries of the phenotypic

classification of macrophages in question are not yet completely
Frontiers in Immunology 05
clear, and the distinction of biological behaviors of macrophages

that have different phenotypes remains to be investigated (60).
3 The linkage between lactate
metabolism and macrophage
metabolic reprogramming

The Warburg effect is present in a variety of cells, including M1

macrophages and tumor cells, which metabolize glucose to lactate

under aerobic conditions. There are several features of the Warburg

effect: (1) Aerobic glycolysis rapidly synthesizes ATP in the

cytoplasm to meet short-term energy demands; (2) Intermediate

products of aerobic glycolysis facilitate the biosynthesis of

nucleotides, amino acids, and lipids; (3) Reduced production of

reactive oxygen species (ROS) from mitochondrial OXPHOS

lessens the harm that oxidative stress causes (19, 68, 69). Thus, to

fit their survival milieu, M1 macrophages and tumor cells exhibit

the Warburg effect as a result of metabolic reprogramming.

To perform its roles as a major energy source for mitochondrial

respiration, a key glycolytic precursor, and a signaling molecule,

lactate shuttles between cells and between compartments within the

cell. This process connects the aerobic and glycolytic metabolic

pathways. Cell-cell lactate shuttles are ubiquitous across various

cells, tissues, and organs in the body, while intracellular lactate

shuttles include cytoplasmic-mitochondrial exchange and

cytoplasmic-peroxisomal exchange (70, 71). Mediated by

transport proteins and receptors, the lactate shuttle involves

several monocarboxylate transporters (MCTs), the two most

extensively researched of which are MCT1 and MCT4: MCT1 is

widely expressed in tissues and is involved in lactate uptake, while

MCT4 is predominantly expressed in tissues with high glycolysis

and is involved in lactate efflux (72, 73). However, the direction of

lactate transport by MCTs in vivo depends on the lactate and proton

concentration gradients (74).

Previous studies have shown that lactate, as a core molecule, plays

a crucial role in regulating macrophage metabolic reprogramming. It

has been found to inhibit the activation of M1 pro-inflammatory

macrophages while promoting the polarization of M2 macrophages

towards an anti-inflammatory and pro-angiogenic phenotype. These

effects are mediated through various mechanisms, such as post-

translational modification of histones and modulation of signaling

pathways (75, 76): (1) Lactate is metabolized to pyruvate via LDH1,

which stabilizes HIF-1a via inhibition of prolyl hydroxylase. HIF-1a
promotes the expression of Arg-1 and VEGF in TAM in an IL-4/IL-

13-independent manner, thereby inducing TAM to an M2-like

phenotype. However, HIF-1a does not induce Arg-1 or VEGF

during macrophage M1 polarization because HIF-1a protein

expression is induced early and HIF-1a binds to the promoters of

glycolytic genes, not Arg-1 or VEGF (21, 76–78) (Figure 2A). (2)

Proton-sensing G protein-coupled receptors GPR132 and GPR65,

which are highly expressed on the surface of macrophages, are

activated by acidic TME from extracellular lactate. This activation

triggers an intracellular signaling cascade that induces the expression

of anti-inflammatory and pro-angiogenic genes in macrophages via
frontiersin.org
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the cAMP-ICER pathway, thereby promoting macrophage

polarization to the M2 phenotype (79–83) (Figure 2B). (3) Lactate

negatively regulates TFEB through activation of mTORC1, which in

turn decreases lysosomal degradation of HIF-2a by down-regulating

macrophage ATP6V0d2 expression, thereby increasing macrophage

anti-inflammatory and pro-angiogenic gene expression (84)

(Figure 2C). (4) Lactate promotes tumor invasion by activating the

mTORC2-AKT signaling pathway and promoting TAM polarization

towards the M2 phenotype (85) (Figure 2D). (5) Lactate increases

phosphorylation activation of the ERK/STAT3 pathway in

macrophages and promotes macrophage M2 phenotype

polarization, exerting anti-inflammatory and pro-angiogenic effects

(86) (Figure 2E). (6) Macrophage G protein-coupled receptor GPR81

(HCAR1) is activated by physiological concentrations of lactate to

downregulate the cAMP-PKA signaling pathway, which can mediate

immunosuppression, promote angiogenesis, and other processes in

tumor tissues (72, 87, 88) (Figure 2F). In addition, GPR81 is
Frontiers in Immunology 06
predominantly located in cell membranes but has also been

identified in organelles, indicating its involvement in lactate

transport between cell membranes and intracellular compartments

(87). In a study concerning the mechanisms regulating the

immunosuppressive macrophage phenotype in the pre-metastatic

niche, Morrissey SM et al. found that lactate is involved in the

regulation of the “non-classical M1” phenotype of macrophages.

