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Femoral nailing associated with
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induced a specific increase
in blood IL-6 and broad
inflammatory responses
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Introduction: Bone marrow embolization may complicate orthopedic surgery,

potentially causing fat embolism syndrome. The inflammatory potential of bone

marrow emboli is unclear. We aimed to investigate the inflammatory response to

femoral intramedullary nailing, specifically the systemic inflammatory effects in

plasma, and local tissue responses. Additionally, the plasma response was

compared to that following intravenous injection of autologous bone marrow.

Methods: Twelve pigs underwent femoral nailing (previously shown to have fat

emboli in lung and heart), four received intravenous bone marrow, and four

served as sham controls. Blood samples were collected hourly and tissue

samples postmortem. Additionally, we incubated bone marrow and blood,

separately and in combination, from six pigs in vitro. Complement activation

was detected by C3a and the terminal C5b-9 complement complex (TCC), and

the cytokines TNF, IL-1b, IL-6 and IL-10 as well as the thrombin-antithrombin

complexes (TAT) were all measured using enzyme-immunoassays.

Results: After nailing, plasma IL-6 rose 21-fold, compared to a 4-fold rise in sham

(p=0.0004). No plasma differences in the rest of the inflammatory markers were

noted across groups. However, nailing yielded 2-3-times higher C3a, TCC, TNF,

IL-1b and IL-10 in lung tissue compared to sham (p<0.0001-0.03). Similarly, heart

tissue exhibited 2-times higher TCC and IL-1b compared to sham (p<0.0001-

0.03). Intravenous bone marrow yielded 8-times higher TAT than sham at 30

minutes (p<0.0001). In vitro, incubation of bone marrow for four hours resulted

in 95-times higher IL-6 compared to whole blood (p=0.03).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1396800/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1396800/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1396800/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1396800/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1396800/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1396800/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1396800&domain=pdf&date_stamp=2024-07-19
mailto:steinarkristiansen@gmail.com
https://doi.org/10.3389/fimmu.2024.1396800
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1396800
https://www.frontiersin.org/journals/immunology


Kristiansen et al. 10.3389/fimmu.2024.1396800

Frontiers in Immunology
Discussion: A selective increase in plasma IL-6 was observed following femoral

nailing, whereas lung and heart tissues revealed a broad local inflammatory

response not reflected systemically. In vitro experiments may imply bonemarrow

to be the primary IL-6 source.
KEYWORDS

bone marrow embolization, fat embolism syndrome, inflammation, orthopedic surgery,
complement, cytokines
Introduction

Fat embolism syndrome following fractures and orthopedic

surgery is caused by bone marrow emboli, consisting of cell-rich

(red), and fat-rich (white) bone marrow. Bone marrow cells

including mesenchymal stem cells and hematopoietic cells can

produce a large number of cytokines, including IL-6 and TNF (1–3).

Bone marrow emboli can cause infarcts in the lung, heart, and

brain, precipitating fat embolism syndrome (4, 5). While the clinical

definition of fat embolism syndrome varies (4), we consider that

organ failure occurring after verified bone marrow embolization

may represent fat embolism syndrome.

Asymptomatic bone marrow emboli occur frequently after

trauma and orthopedic surgery, fat embolism syndrome in far

fewer cases (6). The incidence of fat embolism syndrome after

orthopedic trauma varies between 1-3% in patients with a single

fracture in a long bone and may be as high as 30% in patients with

fractures in multiple long bones (6). The condition is most common

in the young, while mortality is up to 30% in older patients with

comorbidities (7).

The systemic inflammatory response constitutes a central aspect

of the pathophysiology of fat embolism syndrome (7). Whether the

inflammatory response arises due to tissue trauma and surgery or is

triggered by bone marrow emboli remains unclear (8). However,

particularly IL-6 increases following intramedullary nailing of the

femur (9, 10), and elevated IL-6 is associated with fat embolism

syndrome (11). Elevated IL-6 levels are linked with increased

morbidity and mortality following both orthopedic trauma and

elective surgery (12, 13).

