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The causal relationship between
gut microbiota and lymphoma:
a two-sample Mendelian
randomization study
Biyun Li1†, Yahui Han2†, Zhiyu Fu1, Yujie Chai1, Xifeng Guo1,
Shurui Du1, Chi Li1 and Dao Wang1*

1Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, Henan, China, 2Department of Pediatric Surgery, The First Affiliated Hospital of
Zhengzhou University, Zhengzhou, Henan, China
Background: Previous studies have indicated a potential link between the gut

microbiota and lymphoma. However, the exact causal interplay between the two

remains an area of ambiguity.

Methods: We performed a two-sample Mendelian randomization (MR) analysis

to elucidate the causal relationship between gut microbiota and five types of

lymphoma. The research drew upon microbiome data from a research project of

14,306 participants and lymphoma data encompassing 324,650 cases. Single-

nucleotide polymorphisms were meticulously chosen as instrumental variables

according to multiple stringent criteria. Five MR methodologies, including the

inverse variance weighted approach, were utilized to assess the direct causal

impact between the microbial exposures and lymphoma outcomes. Moreover,

sensitivity analyses were carried out to robustly scrutinize and validate the

potential presence of heterogeneity and pleiotropy, thereby ensuring the

reliability and accuracy.

Results: We discerned 38 potential causal associations linking genetic

predispositions within the gut microbiome to the development of lymphoma.

A few of the more significant results are as follows: Genus Coprobacter

(OR = 0.619, 95% CI 0.438–0.873, P = 0.006) demonstrated a potentially

protective effect against Hodgkin ’s lymphoma (HL). Genus Alistipes

(OR = 0.473, 95% CI 0.278–0.807, P= 0.006) was a protective factor for diffuse

large B-cell lymphoma. Genus Ruminococcaceae (OR = 0.541, 95% CI 0.341–

0.857, P = 0.009) exhibited suggestive protective effects against follicular

lymphoma. Genus LachnospiraceaeUCG001 (OR = 0.354, 95% CI 0.198–0.631,

P= 0.0004) showed protective properties against T/NK cell lymphoma. The Q

test indicated an absence of heterogeneity, and the MR-Egger test did not show

significant horizontal polytropy. Furthermore, the leave-one-out analysis failed

to identify any SNP that exerted a substantial influence on the overall results.

Conclusion:Our study elucidates a definitive causal link between gut microbiota

and lymphoma development, pinpointing specific microbial taxa with potential
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causative roles in lymphomagenesis, as well as identifying probiotic candidates

that may impact disease progression, which provide new ideas for possible

therapeutic approaches to lymphoma and clues to the pathogenesis

of lymphoma.
KEYWORDS

gut microbiota, Mendelian randomization, Hodgkin lymphoma, non-Hodgkin
lymphoma, causal effect
1 Introduction

Lymphoma constitutes a category of neoplastic disorders

originating from the lymphohematopoietic system. It can be

classified into two categories—Hodgkin’s lymphoma (HL) and

non-Hodgkin’s lymphoma (NHL)—based on the morphological

characteristics of the tumor cells (1). In Western countries,

lymphomas account for approximately 4% of newly diagnosed

malignancies, ranking them as the fifth most prevalent type of

cancer (2, 3). As per international cancer data trends, the

incidence of lymphoma has been continuously rising (4, 5). The

cause of lymphoma is not entirely clear, although previous studies

have suggested a possible link to factors such as smoking (6),

alcohol consumption (7), obesity (8), viral infections (9, 10),

ionizing radiation exposure (11), chemical exposure (12),

autoimmune diseases, or immune dysfunction (13). Moreover,

there is mounting evidence that the gut microbiota significantly

affect lymphoma pathogenesis, treatment response, and

prognosis (14).

The various microorganisms and their ecology in the human

gastrointestinal tract constitute the complex gut microbiota (15).

Previous research have shown that the gut microbiota appears to

influence human pathophysiological phenomena, encompassing

immunity modulation, metabolic regulation, and inflammatory

response mechanisms (16, 17). The perturbation of gut

microbiota, commonly referred to dysbiosis, is increasingly

considered as a potential precursor, facilitator, or even an

instigating factor for a multitude of malignancies (18). Gut

microbiota dysbiosis has been consistently noted across numerous

lymphoma investigations, thereby giving rise to the conceptual

framework known as the “microbiota–gut–lymphoma axis” (19)

—for instance, gastric mucosa-associated lymphoid tissue (MALT)

lymphoma in the stomach is strongly associated with infection with

Helicobacter pylori (20). SE Yoon and colleagues found that patients

diagnosed with diffuse large B-cell lymphoma (DLBCL) exhibit

significantly reduced a-diversity compared to healthy subjects,

coupled with a marked elevation in the abundance of

Enterobacteriaceae family bacteria relative to those seen in healthy

controls (21). The gut microbiome has also emerged as a promising

diagnostic biomarker. A study conducted by Z Shi and colleagues

identified the role of gut microbiota that was illuminated in terms of
02
its utility for diagnosing natural killer/T-cell (NK/T cell) lymphoma

(22). In addition, the gut microbiome might play a regulatory role in

modulating the effectiveness of immunotherapy for lymphoma. A

research found that administering broad-spectrum antibiotics prior

to CD19-targeted chimeric antigen receptor T-cell (CAR-T)

treatment resulted in unfavorable outcomes (23). In the context

of hematopoietic stem cell transplantation (HSCT) among

lymphoma patients, research had revealed a correlation between

the proliferation of Lactobacillus species with the exacerbation or

worsening of graft-versus-host disease (GVHD) (24). Previous

studies have indicated that the gut microbiota plays a regulatory

role in the effectiveness of cancer immunotherapies, and there is an

opportunity for targeted microbiota to enhance anti-cancer efficacy

while reducing toxicity in microbial therapies, which is crucial for

developing personalized cancer treatment strategies (25).