Tumor-derived exosomes (TDEs) activate two independent

pathways that enhance glycolysis via the NF-kB pathway: (1)

Activated HIF-1a upregulates GLUT-1 expression, which increases

glucose uptake into the macrophage; (2) Activated NOS2 increases

NO production, which diverts pyruvate to the lactate pathway by

inhibiting OXPHOS. The aforementioned mechanisms cause

macrophages to produce more lactate due to increased glycolysis,

which can then stimulate PD-L1 expression by activating NF-kB,
hence enhancing PD-L1-mediated immunosuppression (89). In

contrast, Han S et al. found in a hepatocellular carcinoma model

that D-lactate polarized M2 TAM to M1 phenotype and remodeled

the immunosuppressive TME in hepatocellular carcinoma through

inhibition of the PI3K-AKT pathway and activation of the NF-kB
pathway (29).
4 Lactylation modifications are
involved in regulating
macrophage phenotype

Zhang D et al., 2019 discovered that M1 macrophages have an

endogenous “lactate clock”, which regulates the transition of M1

macrophages to exhibit M2-type characteristics during the late stage

of polarization through histone lactylation. They propose a

regulatory mechanism whereby both endogenous lactate

produced by aerobic glycolysis (Warburg effect) and exogenous

lactate taken up by MCT in M1 macrophages can be enzymatically

reacted to produce lactoyl coenzyme A, which adds a lactoyl moiety

to the lysine tail of histones in a p53-dependent manner mediated

by the acetyltransferase p300 (21). Although Patel R et al. predicted

acetyl-CoA synthetase as a potential enzyme by using molecular

docking and molecular dynamics (MD) simulations, there is still no

direct evidence for the existence of lactyl-CoA synthetase or

transferase that activates lactate to lactyl-CoA in mammals (90).

This histone lactylation modification increases in a time-dependent

manner and is predominantly present at the promoters of M2-type

characteristic wound repair genes such as Arg-1. After 16–24h,

these H3K18la-modified M2 genes were activated for expression.

M1 macrophages undergo an iNOS→Arg1 expression switch,

transitioning to the M2 phenotype to repair tissue damage caused

by infection, etc. (21, 91, 92) (Figures 3D, E). Subsequent studies

have observed similar phenomena in pulmonary fibrosis, post-

myocardial infarction repair, and intestinal inflammatory

modulation (93–95). In a subsequent research on TAM, Noe JT

et al. proposed that early M1 macrophages with high glycolytic/low

TCA activity could be modified by histone lactylation using lactate

produced by glycolysis as the initiation of the M1→M2 phenotypic

transition. Later, with the decrease of glucose and increase of lactate
FIGURE 2

Lactate’s mechanisms in shaping tumor-associated macrophages
into an M2-like phenotype. (A) Lactate promotes Arg-1 and VEGF
expression through stabilization/activation of HIF-1a. (B) Proton-
sensing GPR65/GPR132 activated by acidic TME from extracellular
lactate induces M2-like gene expression via the cAMP-ICER
pathway. (C) Lactate-activated mTORC1 negatively regulates TFEB,
which reduces HIF-2a degradation by down-regulating ATP6V0D2
expression on the surface of the lysosome, thereby regulating
immunosuppressive and pro-angiogenic M2-like gene expression.
(D) Lactate-activated mTORC2-AKT pathway induces TAM to a pro-
invasive M2-like phenotype. (E) Lactate activates the ERK-STAT3
pathway by phosphorylating ERK, which in turn induces anti-
inflammatory and pro-angiogenic M2-like phenotypes. (F) GPR81/
HCAR1 is activated by physiological concentrations of extracellular
lactic acid, which induces PD-L1 expression via down-regulation of
the cAMP-PKA pathway, thereby promoting tumor immune evasion.
(G) Lactate promotes histone lactylation modification (yellow circle)
at the promoter H3K18 site of Arg-1, VEGF and other M2-like genes
in TAM to up-regulate their expression, thereby inducing an M2-like
phenotype in TAM. (Created with BioRender.com).
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in the microenvironment, M2 macrophages undergo metabolic