Consequently, we aimed to examine the scope of inflammation

induced by intramedullary nailing of the femur in a porcine model.

We recently reported bone marrow emboli to the lungs and heart

after femoral nailing in 11 of 12 animals studied (14). In the present

study we investigated the systemic response in blood and local

inflammatory responses in lung and heart, with emphasis on

complement activation and cytokine release in these animals.

Additionally, the plasma response was compared to that from

autologous bone marrow injections in a separate set of animal

experiments. Finally, since IL-6 is produced by various cell lines in
02
different tissues (15), we sought to determine the extent to which

bone marrow alone contains or produces this cytokine in a porcine

in vitro model.
Materials and methods

Animals

The study was approved by the Norwegian Animal Welfare

Committee (FOTS ID 19803) and conducted in accordance with the

Norwegian regulations for laboratory animal care and EU directive

2010/63/EU. Included pigs were specific pathogen-free Norwegian

landrace pigs with an average weight of 27 (SD 4) kg, of which 12

underwent intramedullary reaming and nailing, four intravenous

injection of autologous bone marrow, and four were sham-operated

controls. The 12 pigs undergoing intramedullary nailing has been

published recently, with data on fat emboli deposited in lung, heart

and brain (14). Blood and tissue samples from these animals were

used for analyses in the present study. Bone marrow and blood were

collected from an additional six pigs (average weight 42 (SD 7) kg)

for in vitro experiments (Figure 1). Exclusion criteria were pre-

existing illness, procedural complications unrelated to

intramedullary nailing and open foramen ovale. No pigs

were excluded.
Instrumentation, anesthesia,
and monitoring

The animals were handled as previously described (14). Briefly,

the pigs were anesthetized using intramuscular azaperone,

ketamine, and intravenous pentobarbital until endotracheal

intubation was achieved. Anesthesia was maintained with

morphine, midazolam, and pentobarbital. Minute ventilation was

titrated to a pH of 7.4 ± 0.5, and inspired oxygen (FiO2) adjusted to

maintain arterial pulse oximetry saturation (SpO2) above 90%.

To avoid coagulation of the intravascular catheters, a 3 mL/h

infusion of saline-heparin flush solution (2.5 IU heparin/mL) was
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administered to the intra-arterial and intravenous catheters We

recorded 6-lead ECG with ST-segment changes, SpO2, end-tidal

CO2, continuous invasive arterial and central venous pressures

(IntelliVue MP70, Phillips, Amsterdam, Netherlands).

The pigs were assigned to one of three groups: bilateral

intramedullary nailing of the femur (n = 12), intravenous

administration of bone marrow (n = 4), or sham-operated

controls (n = 4). A total amount of 100 mL of bone marrow was

aspirated bilaterally using the Arrow EZ-IO intraosseous vascular
Frontiers in Immunology 03
access system (Teleflex, Wayne, PA) from the femur (hind legs) of

the pigs and immediately injected intravenously in a 14G Venflon

venous catheter (BD, Franklin Lakes, NJ) placed in an ear vein over

an average time period of 30 minutes. The average duration of

intramedullary nailing was approximately 30 minutes. After

approximately 300 minutes of observation, we euthanized the pigs

via central venous injection of potassium chloride. Additionally, six

pigs underwent identical anesthesia and instrumentation before

arterial blood sampling and bone marrow sampling for in

vitro experiments.
Blood and tissue sampling and analysis

Blood was collected from the carotid artery upon placement of

the arterial catheter approximately 60 minutes prior to any

intervention, immediately before either surgery or intravenous

administration of bone marrow or 30 minutes after completed

instrumentation in sham-operated controls, and after two-, four-

and approximately five-hours observation.

During the experiments, we sampled a total of 75 mL of blood

per animal, using Vacutainer closed vacuum system and serum

tubes with clot activator and gel (Vacuette, Greiner Bio-One

GmbH, Kremsmünster, Austria) for serum samples, and

safePICO aspirator blood gas syringe with heparin (Radiometer

Medical ApS, Brønshøj, Denmark) for arterial blood gas analysis.