The majority of the aforementioned studies have adopted a

case–control design, which inherently carries limitations in

establishing a definitive causal relationship between the exposure

and the outcome under investigation. Furthermore, compared with

traditional observational studies, the link is less susceptible to

potential confounding factors, including environmental factors,

dietary habits, and lifestyle. Nevertheless, establishing causal

connections would improve our understanding of the gut

microbiota’s role in lymphoma pathogenesis and have the

potential to guide tailored microbiota-based interventions against

various forms of lymphoma in clinical settings.

Mendelian randomization (MR) is an increasingly adopted

natural randomization method that utilizes genetic variation as

instrumental variables (IVs) (26). It follows Mendelian

randomization second law, which identifies genetic variations at

conception and follows a pattern akin to random allocation, and is

widely used in studies of causality in disease etiology (27). In

addition, compared with traditional observational studies, MR

effectively reduces biases arising from confounding factors or

reverse causality, ensuring greater reliability and validity of

experimental findings (28). Recently, MR analyses have been

implemented to explore causal links between the gut microbiota

and various types of cancers (29). This study employs MR to

analyze the potential causal effects of gut microbiota composition

on lymphoma given the uncertainty of the causal relationship

between the two. The aim is to establish a robust theoretical
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https://doi.org/10.3389/fimmu.2024.1397485
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1397485
framework that can facilitate further investigation to the

development of lymphoma.
2 Materials and methods

2.1 Data sources

Gut microbe-related genome-wide association studies (GWAS)

data were meticulously retrieved from the esteemed MiBioGen Global

Consortium, an expansivemulti-ethnic study that orchestrates a grand-

scale GWAS. The data was derived from an aggregate of 18,340

participant, including cohorts from Germany, Canada, Denmark,

Israel, and The Netherlands among others (30). We eliminated 15

bacterial taxa lacking clear taxonomic identification along with one

duplicative bacterial taxon entry (31). A set of 195 bacterial taxa stood

out as the core elements underpinning the exposure variables in our

subsequent MR analyses.

The malignant lymphoma GWAS databases were conveniently

accessible via the FinnGen project’s online portal. Among these, the

GWAS dataset pertaining to HL comprised 846 cases juxtaposed

against an impressive backdrop of 324,650 controls. Similarly, the

GWAS data linked with NHL featured an extensive array of

subtypes: follicular lymphoma (FL) incorporating 1,181 cases,

DLBCL with 1,050 cases, mature T/NK-cell lymphomas

documented with 363 cases, and a collective category for other

and unspecified NHL types accounting for 1,171 cases.

All the aforementioned GWAS datasets hold the virtue of being

publicly accessible and can be effortlessly downloaded from the

OPEN GWAS web platform. For clarity and reference, the specific

dataset details employed in our Mendelian randomization (MR)

analysis have been systematically presented in Table 1.
2.2 Selection of instrumental variables

This study capitalizes on single-nucleotide polymorphisms

(SNPs) as IVs in its analytical framework. For these IVs to be
Frontiers in Immunology 03
rigorously employed within MR analyses, they must satisfy three

basic conditions as described below:
(1) Relevance: Acknowledging that the limitation in the

number of SNPs within the gut microbiome reached the

genome-wide threshold of statistical significance (P < 5 ×

10-8), we adopted a p-value <1 × 10-5 in selecting SNPs

associated with risk factors to obtain comprehensive and

reliable results (32). To ensure the independence of IVs, we

employed a linkage disequilibrium (LD) threshold where r²

was set to be less than 0.001, coupled with clumping

distances exceeding 10,000 kb. This strategy is designed

to filter out genetic variants with a weaker capacity to

elucidate exposure, which might potentially influence the

results. Utilizing established methods, we used the equation

R2 = 2 × eaf × (1 − eaf) × beta2 to calculate the proportion of

exposed variation attributable to each SNP. In addition, the

F-statistic between each SNP and gut microbiota was

calculated using the equation F = R2 × (N − 2)/(1 − R2)

(33, 34). In doing so, SNPs with F <10 were discarded,

considering them as weak instruments. This multi-level

filtering process serves to ensure a strong and meaningful

association between the retained SNPs and the gut

microbiota under investigation.