reprogramming leading to high TCA activity. This process

promotes M2-type gene expression, immunosuppression, and

tumor progression by converting lactate to pyruvate for entering

into the TCA cycle as well as producing acetyl-coA to promote

histone acetylation-dependent gene expression (57, 96).

However, the above findings remain controversial. Further

research by Dichtl S et al. showed that in LPS-activated

macrophages, histone lactylation did not correlate with the

activation of M2 macrophages or the expression of genes

associated with M2 activation, such as Mrc1, Retnla, and PD-L2.

LPS-induced upregulation of Arg-1 expression was dependent on

the autocrine/paracrine IL-6 and its downstream activated STAT3

signaling, without involving histone lactylation upregulation. The

primary cause of the intracellular accumulation of lactate and the

upregulation of lactylation in M1 macrophages is the detrimental

effect of NO generated by arginine metabolism on mitochondrial

OXPHOS (97). This implies that histone lactylation may not be the

exclusive regulatory pathway for genes involved in M2 activation.

Furthermore, Van den Bossche J et al. have shown in a previous

study that the impairing effect of NO on mitochondrial OXPHOS
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function inhibits the phenotypic repolarization process M1→M2

(18) (Figure 3B). Therefore, there may be two mechanisms for the

M1→M2 phenotype transition described previously: (1) Induced by

histone lactylation or other pathways, Arg-1 competes with iNOS

for arginine catabolism, which reduces NO production and

attenuates the degree of damage by OXPHOS, allowing M1

macrophages to repolarize to the M2 phenotype to a certain

extent; (2) Lactate produced by M1 macrophages via glycolysis

changes the extracellular microenvironment, prompting

polarization of recruited circulating monocytes to the M2

phenotype. In sum, more research is needed to determine the

precise function lactylation plays in the macrophage M1→M2

phenotypic change.

As a newly identified toll-like receptor (TLR) signaling adapter,

the function of the B-cell adapter for PI3K (BCAP) in controlling

macrophage transformation into an M2 repair phenotype is

confirmed by the study of Irizarry-Caro RA et al (98). In

macrophages, recognition of LPS by TLR4 activates NF-kB, which
ultimately generates pro-inflammatory factors and improves

phagocytosis (99, 100). TLR also activates PI3K-AKT via BCAP

and activated AKT contributes to the transformation of macrophages
A B

C
D

E

F
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FIGURE 3

Role of the Warburg effect as well as histone and non-histone lactylation mediated by lactate in the regulation of macrophage phenotype. (A) HIF-
1a induced by activation of NF-kB signaling after exposure to pro-inflammatory stimuli such as LPS and hypoxia can undergo nuclear translocation
and form a complex by interacting with HIF-1b and PKM2 dimer, which also undergo nuclear translocation. This complex induces the expression of
M1-like genes by acting on the HRE at the promoters of the target genes, polarizing macrophages to the M1 phenotype. (B) Activation of M1
macrophages upregulates the expression of iNOS, which metabolizes arginine to NO. Accumulation of NO damages OXPHOS, leading to enhanced
glycolysis in M1 macrophages. (C) LPS-recognized TLR activates PI3K-AKT via BCAP, which reduces inflammation by phosphorylating and inhibiting
downstream molecules GSK3b and FOXO1, as well as enhances glycolysis to produce lactate. (D) Lactate (L-lactate) in the cytoplasm can be either
endogenous lactate that accumulates via macrophage glycolysis production or exogenous lactate that is taken up from the extracellular
environment via MCT1 at the plasma membrane. (E) Histone lactylation is shown by the blue arrow. Lactate in M1 macrophages can be catalyzed by
currently unidentified enzymes to generate Lactyl-CoA, which initiates an endogenous “lactate clock” after entering the nucleus, and M2 signature
genes modified by lactylation are activated for expression, resulting in cells exhibiting M2-like features. (F) The glycolytic byproduct MGO binds to
glutathione via GLO1 to form LGSH. LGSH cannot produce D-lactate in the absence of GLO2, but rather indirectly modifies glycolytic enzymes
through non-enzymatic lysine lactoylation, which negatively regulates glycolysis by inhibiting glycolytic enzymes (as shown by the red arrows). (G)
The red arrows show the processes in which non-histone lactylation is involved in regulation. Lactate accumulation from M1 macrophage glycolysis
can result in the lactylation of PKM2, which activates the PKM2 dimer to a tetrameric form and exerts an inhibitory effect on macrophage glycolysis.
In addition, the stability of HIF-1a in M1 macrophages may also be regulated by lactylation modification. (Created with BioRender.com).
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into an anti-inflammatory repair phenotype via two pathways: (1)