Blood sampling was performed as described by Storm (16) in order

to avoid pre-analytical heparin contamination from the line flush

solution. After 30 minutes of clotting, we centrifuged the serum

tubes at 2000 g for 10 minutes. The serum was then transferred to

cryotubes and stored at -80°C for analysis. Arterial blood gases were

analyzed immediately after sampling. A set of EDTA tubes were

stored at room temperature for up to 8 hours and analyzed for white

blood count using the ADVIA 2120i (Siemens Healthcare GmbH,

Erlangen, Germany) or IDEXX ProCyte Dx (IDEXX Laboratories,

Westbrook, ME). A set of EDTA tubes were immediately

centrifuged at 4°C at 1500 g for 15 min and plasma isolated and

frozen at -80°C for later analysis of complement and cytokines as

described below.

Troponin I was analyzed on the Atellica IM analyzer (Siemens

Healthineers, Siemens Healthcare GmbH, Erlangen, Germany).
FIGURE 1

Allocation of pigs. A total of 26 pigs were included, of which 20
were allocated to the in vivo experiments and 6 for in vitro
experiments. Of the 20 pigs undergoing in vivo experiments, 12
underwent bilateral intramedullary nailing of the femur, four were
exposed to intravenous injection of autologous bone marrow and
four served as sham, undergoing instrumentation, monitoring, and
sampling only. Postmortem tissue samples were obtained only from
pigs undergoing intramedullary nailing and sham.
TABLE 1 Baseline characteristics of 20 pigs divided into three groups: intramedullary nailing (n=12), intravenous bone marrow infusion (n=6) and
sham (n=4).

Intramedullary nailing Intravenous bone marrow Sham p1

Weight kg 29 (27 - 31)1 29 (25 - 32) 17 (5 - 11) 0.001

WBC K/µL 17 (15 - 19) 15 (13 - 16) 14 (13 - 15) 0.001

C3a ng/mL 29 (21 - 37) 20 (5 - 36) 26 (3 - 50) >0.05

TCC CAU/mL 0.6 (0.5 - 0.8) 0.8 (0.2 - 1.4) 0.7 (0.4 - 0.9) >0.05

IL-6 pg/mL 4.1 (2.9 - 5.4) 4.7 (2.5 - 6.9) 9.4 (0.1 - 21) 0.0004

TAT ng/mL 72 (51 - 92) 49 (32 - 66) 51 (14 - 89) <0.0001
1Mean values with 95% confidence intervals are reported with p-value for difference between groups using mixed-models REML analysis. WBC, white blood cells; CAU, complement arbitrary
units; TAT, thrombin-antithrombin complexes.
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Arterial blood gas analysis was performed using an ABL 80 Flex

blood gas analyzer (Radiometer Medical ApS, Brønshøj, Denmark).

Lung and heart tissue was sampled from the operated pigs and

sham-operated controls. The samples were snap-frozen on dry ice

in Nunc tubes (Thermo Scientific, Roskilde, Denmark) with no

additive for further homogenization and analysis.
Frontiers in Immunology 04
Homogenization of lung and heart tissue

For complement analysis, approximately 100 mg of tissue was

transferred to gentleMACS M-tubes (Miltenyi Biotec, Bergisch

Gladbach, Germany), and a mixture of 10 mL Protease Inhibitor

Cocktail Set I (Merck KGAA, Darmstadt, Germany) and 1 mL
B

C D

E F

A

FIGURE 2

Complement activation products, cytokines, and TAT in plasma. C3a (A), TCC (B), TNF (C), IL-6 (D), IL-10 (E), and TAT (F) were measured in the
groups exposed to intramedullary nailing (IMN, blue circles), intravenous bone marrow (IV-BM, red squares) or sham (open triangles), and analyzed
for the inflammatory mediators during and observation period of 300 minutes. The gray field spanning from 0 to 30 minutes represents the
approximate average duration of either intramedullary nailing (IMN) or injection of intravenous bone marrow (IV-BM). Data are presented as mean
values, with error bars spanning the 95% confidence interval (CI). Baseline values compared to values after 300 minutes were analyzed using the
one-sample t-test (D, F). Differences between groups were analyzed using the unpaired t-test.
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CytoBuster Protein Extraction Reagent (Millipore Sigma,