(2) Independence: To investigate the potential associations

between each SNP and confounders, we used the online

Phenoscanner platform (available at http://www.

phenoscanner.medschl.cam.ac.uk). We excluded SNPs

with confounding factors associated with lymphoma (e.g.,

smoking, alcohol, body mass index, virus infections,

immune abnormalities, chemical exposure, and ionizing

radiation exposure). The Mendelian Randomization

Pleiotropy Residual Sum and Outlier (MR-PRESSO)

analysis serves as a powerful tool adept at detecting and

differentiating outliers and SNPs exhibiting pleiotropic

effects. In this analytical pipeline, the MR-PRESSO test

calculates individual SNP and global test, respectively. The
TABLE 1 Data information.

Datasets Ancestry Sample
size

NSNP Consortium Web source

Gut microbiota European 18,340 122,110 MiBioGen https://mibiogen.gcc.rug.nl/

HL European 846/
324,650

21,304,278 FinnGen https://storage.googleapis.com/finngen-public-data-r10/
summary_stats/finngen_R10_CD2_HODGKIN_LYMPHOMA_EXALLC.gz

DLBCL European 1,050/
314,193

21,303,852 FinnGen https://storage.googleapis.com/finngen-public-data-r10/
summary_stats/finngen_R10_C3_DLBCL_EXALLC.gz

FL European 1,181/
324,650

21,304,293 FinnGen https://storage.googleapis.com/finngen-public-data-r10/
summary_stats/finngen_R10_CD2_FOLLICULAR_LYMPHOMA_EXALLC.gz

T/NK cell lymphoma European 363/
324,650

21,304,264 FinnGen https://storage.googleapis.com/finngen-public-data-r10/
summary_stats/finngen_R10_CD2_TNK_LYMPHOMA_EXALLC.gz

Other and
unspecified types
of NHL

European 1,171/
324,650

21,304,287 FinnGen https://storage.googleapis.com/finngen-public-data-r10/
summary_stats/finngen_R10_CD2_NONHODGKIN_NAS_EXALLC.gz
HL, Hodgkin’s lymphoma; NHL, Non-Hodgkin’s Lymphoma; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma.
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p-values for individual SNPs are sorted in ascending order

and eliminated one by one. Afterward, a new MR-PRESSO

global test is performed on the residual SNPs to reassess the

overall horizontal multidirectionality. This recursive

process continued until the global test returned a non-

significant p-value (p > 0.05) (35).

(3) Exclusivity: To validate the unidirectional nature of the

causal pathway, the MR-Steiger method was used to

rigorously measure the directional estimates of causality

(36). SNPs with incorrect direction were excluded.
2.3 MR analyses

We conducted MR analyses between gut microbiota and

lymphoma. If a single independent variable (IV) representing a

specific gut microbiological profile was associated with a

lymphoma subtype, we used the Wald’s ratio test (37). When

dealing with features characterized by multiple IVs, we applied a

suite of five widely recognized MR methodologies: the inverse

variance weighted (IVW) test (38), the MR-Egger regression (39),

the weighted median estimator (WME) (40), simple mode, and

weighted mode (41).

The IVW approach is a meta-analytic tool that integrates the

Wald ratio estimates derived from each SNP analysis by summing

their estimates with inverse variance weighting (42). The MR-Egger

regression was grounded on the no-error-of-measurement

(NOME) assumption, using an intercept term to examine the

presence of potential pleiotropic effects (39). Moreover, the WME

and weighted mode approaches allow for the flexible estimation of

causality, even though half of the IVs may be void. Relative to the

MR-Egger approach, these two methods help to improve the

precision of the study results (43). Simultaneously, we conducted

supplementary analyses using both weighted mode and simple

mode techniques to bolster the reliability of the primary IVW

method results (44).

In summary, the IVW model assumes the central role as the

principal analytical strategy when there is no heterogeneity and

horizontal pleiotropy. However, when heterogeneity becomes

evident, findings derived from the WME approach are deliberated

upon. Should there be indications of horizontal pleiotropy, the MR-

Egger regression supersedes as the main method of analysis. The

association between gut microbial composition and lymphoma risk

was quantified using odds ratios (OR) and their corresponding 95%

confidence intervals (CI), where p <0.05 was considered statistically

significant. Moreover, in ensuring robustness against false positives

due to multiple testing, we stringently applied the Bonferroni

correction to establish statistically adjusted significance thresholds

at each taxonomic stratum. These levels were respectively set at

phylum level (a = 0.05/9), class level (a = 0.05/15), order level (a =

0.05/20), family level (a = 0.05/32), and genus level (a = 0.05/119).

Statistically significant P-values from MR analyses were interpreted

as prima facie or suggestive evidence of a causal association if they

were above the adjusted threshold.
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2.4 Sensitivity analysis

We conducted pleiotropy analyses, leave-one-out (LOO)

analysis, and heterogeneity tests to evaluate and mitigate the

effects of uncertainty in the models. Horizontal pleiotropy—a

phenomenon where a genetic variant influences multiple traits

beyond the primary outcome—was rigorously measured using the

MR-Egger approach. Notably, the presence of horizontal pleiotropy

was suggested if MR-Egger analysis revealed a statistically

significant intercept. Importantly, MR-Egger methodology

permits the accommodation of pleiotropic genetic variants while

still enabling the estimation of unbiased causal effects even when

directional pleiotropy or substantial heterogeneity exists (45).