PI3K-AKT-GSK3b-FOXO1 pathway: phosphorylation of AKT

inhibits FOXO1 and GSK3b, its downstream molecules, thus

downregulating inflammation; (2) Aerobic glycolysis (the Warburg

effect) and histone lactylation: AKT increases lactate production by

enhancing aerobic glycolysis. Lactate accumulation causes histone

lactylation, which upregulates the expression of wound repair genes

(93) (Figure 3C). The significance of this study lies in: (1) suggesting

that BCAP has a crucial switch-like role in promoting macrophages

to switch to the M2 repair phenotype; (2) explaining a regulatory

mechanism of the Warburg effect in macrophages at the molecular

level; (3) providing a possible drug target for the treatment of

diseases caused by over-activation of the macrophage pro-

inflammatory phenotype.

Non-histone lactylation modification also plays an important

role in regulating macrophage phenotype. In particular, non-

histone lactylation has been shown to metabolically reprogram

the immune phenotype of macrophages by modulating the

activity of enzymes involved in aerobic glycolysis. Gaffney DO

et al. discovered non-enzymatic lysine lactoylation, which

negatively regulates glycolysis by modifying glycolytic enzymes,

inhibiting enzyme activity, and reducing the level of glycolytic

metabolites. LGSH mediates this lactoylation process, which is a

D-lactylation (27, 28) (Figure 3F). Wang J et al. discovered that

lactate accumulating from aerobic glycolysis in M1 macrophages

leads to lactylation modification of PKM2 at K62, leading to PKM2

activation into its tetrameric form and reducing dimerization and

nuclear translocation. This resulted in the suppression of the

macrophage Warburg effect, decreased lactate production, and

facilitated the transition of M1 macrophages to the M2 repair

phenotype (101) (Figure 3G). The significance of this study lies

in: (1) revealing a possible mechanism to regulate the inflammation/

repair balance and the “lactate clock”: By limiting the rate of lactate

production from macrophage aerobic glycolysis through negative

feedback, it restricts the over-inflammation in M1 macrophages

while delaying the activation of genes modified by histone

lactylation to prevent inflammation from subsiding prematurely;

(2) revealing that the PKM2 paradox in the Warburg effect exists

not only during the pharmacological activation of PKM2, but also

during the transition of macrophages from a pro-inflammatory to a

reparative phenotype; (3) providing an explanation for why lactate

failed to increase Arg-1 expression in M0 macrophages but did so in

LPS-induced M1 macrophages in the Dichtl S et al. study: LPS

stimulation upregulates PKM2 expression in macrophages, while

lactate activates PKM2 through non-histone lactylation. Together,

they work synergistically to inhibit glycolysis and increase Arg-1

expression. In addition, Yang K et al. found that exogenous lactate

has deleterious effects on sepsis patients by mediating the lactylation

and acetylation modifications of HMGB1 in macrophages, inducing

the release of lactylated/acetylated HMGB1 from cells by exosomal

secretion (102). As an important damage associated molecular

pattern (DAMP) molecule, HMGB1 induces macrophage

polarization toward the M1 phenotype while maintaining

migratory capacity and some M2 characteristics (103).