Burlington, MA) was added to the samples, and the samples were

homogenized using profile 7 (gradient homogenization intervals

with increasing speeds up to 4000 rpm with short backward spins

and a total run time of 30 seconds) on the Medic Tools Dispomix

Drive (Miltenyi Biotec). After homogenization, the samples were

incubated for 5 minutes on ice, centrifuged for 20 minutes at 2500 g

at 4°C, and the supernatant was transferred to 1 mL Matrix tubes

(Thermo Fisher Scientific) and stored at -80°C for later analysis.
Analysis of complement in plasma, lung
and heart tissue

We measured complement C3a using ELISA with porcine-

specific C3a monoclonal antibodies as previously described (17).

The antibody binds to a neoepitope exposed when C3a is cleaved off

C3, and the assay only detects free C3a in the fluid phase. We

measured the soluble terminal C5b-9 complex (terminal complement

complex, TCC) using ELISA with the anti-human-C9 neoepitope
Frontiers in Immunology 05
antibody clone aE11 produced in-house as capture antibody and a

porcine cross-reacting anti-human C6 (Quidel, San Diego, CA) as

detection antibody as described in detail (18, 19). It is previously

documented that the aE11 cross-reacts with porcine TCC (18).
Analysis of cytokines in plasma

We analyzed EDTA plasma for the following cytokines using

immunoassays: Tumor necrosis factor (TNF) and interleukin (IL)-6

using the Porcine TNF and IL-6 Quantikine sandwich ELISA kit

(R&D Systems Inc, Minneapolis, MN) with optical density

measured by Infinite M200 Pro microplate reader (Tecan Trading

AG, Switzerland); IL-1b using porcine MILLIPLEX map Kit

(Merck, EMD Millipore Corporation, Billerica, MA) and IL-10

using Invitrogen ProcartaPlex Multiplex Porcine Immunoassay

(Bender MedSystems GmbH, Vienna, Austria), and the

fluorescence intensity analyzed on a Bio-Plex 200 Multiplex

Analyzer (Bio-Rad Laboratories, Gurugram, India). All analyses

were performed in accordance with the manufacturer’s instructions.
B

C D

A

FIGURE 3

Cytokines and complement activation products in lung (A, C) and heart (B, D) tissue. Lung and heart cytokines and complement products are
depicted from intramedullary nailed pigs (IMN) (blue circles) compared to sham (open triangles). Data are presented as mean values, with error bars
spanning the 95% confidence interval (CI). P-values are reported after testing with the Mann-Whitney Test. Where there was a significant difference
between groups but lower mean values in operated pigs vs sham, p-values are marked with§.
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Analysis of cytokines in lung and
heart tissue

We analyzed tissue samples for TNF and IL-1b using a

Quantikine sandwich ELISA kit (R&D Systems Inc), IL-6 using a

porcine Luminex Discovery Assay (R&D Systems Inc) and IL-10
Frontiers in Immunology 06
using Invitrogen ProcartaPlex Multiplex Immunoassay for Porcine

assay (Bender MedSystems GmbH, Vienna, Austria). The

fluorescence intensity was analyzed on a Bio-Plex 200 Multiplex

Analyzer (Bio-Rad Laboratories). All analyses were performed in

accordance with the manufacturer’s instructions. Results are given

pr. mL homogenate.
B

C

A

FIGURE 4

Cardiopulmonary parameters. PaO2:FiO2 ratio (A), mean arterial pressure (B) and Troponin I (C) are depicted from intramedullary nailed pigs (IMN),
pigs injected with intravenous bone marrow (IV-BM) and sham. The gray field spanning from 0 to 30 minutes represents the approximate average
duration of either intramedullary nailing (IMN) or injection of intravenous bone marrow (IV-BM). In (A, C) data are presented as mean values, with
error bars spanning the 95% confidence interval (CI). In (B) mean values are represented by continuous lines. Unpaired t-tests were performed,
comparing intramedullary nailed pigs and sham, and pigs intravenously injected with bone marrow and sham, respectively, at 30 minutes after
surgery or injection.
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Analysis of thrombin-antithrombin
complex in plasma