Cochran’s Q test quantifies the degree of inconsistency between

the chosen SNPs and, if the result is statistically significant, indicates

model heterogeneity (46). Based on this finding, we tend to use

random effects IVW for analyses where there is significant

heterogeneity. A fixed-effects model was adopted instead (47).

Additionally, we performed a LOO analysis, which is used to

check whether individual SNPs disproportionately affect the

overall estimate. This is done by systematically removing each

SNP in succession and then reapplying the MR method to the

residual data to examine the robustness of the estimated causal

effects and ensure the stability of our findings (48).
2.5 Data visualization and
statistical software

We plotted forest plots of the overall causal estimates based on

the results of the IVW method as well as scatter plots and LOO

forest plots for each causal relationship to illustrate the collective

contribution of these SNPs. All statistical analyses were executed

using the R software packages “TwoSampleMR” (49) and “MR-

PRESSO” (35), which ensured a robust and comprehensive

assessment of the data.
3 Results

3.1 Selection of IVs

Figure 1 was constructed to visually reflect the relationship

between SNPs (IVs), risk factor (gut microbiota), and outcome

(lymphoma). First, SNPs significantly associated with the gut

microbiota were selected. We conducted a thorough screening

using the PhenoScanner to exclude SNPs that may be associated

with lymphoma risk-related confounders (Supplementary Table

S1). Subsequently, we ascertained the calculated F-statistics >10

for all IVs (Supplementary Table S2), and the results of MR-

PRESSO suggested that there was no significant pleiotropy in this

study (Table 2). Additionally, through the application of MR-

Steiger analysis, we confirmed that none of the SNPs exhibited

reversed causality (Supplementary Table S3). After a rigorous

screening of IVs, the remaining 2,548 eligible SNPs were included
frontiersin.org
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in the subsequent analyses. The IVs after harmonization are listed

in Supplementary Table S4.
3.2 MR analysis results

The MR analysis using IVW identified 35 gut microbiota genera

linked to lymphoma risk (Figure 2; Supplementary Table S5).

Scatter plots corresponding to each causal relationship are

provided in Supplementary Figure S1 for further illustration.

In this study, 10 genetically inferred gut microbiota taxa were

found to exhibit significant associations with HL. Notably, family

Bifidobacteriaceae (OR = 1.898, 95% CI 1.086–3.317, P = 0.024),

order Bifidobacteriaceae (OR = 1.898, 95% CI 1.086–3.317,

P = 0.024), genus Oscillospira (OR = 1.764, 95% CI 1.033–3.011,

P = 0.038), and genus Gordonibacter (OR = 1.307, 95% CI 1.001–

1.706, P = 0.049) showed suggestive evidence of increasing the risk of

HL development. On the contrary, phylum Tenericutes (OR = 0.584,

95% CI 0.360–0.946, P = 0.029), class Mollicutes (OR = 0.584, 95% CI

0.360–0.946, P = 0.029), genus CandidatusSoleaferrea (OR = 0.615,

95% CI 0.422–0.895, P = 0.011), genus Coprobacter (OR = 0.619, 95%

CI 0.438–0.873, P = 0.006), genus Intestinimonas (OR = 0.629, 95% CI

0.429–0.923, P = 0.018), and genus Eggerthella (OR = 0.651, 95% CI

0.456–0.928, P = 0.0176) demonstrated a potentially protective role

against HL incidence.

For DLBCL, MR analyses using the IVWmethod showed causal

relationships with five bacterial taxa. Genus Bilophila (OR = 1.777,
Frontiers in Immunology 05
95% CI 1.053–3.000, P = 0.031), family Desulfovibrionaceae

(OR = 1.579, 95% CI 1.003–2.487, P = 0.049), and genus

Coprobacter (OR = 1.367, 95% CI 1.003–1.863, P = 0.048)

displayed a statistically suggestive association with elevated risks

of DLBCL. On the contrary, genus RuminococcaceaeUCG011

(OR = 0.749, 95% CI 0.574–0.978, P = 0.034) and genus Alistipes

(OR = 0.473, 95% CI 0.278–0.807, P = 0.006) showed a negatively

correlated relationship with the risk of developing DLBCL.

For FL, MR analyses using the IVW method showed causal

relationships with 10 bacterial taxa. Two of those were positively

correlated with an elevated risk of FL, class Actinobacteria

(OR = 1.520, 95% CI 1.021–2.262, P = 0.039) and genus

Catenibacterium (OR = 1.448, 95% CI 1.011–2.076, P = 0.044). On

the contrary, family Pasteurellaceae (OR = 0.747, 95% CI 0.565–

0.988, P = 0.041), order Pasteurellales (OR = 0.747, 95% CI 0.565–

0.988, P = 0.041), genus Alistipes (OR = 0.565, 95% CI 0.321–0.996,

P = 0.0484), genus Haemophilus (OR = 0.703, 95% CI 0.502–0.983,

P = 0.040), genus Slackia (OR = 0.529, 95% CI 0.296–0.947,

P = 0.032), family Peptostreptococcaceae (OR = 0.669, 95% CI

0.463–0.966, P = 0.032), family Rhodospirillaceae (OR = 0.725,

95% CI 0.541–0.970, P = 0.031), and genus Ruminococcaceae

(OR = 0.541, 95% CI 0.341–0.857, P = 0.009) showed suggestive

protective effects against FL.