Subsequently, Du S et al. found a similar process in a hepatic

ischemia-reperfusion injury model and found that heat shock
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protein A12A (HSPA12A) could exert its hepatoprotective effects

by preventing M1 macrophage activation via inhibiting the

lactylation and exosomal secretion of HMGB1 (104). HIF-1a can

produce lactate by inducing aerobic glycolysis in macrophages in

response to pro-inflammatory stimuli. Studies have demonstrated

that the stability of HIF-1a can be regulated by a variety of post-

translational modifications, such as acetylation, ubiquitination, and

phosphorylation. Therefore, it is likely that a lactylation

modification of HIF-1a occurs in response to pro-inflammatory

stimuli. However, further research is still needed to determine

whether lactylation exists in HIF-1a under pro-inflammatory

stimuli, as well as the function of lactylation on HIF-1a and how

it works (105, 106) (Figure 3G).
5 Role of lactylation in
pathophysiological processes
associated with macrophage
metabolic reprogramming

5.1 Inflammation and repair

In macrophages, pro-inflammatory stimuli such as LPS and

hypoxia enhance HIF-1a transcription by inducing the activation

of NF-kB signaling. HIF-1a expression undergoes nuclear

translocation and binds to HIF-1b to form a complex, which in

turn binds to the hypoxia-responsive element (HRE) at the

promoter of target genes. The inactive dimeric PKM2 also

undergoes nuclear translocation and interacts with HIF-1a. They
work together to regulate the expression of target genes, thereby

inducing macrophage polarization to the M1 phenotype, which

exerts pro-inflammatory effects in response to injurious stimuli and

exacerbates the original inflammatory response (41, 107–109)

(Figure 3A). In summary, M1 macrophages can increase aerobic

glycolysis through at least the following mechanisms: (1) The NO

generated during the arginine degradation by iNOS can impair

mitochondrial OXPHOS, leading to an increase in macrophage

aerobic glycolysis (18); (2) TLR can activate PI3K-AKT via BCAP,

thereby enhancing aerobic glycolysis (99); (3) The mitochondrial

network of M1 macrophages gradually breaks from elongated to

fragmented after LPS stimulation. The expression and activity of

PDH in the broken mitochondria are down-regulated, leading to

inhibition of the pathway for the production of acetyl-CoA from

pyruvate, thereby enhancing aerobic glycolysis (110). The

accumulation of lactate produced by aerobic glycolysis in M1

macrophages triggers the endogenous “lactate clock” mechanism.

This results in the delayed activation of the M2 characteristic genes

such as Arg-1 and the M2 core transcription factor STAT6, both of

which are regulated by H3K18 histone lactylation. Eventually, the

M2 anti-inflammatory phenotype manifests in macrophages (21,

111). In addition, as mentioned previously, lactate accumulated in

macrophages can exert an inhibitory effect on aerobic glycolysis

through non-histone lactylation modifications: (1) Non-enzymatic

lysine lactoylation of glycolytic enzymes can limit aerobic glycolysis

by inhibiting enzyme activity (28); (2) Lactylation of PKM2 can
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both increase its activity and inhibit its nuclear translocation, thus

reducing aerobic glycolysis (101). Therefore, lactylation may

modulate the inflammatory injury/anti-inflammatory repair

balance in tissues by affecting the metabolic reprogramming

process in macrophages.

Additional research has demonstrated that H4K12 lactylation can

mediate cellular inflammation in addition to H3K18la. Pan RY et al.