We quantified the thrombin-antithrombin complex (TAT) in

EDTA plasma using the human Enzygnost TAT micro (Siemens

Healthcare Diagnostics Products GmbH, Marburg, Germany), in

accordance with the manufacturer’s instructions. Cross-reactivity to

porcine TAT has been documented (20). The optical density was

measured using an Infinite M200 Pro microplate reader (Tecan

Trading AG).
In vitro experiments

In the six pigs used for in vitro experiments, 4 mL arterial blood

was collected approximately 30 minutes after instrumentation was

completed. 10 mL of bone marrow was aspirated simultaneous to

blood sampling, by insertion the Arrow EZ-IO intraosseous vascular

access system (Teleflex, Wayne, PA) in the hind leg. Lepirudin was

used to prevent coagulation, with a concentration in sampled arterial

blood of 0.05 mg/mL and 0.1 mg/mL in bone marrow.

Bone marrow was homogenized using gentleMACS M-tubes

and Medic Tools Dispomix Drive (Miltenyi Biotec) at profile 7.

Samples of either 800 µL of blood, 400 µL blood mixed with 400 µL

bone marrow, or 800 µL of bone marrow was centrifuged at 3000 x g

for 20 minutes at 4°C either directly or after incubation on a

Rock’n’Roller tube roller mixer (Labinco, Breda, NL) at 37°C

for two or four hours. EDTA (final concentration 10mM) was

added to all samples before centrifugation. Plasma samples were

stored at -80°C until analysis.
Frontiers in Immunology 07
Statistical analysis

We performed statistical analysis using GraphPad Prism,

version 10 (GraphPad Software Inc., San Diego, CA). Data are

presented as mean and 95% confidence interval (CI). Lower

confidence interval limit for biological data, where true mean

cannot be below zero, was bounded at zero. When comparing

only two groups, we analyzed group differences using unpaired,

two-tailed Student’s t-test for normally distributed data, or the

Mann-Whitney test for not normally distributed data. We tested for

normality using the Anderson-Darling and the Shapiro-Wilk test.

When comparing three groups, we used the one-way ANOVA test

or the restricted maximum likelihood mixed model (REML). When

comparing difference over time in the same group, the one-sample

t-test was used. p < 0.05 was considered statistically significant.
Results

The 12 animals undergoing intramedullary nailing have been

described in detail previously, including the deposition of fat emboli

in the lung and the heart (14).
Baseline characteristics

The baseline conditions for the 20 animals included in the

present study are summarized in Table 1.
Complement, cytokines, and coagulation
in plasma

In intramedullary nailed pigs, plasma IL-6 increased from 4.1

(95% CI 2.9 - 5.4) pg/mL at baseline to 87 (95% CI 70 - 103) pg/mL

300 minutes after start of surgery (p<0.0001) (Figure 2D). In sham

animals an increase from 9.4 (95% CI 0 - 21) pg/mL to 37 (95% CI

8 - 65) was observed during the same time period (Figure 2D). The

increase was significantly higher in intramedullary nailed pigs

compared to sham (p=0.0004) (Figure 2D). No significant

differences were observed for plasma C3a, TCC, TNF, IL-10 and

TAT (Figures 2A–C, E, F).

In pigs exposed to intravenous bone marrow, IL-6 increased

from 5 (95% CI 2 - 7) pg/mL at baseline to 23 (95% CI 0 - 50) pg/mL

300 minutes after injection (p=0.008) but did not differ significantly

compared to sham (Figure 2D). Plasma C3a, TCC, TNF and IL-10

did not increase nor differ significantly between pigs exposed to

intravenous bone marrow compared to sham (Figures 2A–C, E).