Utilizing the IVW approach, a collective of eight bacterial taxa

within the gut microbiome were identified to exhibit a statistically

significant negative correlation with the onset and progression of T/

NK cell lymphoma. They were genus Ruminococcus1 (OR = 0.443,
FIGURE 1

Workflow of MR design. HL, Hodgkin’s lymphoma; NHL, non-Hodgkin’s lymphoma; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma;
MR, mendelian randomization; SNPs, single-nucleotide polymorphisms; IVW, inverse-variance weighted; WME, weighted median estimator; MR-
PRESSO, Mendelian randomization pleiotropy residual sum and outlier; LD, linkage disequilibrium.
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TABLE 2 Sensitivity analysis of the causal association between gut microbiota and lymphoma.

Bacterial taxa
(exposure)

Lymphoma
(outcome)

No.
of

SNPs

Heterogeneity Pleiotropy

MR-PRESSO

MR
Steiger

Cochran
Q test

MR-Egger

Q-value P Intercept P

MR
analysis
causal

estimate

SD P

Genus Coprobacter HL 12 10.607 0.477 0.006 0.941 -0.480 0.172 0.490 True

Genus Oscillospira HL 7 3.582 0.733 -0.134 0.291 0.567 0.211 0.737 True

Genus Gordonibacter HL 11 7.709 0.657 0.026 0.766 0.268 0.119 0.674 True

Class Mollicutes HL 11 11.203 0.342 0.045 0.558 -0.539 0.247 0.362 True

Phylum Tenericutes HL 11 11.203 0.342 0.045 0.558 -0.539 0.247 0.353 True

Genus CandidatusSoleaferrea HL 9 3.492 0.900 -0.020 0.915 -0.487 0.127 0.912 True

Genus Eggerthella HL 10 9.789 0.368 -0.111 0.247 -0.430 0.181 0.386 True

Family Bifidobacteriaceae HL 10 9.075 0.430 0.055 0.083 0.641 0.285 0.497 True

Order Bifidobacteriales HL 10 9.075 0.430 0.055 0.083 0.641 0.285 0.453 True

Genus Intestinimonas HL 16 10.262 0.803 -0.055 0.258 -0.464 0.162 0.816 True

Genus Coprobacter DLBCL 12 6.380 0.701 -0.021 0.765 0.312 0.127 0.792 True

Genus Alistipes DLBCL 12 4.490 0.953 -0.063 0.443 -0.748 0.174 0.950 True

Genus Bilophila DLBCL 13 17.802 0.122 -0.045 0.659 0.575 0.267 0.126 True

Genus RuminococcaceaeUCG011 DLBCL 7 0.864 0.990 0.065 0.507 -0.333 0.055 0.992 True

Family Desulfovibrionaceae DLBCL 10 6.380 0.701 0.051 0.271 0.457 0.195 0.745 True

Class Actinobacteria FL 15 12.838 0.539 0.067 0.141 0.419 0.194 0.551 True

Family Peptostreptococcaceae FL 13 9.429 0.666 0.037 0.298 -0.402 0.166 0.67 True

Genus Alistipes FL 12 13.998 0.233 0.094 0.277 -0.571 0.289 0.268 True

Family Rhodospirillaceae FL 14 9.556 0.730 0.138 0.050 -0.322 0.128 0.738 True

Genus
RuminococcaceaeNK4A214group

FL 13 15.261 0.227 -0.028 0.639 -0.615 0.235 0.26 True

Genus Haemophilus FL 9 5.444 0.709 -0.003 0.954 -0.353 0.142 0.718 True

Genus Slackia FL 6 10.098 0.073 -0.398 0.042 -0.636 0.297 0.135 True

Order Pasteurellales FL 14 9.156 0.761 0.029 0.438 -0.292 0.12 0.8 True

Family Pasteurellaceae FL 14 9.15 0.761 0.029 0.438 -0.292 0.12 0.787 True

Genus Catenibacterium FL 4 2.213 0.529 0.429 0.283 0.37 0.158 0.56 True

Genus LachnospiraceaeUCG001 T/NK cell lymphoma 13 11.158 0.515 0.006 0.957 -1.04 0.285 0.597 True

Order Methanobacteriales T/NK cell lymphoma 10 2.623 0.977 -0.048 0.752 -0.555 0.120 0.977 True

Family Lactobacillaceae T/NK cell lymphoma 9 1.956 0.982 0.020 0.832 -0.649 0.14 0.981 True

Genus
ChristensenellaceaeR.7group

T/NK cell lymphoma 9 3.457 0.902 0.060 0.626 -1.03 0.33 0.927 True

Genus Ruminococcus1 T/NK cell lymphoma 10 9.033 0.434 -0.010 0.918 -0.815 0.412 0.458 True

Genus RuminococcaceaeUCG014 T/NK cell lymphoma 11 7.739 0.654 0.044 0.562 -0.886 0.314 0.707 True

Class Methanobacteria T/NK cell lymphoma 10 2.623 0.977 -0.048 0.752 -0.555 0.120 0.985 True

Genus Lactobacillus T/NK cell lymphoma 8 1.097 0.993 0.017 0.853 -0.69 0.114 0.992 True