found that H4K12la modification activated the transcription of

LDHA, PKM2, and HIF-1a, thereby exacerbating the pro-

inflammatory activation and dysfunction of microglia in

Alzheimer’s disease through a positive feedback loop of glycolysis-

H4K12la-PKM2 (112). Subsequently, in a study on the pathogenesis

of diabetic cardiomyopathy, Ma XM et al. found that although lactate

can induce both H3K18la and H4K12la in macrophages, it mainly

mediated macrophage inflammatory responses and induced the

expression of HIF-1a and inflammatory cytokines like IL-1b via

H4K12la in a high-free fatty acid environment (113). The above

studies suggest that different extracellular microenvironments may

lead to histone lactylation at different sites, which in turn may exhibit

different regulatory effects.
5.2 Fibrillation

Abnormal repair of tissues after inflammation can lead to the

onset of fibrosis. Macrophages can be polarized to a pro-fibrotic

phenotype in addition to an anti-inflammatory repair phenotype to

modulate tissue fibrosis (114). In idiopathic pulmonary fibrosis (IPF),

the pro-fibrotic phenotype of macrophages can be regulated by

local tissue through histone lactylation. Cui H et al. demonstrated

that myofibroblasts undergoing aerobic glycolysis secrete lactate into

the extracellular environment, where myofibroblasts, alveolar

macrophages, and lactate form fibrotic niches. Exogenous lactate

can upregulate the expression of pro-fibrotic genes like Arg-1,

PDGFA, THBS1, and VEGFA in alveolar macrophages through

histone lactylation at the promoter, leading to the pro-fibrotic

phenotype and accelerating the progression of pulmonary fibrosis

(94, 115, 116). However, their research still has some limitations: (1)

There isn’t any concrete proof that lactate-induced alterations in

macrophage phenotype are involved in the regulation of pulmonary

fibrosis; (2) It is yet unclear what functions histone lactylation serves

in other cells throughout the fibrosis process, such as mesenchymal

stem cells and alveolar epithelial cells.
5.3 Tumor

Previous research has demonstrated that tumor cells can shape

TAM into an M2 immunosuppressive phenotype, where lactate is a

key signaling molecule that controls macrophage metabolic

reprogramming, hence suppressing immune function and

promoting tumor growth. Lactate produced by tumor cells

through glycolysis creates a lactate-enriched TME, which can

affect macrophages recruited into the TME by different means

such as being recognized by and binding to GPR132. Lactate can

stabilize HIF-1a and induce the expression of M2 genes such as
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Arg-1, Fizz-1, Mgl-1, VEGF, and PPAR-g, thereby inducing TAM

polarize to an M2 immunosuppressive phenotype and promoting

tumor growth, metastasis, and invasion (77, 82, 117) (Figure 2).

Recently discovered lactylation has provided hints on the

molecular mechanism of the above regulatory roles of lactate. The

study by Fang X et al. reached several conclusions: (1) Due to the

presence of excess lactate in TME and the limited availability of

glucose for macrophages, endogenous lactate produced by

macrophage glycolysis is a non-essential factor in TAM

polarization and tumor progression, instead, exogenous lactate

produced by tumor cells is a key factor; (2) Exogenous lactate is

transported into TAM via MCT1, which stabilizes HIF-1a and

upregulates its expression by promoting histone lactylation at the

H3K18 site of the promoter of M2 genes, such as Arg-1 and VEGF,

in TAM, thereby inducing the polarization of TAM to an M2

phenotype; (3) The induction of macrophage polarization to an M2

phenotype by lactate and IL-4 is independent of the MPC-mediated

metabolic pathway of mitochondrial respiration (118) (Figure 2G).

Some literature has reported on the role of lactylation in

immunosuppression and its contribution to tumor progression in

various cancer diseases. Wang L et al. found that upregulating

PCSK9 expression in a colon cancer model led to increased

lactylation of macrophage proteins and a shift of TAM towards

the M2 phenotype, suggesting a correlation between the two (119).

Yang H et al. evaluated the lactylation levels of relevant prognostic

genes in a gastric cancer model. Their findings showed that patients

with high lactylation levels were associated with greater immune

escape potential and lower immunotherapy response rates (120).

Chaudagar K et al. identified that lactylation promotes TAM

immunosuppressive phenotypic polarization and exerts pro-

tumorigenic effects in a PTEN/p53-deficient prostate cancer

model. They are also focusing on relevant anti-tumor therapies

targeting the signaling pathways that inhibit the production of

lactate by tumor cells (121, 122).