In pigs exposed to intravenous bone marrow, TAT increased

from 49 (95% CI 32 - 66) ng/mL at baseline to 244 (95% CI 51 - 436)

ng/mL 30 minutes after injection (p=0.047) (Figure 2F), 8 times

higher than sham (p<0.0001).

Except for this increase in TAT, C3a, TCC, TNF, IL-6 and IL-10

remained at baseline levels throughout the observation period
FIGURE 5

In vitro quantification of IL-6. Whole blood (BLOOD), homogenized,
homologous bone marrow (BM) and the combination thereof (50-
50%) where incubated for up to 4 hours. Data are presented as
mean values, with error bars spanning the 95% confidence interval
(CI). The p-values are reported from comparing blood alone with
bone marrow alone, and blood alone with the combination,
respectively, after 4 hours incubation time using the unpaired t-test.
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(Figures 2A–E). No significant changes were seen for any of these

thromboinflammatory markers in the sham pigs (Figures 2A–F).
Complement and cytokines in tissue

In lung tissue, C3a, TCC, TNF, IL-1b and IL-10 were all

significantly higher in intramedullary nailed vs sham (Figures 3A,

C, D). C3a was 8.9 (95% CI 7.1 - 10.8) ng/mL in intramedullary

nailed pigs vs 4.4 (95% CI 2.0 - 6.8) ng/mL in sham (p=0.011), TCC

0.3 (95% CI 0.2 – 0.3) CAU/mL in intramedullary nailed pigs vs 0.2

(95% CI 0.1 - 0.3) CAU/mL in sham (p=0.006), TNF 43 (95% CI

22 - 64) pg/mL in nailed pigs vs 13 (95% CI 10 - 16) in sham

(p=0.03), IL-1b 189 (95% CI 165 - 214) pg/mL in intramedullary

nailed pigs vs 58 (95% CI 8 - 109) in sham (p<0.0001) and IL-10 43

(95% CI 34 - 51) pg/mL in intramedullary nailed pigs vs 21 (95% CI

3 - 40) pg/mL in sham (p=0.01).

In heart tissue, only IL-1b and TCC were significantly higher in

intramedullary nailed pigs vs sham (Figures 3B–D). TCC was 0.3 (95%

CI 0.2 - 0.3) CAU/mL vs 0.2 (95% CI 0.1 - 0.2) CAU/mL in sham

(p<0.0001) and IL-1b 60 (95% CI 37 - 83) pg/mL in intramedullary

nailed pigs vs 29 (95% CI 0 - 59) pg/mL in sham (p=0.03).
Oxygenation, mean arterial pressure and
troponin I

Intravenous injection of bone marrow caused a pronounced

hypoxia and hypotension, but mild hypoxia and hypotension also

occurred in pigs undergoing intramedullary nailing, as compared to

sham (Figures 4A, B). Intramedullary nailing caused highest

troponin I values (Figure 4C).

Compared to sham, PaO2/FiO2-ratio were reduced 30 minutes

after nailing or injection in both intramedullary nailed pigs (-184

(95% CI -318 - -55) mmHg) (p=0.011) and after bone marrow

injection (-357 (95% CI -424 - -88) mmHg) (p=0.007) (Figure 4A).

In intramedullary nailed pigs, troponin I at 240 minutes was

1580 (95% CI 0 - 3456) ng/L vs 241 (95% CI 0 - 625) ng/L in sham

(p=0.019), and 981 (95% CI 0 - 2806) ng/L in pigs exposed to

intravenous bone marrow and 241 (95% CI 0 - 625) ng/L, also

higher vs sham (p=0.012) (Figure 4C).
In vitro experiments

Since IL-6 turned out to be the only marker responding to

intramedullary nailing systemically in plasma, porcine whole

blood alone, whole blood mixed with 50% autologous bone

marrow, and bone marrow alone, were incubated for 0, 120 and

240 minutes and analyzed for IL-6 (Figure 5). After 4 hours

incubation at 37°C, IL-6 was highest in bone marrow alone at

568 (95% CI 14 - 1122) pg/mL vs 6 (95% CI 0 -19) pg/mL in blood

alone (p=0.03) and 212 (95% CI 0 - 505) pg/mL in blood mixed

with 50% bone marrow (p=0.04).
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Discussion