(Continued)
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95% CI 0.198–0.992, P = 0.048), genus ChristensenellaceaeR.7group

(OR = 0.359 , 95% CI 0 .134–0 .960 , P = 0.041) , fami ly

Lactobacillaceae (OR = 0.523, 95% CI 0.300–0.917, P = 0.022),

genus Lactobacillus (OR = 0.501, 95% CI 0.286–0.880, P = 0.016),

genus RuminococcaceaeUCG014 (OR = 0.412, 95% CI 0.205–0.829,

P = 0.013), order Methanobacteriales (OR = 0.574, 95% CI 0.371–

0.887, P = 0.012), class Methanobacteria (OR = 0.574, 95% CI

0.371–0.887, P = 0.012), and genus LachnospiraceaeUCG001

(OR = 0.354, 95% CI 0.198–0.631, P = 0.0004).

Regarding other and unspecified types of NHL, the application

of the IVW method in MR analyses revealed significant causal

linkages with a select group of five bacterial taxa. Genus Sutterella

(OR = 1.600, 95% CI 1.001–2.545, P = 0.0497), order Clostridiales

(OR = 1.663, 95% CI 1.047–2.643, P = 0.031), and family

Defluviitaleaceae (OR = 1.527, 95% CI 1.076–2.168, P = 0.018)

revealed a trend towards heightened risk. On the contrary, order

Bacillales (OR = 0.755, 95% CI 0.590–0.966, P = 0.025) and genus

Slackia (OR = 0.642, 95% CI 0.424–0.974, P = 0.0373) displayed a

protective effect.

However, despite the statistical significance described above,

these observed associations did not meet the strict thresholds

imposed by the Bonferroni correction and therefore lost statistical

significance after adjustment.
3.3 Sensitivity analysis results

We conducted several rigorous sensitivity analyses and found no

factors that significantly affected the robustness of the findings, with

the detailed outcomes summarized in Table 2. The LOO test found
Frontiers in Immunology 07
no outliers, suggesting stable results (Supplementary Figure S2). As

mentioned above, the results of MR-Egger suggested that no

significant horizontal pleiotropy was found in this study

(Supplementary Table S6). Sagittarius conclusions were obtained in

the MR-PRESSO test (Supplementary Table S7). Furthermore, no

significant heterogeneity was obtained from the Cochran’s Q statistic

(Supplementary Table S8).
4 Discussion

Contemporary scientific inquiries have illuminated its intricate

participation in the onset and advancement of numerous

malignancies, such as pancreatic, breast, and hepatocellular

carcinomas, where approximately 13% of worldwide cancer cases

bear an imprint of microbial influence (14, 50). Of particular

interest lies the burgeoning connection between the gut

microbiome and lymphoma—a field witnessing considerable

exploration. To our knowledge, our investigation stands as one of

the pioneering endeavors to methodically appraise the causative

link between the gut microbiota and the multifarious forms of

lymphoma. Through MR study, harnessing the power of a large-

scale GWAS dataset, we strive to bridge a critical knowledge gap

within this burgeoning research landscape.

Our MR study identified a total of 35 species of intestinal flora

as potentially associated with five subtypes of lymphoma, thus

substantiating the critical involvement of specific gut microbiota

in the etiology and progression of various lymphoma forms. Unlike

traditional observational studies, which often struggle with

confounding factors such as diet, age, and gender as well as
TABLE 2 Continued

Bacterial taxa
(exposure)

Lymphoma
(outcome)

No.
of

SNPs

Heterogeneity Pleiotropy

MR-PRESSO

MR
Steiger

Cochran
Q test

MR-Egger

Q-value P Intercept P

MR
analysis
causal

estimate

SD P

Order Bacillales
Other and

unspecified types
of NHL

8 6.120 0.526 0.077 0.969 -0.281 0.117 0.538 True

Genus Sutterella
Other and

unspecified types
of NHL

12 14.559 0.204 -0.010 0.888 0.467 0.238 0.221 True

Genus Slackia
Other and

unspecified types
of NHL

6 5.112 0.402 -0.117 0.454 -0.442 0.212 0.518 True

Family Defluviitaleaceae
Other and

unspecified types
of NHL

11 4.650 0.875 0.024 0.718 0.424 0.122 0.923 True

Order Clostridiales
Other and

unspecified types
of NHL

14 14.297 0.353 0.025 0.720 0.509 0.236 0.419 True
fro
HL, Hodgkin’s lymphoma; NHL, non-Hodgkin’s lymphoma; FL, follicular lymphoma; DLBCL, diffuse large B-cell lymphoma; MR, mendelian randomization; SNPs, single-nucleotide
polymorphisms; MR-PRESSO, Mendelian Randomization Pleiotropy Residual Sum and Outlier; SD, standard deviation.
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economic level (51), our MR approach effectively mitigates these

influences , thereby enhancing the credibi l i ty of the

derived conclusions.