Research on the molecular mechanism of lactylation in

promoting tumor progression and the development of anti-tumor

targeting drugs based on it are still in progress. Therapies targeting

the metabolic pathway and signaling pathway of lactate production,

as well as the transport and recognition of lactate between tumor

cells and macrophages, is a relatively novel research field in anti-

tumor therapy research (123).
6 Concluding remarks

The metabolic reprogramming that occurs in macrophages

during various pathophysiological processes in which they are

involved has been extensively studied, yet there are still several

questions at the molecular mechanism level that remain to be

addressed. Lactylation is a newfound post-translational

modification of proteins initially observed in macrophages. Its

characteristic as mediated by the glycolytic product lactate suggests

a novel connection between macrophage metabolic features and

phenotypic transformation. This review summarizes the features of

macrophage-associated metabolic reprogramming and the role of

lactate metabolism therein. In addition, it discusses the molecular
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mechanisms identified so far for the regulation of macrophage

metabolic reprogramming by lactylation modifications and their

regulatory roles in related pathophysiological processes.

Although the mechanism by which lactylation regulates metabolic

reprogramming in macrophages has been clinically translated and has

yielded some results, there are still some issues that remain to be

investigated at the molecular level: (1) The threshold lactate

concentration for inducing lactylation as well as its specificity at

tissue, cellular, and protein levels; (2) The mechanism by which the

lactate concentration in the intranuclear microenvironment of the

cell is regulated; (3) The specific mechanisms through which histone

lactylation regulates the “lactate clock” and achieves the inflammatory

damage/anti-inflammatory repair balance; (4) Whether histone

lactylation can completely repolarize M1 macrophages into M2

macrophages remains questionable; (5) The types of genes regulated

by histone lactylation and the mechanisms governing its gene

specificity. However, given the prevalence of lactylation in organisms

and its involvement in diverse pathophysiological processes, both basic

research and clinical translation on lactylation regulating macrophage

metabolic reprogramming offer promising directions for

further exploration.
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ACO2 aconitase 2

Arg1 arginase 1

BCAP B-cell adapter for PI3K

BMDM bone-marrow-derived macrophage

CBP cAMP response element-binding protein (CREB) binding protein

DAMP damage associated molecular pattern

EMT epithelial-mesenchymal transition

ERK extracellular signal-regulated kinase

ETC electron transport chain

F-1,6-BP fructose 1,6-bisphosphate

F-2,6-BP fructose 2,6-bisphosphate

F-6-P fructose 6-phosphate

FAS fatty acid synthesis

FMT fibroblast-to-myofibroblast transition

FOXO1 forkhead box protein O1

G-6-P glucose 6-phosphate

GLO glyoxalase

GLUT1 glucose transporter protein 1

GSK3b glycogen synthase kinase 3b

HDAC histone deacetylase

HIF-1a hypoxia-inducible factor-1a

HK hexokinase

HMGB1 high mobility group box 1

HRE hypoxia-responsive element

HSPA12A heat shock protein A12A

iNOS inducible nitric oxide synthase

IRF3 interferon regulatory factor 3

JAK janus kinase

LDHA lactate dehydrogenase A

LGSH lactoylglutathione

MCT monocarboxylate transporter

MGO methylglyoxal

MPC mitochondrial pyruvate carrier

mTORC1 mammalian target of rapamycin complex 1

mTORC2 mammalian target of rapamycin complex 2

NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells

NO nitric oxide

OAT ornithine aminotransferase
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ODC ornithine decarboxylase

OXPHOS oxidative phosphorylation

PCSK9 proprotein convertase subtilisin/kexin type 9

PDH pyruvate dehydrogenase

PDK1 pyruvate dehydrogenase kinase 1

PD-L1 programmed death-ligand 1

PFK1 phosphofructokinase 1

PFKFB fructose-6-phosphate-2-kinase/fructose-2,6-bisphosphatase

PI3K phosphoinositide 3-kinase

PK pyruvate kinase

PKM2 pyruvate kinase M2

PPP pentose phosphate pathway

PRR pattern recognition receptor

ROS reactive oxygen species

STAT3 signal transducer and activator of transcription 3

STAT6 signal transducer and activator of transcription 6

TAM tumor-associated macrophages

TCA cycle tricarboxylic acid cycle

TDE tumor - derived exosome

TFEB transcription factor EB

TLR toll-like receptor

TME tumor microenvironment

VEGF vascular endothelial growth factor
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