In this study, we found that intramedullary nailing of the femur

triggered an inflammatory response characterized by a selective

increase in IL-6 in plasma, and significantly elevated levels of C3a,

TCC, TNF, IL-1b, IL-6 or IL-10 in lung and heart tissue, compared

to sham. Thus, intramedullary nailing appeared to elicit an

inflammatory response that was hardly detected in plasma

samples, where local tissue inflammation was not reflected.

Consequently, isolated measurement of these inflammatory

markers in plasma may underestimate the whole-body

inflammatory response offset by bone marrow emboli. Notably,

the intramedullary nailing with release of bone marrow emboli

triggered a local inflammatory response that was comparable in

intensity to that observed in cases of polytrauma (21), venous air

embolism (16) and sepsis (22).

Intravenous injection of bone marrow resulted in increased

TAT after 30 minutes and increased plasma IL-6 after 300 minutes,

indicating that bone marrow constituents may elicit potent

procoagulant and prothrombotic effects (23). The increase in IL-6

was only 5-fold compared to a 21-fold increase in intramedullary

reamed pigs, a difference that may be explained by different

experimental conditions in the two groups, e.g. that aspirated

bone marrow is qualitatively and quantitatively distinct from that

released during intramedullary nailing of the femur.

After trauma or surgery, plasma IL-6 increases one hour post-

event and reaches its peak approximately six hours later, though it

can continue to increase in severe clinical courses (24, 25). Similarly,

in our study, we observed increasing IL-6 levels, with the highest

levels approximately 5 hours after surgery or bone marrow

injection. IL-6 has a longer half-life in plasma than other

cytokines like IL-1b and TNF, making it both a marker for and a

mediator of inflammation (26). Whether IL-6 acts as a pro- or anti-

inflammatory cytokine depends on the overall immune response

(15, 27, 28). It may elicit proinflammatory effects by inducing acute-

phase proteins in the liver, maturing B-cells, increasing the

production of other pro-inflammatory cytokines, and amplifying

local innate immune responses (29).

Damage-associated molecular patterns induce the production

of IL-6 through several mechanisms, including involvement of the

complement system (30). IL-6 plays a role in normal homeostasis

and cell differentiation and is produced not only by stimulated

macrophages and monocytes but also by bone marrow-derived

mesenchymal cells, endothelial cells, and fibroblasts (15). Therefore,

both tissue damage in itself and bone marrow release can contribute

to elevated IL-6 levels, as certain bone marrow cells produce IL-6

locally in the marrow under normal conditions (1, 2). We found

that bone marrow alone released high levels of IL-6 as compared to

normal blood when incubated in vitro. Bone marrow derived cells

are known to contain IL-6, among other cytokines, in humans (31)

and pigs (32). When this marrow embolizes to tissues including the

heart and lungs, it can be assumed that it contributes to tissue

inflammation, which is in accordance with our findings of increased

complement activation and cytokines, particularly in the lungs.
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Only more extensive orthopedic surgery including femoral

nailing significantly increases plasma IL-6, and IL-6 is further

elevated if the surgery is performed in multi-trauma patients (33,

34). This can be explained by the fact that both tissue damage itself

and bone marrow alone have the potential to increase IL-6 in

plasma. Therefore, injuries or procedures causing both greater

tissue damage and bone marrow embolism may increase IL-6. As

IL-6 seems to become harmful at high plasma concentrations, it

may be prudent to perform major surgery only after the initial

inflammatory response induced by the primary injury has subsided,

whenever clinically possible (35, 36). Delaying definitive surgery has

been shown to improve outcome and reduce IL-6 (37–39). Other

measures following orthopedic trauma – such as treatment with

corticosteroids (40) or technical, intraoperative measures (41), have

theoretical but still clinically unproven ameliorating effects.