Traditional observational research have consistently highlighted

correlations between the two—for instance, in a study focusing on

adolescent and young adult Hodgkin’s lymphoma (AYAHL) patients,
Frontiers in Immunology 08
it was evidenced that individuals diagnosed with AYAHL manifested a

notably diminished presence of rare gut microbes along with a

conspicuously reduced relative abundance of Actinobacteria when

juxtaposed with their unaffected counterparts (52). Similar findings

have been reported in cutaneous T-cell lymphoma (CTCL), where

patients typically exhibit a state of gut dysbiosis compared to healthy
A

B

D

E

C

FIGURE 2

MR results and its forest plot. (A) Causal effects for gut microbiota on HL; (B) Causal effects for gut microbiota on DLBLC; (C) Causal effects for gut
microbiota on FL; (D) Causal effects for gut microbiota on T/NK cell lymphoma; (E) Causal effects for gut microbiota on other and unspecified types
of NH. HL, Hodgkin’s lymphoma; NHL, non-Hodgkin’s lymphoma; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; OR, odds radio;
95% CI, 95% confidence interval; IVW, inverse-variance weighted.
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subjects, a disparity that intensifies as the disease progresses to

advanced stages (53). Another study discovered that the intestinal

flora of DLBLC patients had a notably increased proportion of

Aspergillus/Hypobacterium, coupled with a decreased representation

of butyrate-generating bacterial strains, including Clostridium,

Eubacterium, Ruminococcus, and Roseburia, compared with that of

healthy controls (54). However, it is uncertain whether these, in

microbial diversity, act as a risk factor for lymphoma, are caused by

the lymphoma itself, or result from the therapeutic interventions that

patients receive. Moreover, there is also an association between

lymphoma treatment and gut microbes—for instance, in a study of

chimeric antigen receptor T cells (CAR-T) and their effectiveness in

treating lymphoma found when comparing patient populations

experiencing complete versus partial remission states, significant

temporal disparities were observed in both the biodiversity and

relative abundance of key bacterial species, such as Prevotella,

Collinsella, Bifidobacterium, and Sutterella (55). Cyclophosphamide, a

frequently employed chemotherapeutic agent in lymphoma treatment

regimens, has been shown to exert a transformative influence on the

intestinal microbiome composition of murine models. It notably

facilitates the translocation of specific gram-positive bacterial species

to secondary lymphoid tissues, concurrently promoting Th17 cells and

memory Th1 immune responses and thus contributing to its anti-

tumor efficacy (56).

The current research seek to unravel the complex molecular

pathways through which gut bacteria influence the progression of

lymphoma. Gut microbiota can either activate or detoxify mutagens,

which can promote or prevent DNA damage and cancer (57–59)—

for example, H. pylori increases oxidative stress and can function as

an immunogenic stimulus, stimulating persistent immune cell

multiplication, which, in turn, leads to lymphoma (60). In addition,

gut microbiota have been shown to exert profound influences on the

immune response, which can affect lymphocytes. Segmented

filamentous bacteria can lead to alterations in T cell activity, often

resulting in augmented secretion of cytokines including IFN-g and

IL-10 (61). In murine models, certain bacteria belonging to the

Clostridiales clusters have been demonstrated to exert a direct

influence on T regulatory cell differentiation (62). Bacterioides

fragilis induces an immune response in Th17 cells, leading to

lymphomas (63). In addition, the gut microbiome has systemic

effects—for example, Polysaccharide A, a constituent derived from

Bifidobacterium fragilis, has been shown to stimulate an

augmentation in the circulating population of systemic T helper

cells (64). Moreover, metabolites produced by the gut microbiome

hold a critical position in the lymphoma advancement. The genera

Slackia and Lachnospiraceae abundantly synthesize butyrate via

several intricate metabolic routes. Empirical evidence suggests that

butyrate-producing Eubacterium inhibit lymphoma development by

attenuating the TNF-activated TLR4/MyD88/NF-kB signaling

cascade (65). The above-mentioned genera were also suggested to

reduce the risk of lymphoma in our study.

Probiotics constitute a collection of beneficial microorganisms that

provide health benefits to the gut through various mechanisms. They

achieve this by rectifying intestinal dysbiosis, fostering assimilation,

strengthening the mucosal lining, and dampening inflammatory
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processes (66). Research has shown that Lactobacillus is a common

probiotic, which inhibits the progression of colorectal cancer by

secreting small molecules such as indole-3-lactic acid,

downregulating microRNA (miRNA)-155 and upregulating miRNA-

26b and miRNA-18a (67, 68). Meanwhile, Lactobacillus can produce

conjugated linolenic acid in the intestine and secrete extracellular

polysaccharides to promote tumor cell apoptosis (69). Some

lactobacilli can also improve the content of short-chain fatty acids in

intestines, prompting the proliferation of more probiotics and reducing

cellular carcinogenesis (70). This finding aligns with our observations

suggesting that family Lactobacillaceae may reduce the risk of T/NK

cell lymphoma. In animal experiments, Lactobacillus johnsonii-

deficient mice suffering from ataxia–telangiectasia had a higher

incidence of lymphoma in a mouse model whose genotoxicity was

reduced by a short-term oral administration of Lactobacillus (71).

Better treatment outcomes and prognosis in DLBCL patients

significantly enriched with Lactobacillus fermentum have also been

observed in clinical trials. Combined with our findings, we can further

investigate the protective mechanism of Lactobacillus against

lymphoma. This may lead to the development of Lactobacillus-

enriched drugs or genetically engineered supplements to

prevent lymphoma.

Family Bifidobacteriaceae and order Bifidobacteriaceae belong to

the phylum Actinobacteria, which constitute a substantial component

of the human gastrointestinal flora (72). Some studies have found

health-promoting and anti-tumor effects (73). A study discovered that

certain strains of Bifidobacterium bifidum in mice reduced tumor load

by triggering an anti-tumor host immune response in conjunction with

PD-1 blockade or oxaliplatin treatment (74). Bifidobacteria limit the

formation of free radicals by binding iron within the colon, which can

consequently diminish the risk of colorectal carcinogenesis (75). A

study in adolescents found that Bifidobacterium bifidum coordinated

fibroblasts to inhibit colorectal tumorigenesis through the Wnt

signaling pathway (76). However, no studies have investigated

whether they may have an impact on lymphoma. Our study revealed

that family Bifidobacteriaceae and order Bifidobacteriaceae are causally

associated with HL disease and may increase the risk of HL. This

finding is the first report, which also provides new ideas to further

explore the immune mechanism between Bifidobacteria and

lymphoma in the future.

Genus Alistipes represents a relatively novel group within the

bacterial domain, and our study found it to be a protective factor in

DLBCL and FL. In previous studies, it has been conceptualized as a

“double-edged sword”. Research have claimed that Alistipes has a

pathogenic effect on colorectal cancer through the IL-6/STAT3

pathway and has been linked to depression (77). Although a

pathogenic role for Alistipes has been observed in colorectal

cancer, recent studies suggest that it may also have a positive

impact on cancer immunotherapy by altering the tumor

microenvironment—for example, in patients responding well to

nabulizumab for non-small cell lung cancer, there was an increased

abundance of Alistipes (78). Nevertheless, there is currently no

explicit evidence in the existing literature that directly implicates a

relationship between Alistipes and the development of lymphoma.

The immune mechanism between Alistipes and lymphoma can be
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further explored in the future, providing ideas for microbial-

assisted therapy.

Genus Coprobacter is an important member of the phylum

Trichoderma and the principal sources of butyric acid production.

Butyrate acts as an energy-producing substance in the colon,

stabilizes hypoxia-inducible factor to sustain the characteristic

anaerobic milieu within the gut environment, and regulates

Claudin-1 and synaptopodin expression to maintain gut barrier

integrity. Additionally, it limits the production of inflammation-

associated cytokines as well as inhibits oncogenic signaling

cascades, including TGF-b and Akt/ERK signaling (79). Genus

Coprobacter may help to suppress the immune response and

alleviate the intensity of allergy, in addition to being associated

with depression and language development in young children (80,

81). In our study, genus Coprobacter can potentially augment the

susceptibility to DLBCL while demonstrating a protective effect

against HL; this conclusion this still needs further studies. Butyrate

has also been found to enhance cancer treatment efficacy by

modulating intracellular calcium, and the role of these butyrate-

producing intestinal flora in the development and treatment of

lymphomas remains to be further investigated (82).

This MR study benefits from utilizing a vast amount of data from

multiple published GWAS summaries and controlling for partial

confounding and reverse causality. In addition, the study focuses on

GWAS data for gut microbiota and lymphoma confined in European

populations, reducing potential biases arising from genetic and

environmental heterogeneity across different ethnic backgrounds.

Nevertheless, our study had several limitations. Firstly, it is

important to take care when generalizing the study results to other

ethnic populations, as the bulk of patients in the combined GWAS

dataset comes from European populations. This may introduce biases

into the estimations and compromise the universal applicability of

the conclusions. Secondly, the impact of gut microbiota appears to

exhibit heterogeneity across different pathological subtypes of

lymphoma, requiring further investigation into the precise

biological mechanisms that underlie the connection between the

gut microbiome and the diverse pathological manifestations of

lymphoma. Thirdly, gut microbiome GWAS is still in its infancy

and the count of relevant loci is comparatively modest relative to

lymphoma, and some bacteria may not be adequately characterized at

the genus or species level. As the GWAS continues to expand and

incorporate larger sample sizes, along with the use of advanced

shotgun metagenomic sequencing techniques, there is a promising

prospect that more definitive and nuanced features will emerge with

greater clarity (83). Fourthly, after implementing the stringent

Bonferroni correction to the MR analysis results, the associations in

the current study were not statistically significant. Therefore, the

findings should only be regarded as suggestive evidence of a potential

association. In addition, there are fewer in vivo or in vitro studies of

specific flora associated with lymphoma, which cannot permit

adequate comparison and discussion. Subsequent research

endeavors can capitalize on these preliminary insights to determine

a more definitive link between gut microbiota composition and the

etiology of lymphoma. Consequently, conclusions drawn from our

current work should be considered provisional rather than

conclusive, highlighting the need for further corroboration.
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5 Conclusion

We assessed the causal link between gut microbiota and

lymphoma through MR analysis of public GWAS data,

identifying specific bacteria that might contribute to lymphoma

risk and potential protective taxa. Our study provides new ideas for

possible therapeutic approaches to lymphoma and clues to the

pathogenesis of lymphoma.
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