Intramedullary nailing of the femur often leads to bone marrow

emboli, but only occasionally causes fat embolism syndrome (42–44).

Identifying risk factors including polytrauma, high lactate levels, and

early oxygenation failure therefore becomes crucial (45). Further, the

combined effects of multiple traumas and total embolic load likely

increases risk of fat embolism syndrome. While the inflammatory

impact of femoral nailing, particularly in polytrauma cases, is not

extensively described, high IL-6 levels post-injury are associated with

elevated risk of fat embolism syndrome (46). Early IL-6 measurement

combined with clinical indicators may help identify patients at risk.

As mentioned, bone marrow emboli consist of cell-rich (red)

and fat-rich (white) bone marrow, and bone marrow cells such as

mesenchymal stem cells and hematopoietic cells can produce,

among others, IL-6 and TNF (1–3). White bone marrow also

contains cytokines, known as adipokines (47). It has been shown

that adipokines like leptin and IL-17A may also increase the risk of

multiorgan failure in trauma patients (48). This may contribute to

bone marrow emboli eliciting inflammation in the tissue they end

up in. Different organs have varying capacities to bind and produce

cytokines, and the inflammatory response to bone marrow emboli

can differ across organs.

In fat embolism syndrome, respiratory failure is the most

common presentation (7), making it relevant to map the

inflammatory response in the lungs. The lungs are subjected to

inflammation, in part, because the white, fat-rich portion of the

bone marrow emboli is broken down in the lungs by lipases into

pro-inflammatory, free fatty acids, which cause increased TNF and

IL-6 locally in lung tissue due to endothelial damage (41).

Among known mediators of inflammation in the lungs, we

found that C3a, TNF and IL-1b were increased after intramedullary

nailing. The anaphylatoxins C3a and C5a are associated with lung

damage and a local cytokine storm (49, 50) and hypoxia is

associated with increased TNF in lung tissue (51). The pigs in our

study developed hypoxia shortly after intramedullary nailing, and

we detected bone marrow emboli in the lungs in all operated pigs.

An explanation for the hypoxia may be that the emboli caused

pulmonary capillary obstruction and reduced perfusion, but

possibly also reduced diffusion capacity due to inflammation.

Activation of the complement system can stimulate the

production of IL-6 when C3a and C5a bind to their receptors

(52–54). The role of the complement system in bone marrow
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embolization or fat embolism syndrome is not well understood. It

has not been shown that intramedullary nailing alone causes

complement activation, but shown that increased TCC correlates

with the Injury Severity Score (ISS) and that TCC is associated with

increased mortality in multi-trauma patients (55). One study found

complement activation in pigs subjected to polytrauma, which was

higher in pigs that additionally underwent intramedullary nailing of

the femur (56). As in our study, this study found increased plasma

IL-6 and increased C3a in heart tissue. Another porcine study on

femoral intramedullary nailing also found increased plasma IL-

6 (57).

Among several limitations in this study, the group sizes of both

sham (n=4) and of pigs exposed to intravenous bone marrow (n=4)

was small compared to the group exposed to intramedullary

reaming (n=12). This impacts the power of our results and their

significance. However, power calculation found 4 sham animals to

be sufficient. Further, exposing four pigs to intravenous bone

marrow was conducted as an experimental understudy to

understand the impact of bone marrow alone. Although further

experiments may be warranted, we did not find it reasonable to

sacrifice further animals within this study protocol in concordance

with the RRR principles of animal experimentation. Further, the

pigs developed transient myocardial ischemia, and it cannot be

excluded that this contributed to the findings in plasma or

myocardial tissue.

In conclusion, intramedullary femoral nailing induced a

selective systemic increase in IL-6 as measured in plasma, in

contrast to a broad inflammatory response including complement

activation and cytokine release locally. Thus, bone marrow emboli

might contribute to a substantial local inflammatory response with

organ damage in vital organs like lung and heart, not reflected by

blood analyses.
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