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Introduction: Gliomas represent the most prevalent and aggressive tumors

within the central nervous system. Despite the current standard treatments,

the median survival time for glioblastoma patients remains dismal, hovering

around 14 months. While attempts have been made to inhibit the PD-1/PD-L1

and CTLA-4/CD80-CD86 axes through immunotherapy, the outcomes have yet

to demonstrate significant efficacy. The immune checkpoint Butyrophilin 3A1

(BTN3A1) can either be involved in advantageous or detrimental function

depending on the cancer type.

Methods: In our study, we utilized a Moroccan cohort to delve into the role of

BTN3A1 in gliomas. A transcriptomic analysis was conducted on 34 patients,

which was then corroborated through a protein analysis in 27 patients and

validated using the TCGA database (n = 667).

Results: Our results revealed an elevated expression of BTN3A1 in glioblastoma

(grade 4), as evidenced in both the TCGA database and our cohort of Moroccan

glioma patients. Within the TCGA cohort, BTN3A1 expression was notably higher

in patients with wild-type IDH. We observed a positive correlation between

BTN3A1 expression and immune infiltration of B cells, CD8+ T cells, naive CD4+

T cells, and M2 macrophages. Patients exhibiting increased BTN3A1 expression

also presented elevated levels of TGF‐b, IL‐10, and TIM‐3 compared to those

with reduced BTN3A1 expression. Notably, patients with high BTN3A1 expression

were associated with a poorer prognosis than their counterparts with

lower expression.
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Conclussion: Our findings suggest that BTN3A1 might promote the

establishment of an immunosuppressive microenvironment. Consequently,

targeting BTN3A1 could offer novel therapeutic avenues for the management

of advanced gliomas.
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Introduction

Gliomas are malignant brain tumors that originate from glial

cells within the Central Nervous System (CNS) and are notorious

for their rapid growth and invasiveness (1). Glioblastoma (GBM)

stands out as the most prevalent and lethal subtype, accounting for

approximately 57% of all gliomas and 48% of primary CNS

malignant tumors. Patients with GBM face a median survival rate

of merely 14–16 months (1, 2). Over the past decade, there has been

a significant refinement in the World Health Organization’s

classification of gliomas. The 5th edition of the WHO

classification of Tumors of the Central Nervous System (WHO

CNS5) has incorporated specific molecular and genetic criteria. As a

result, GBMs are now delineated as grade 4 gliomas with a wild-type

IDH (3). Furthermore, the classification distinguishes various

histological types: adult-diffuse gliomas, pediatric low-grade

diffuse gliomas, pediatric high-grade diffuse gliomas, and

circumscribed astrocytic gliomas (4). Specific mutations further

categorize adult diffuse gliomas into astrocytoma (with mutated

IDH), oligodendroglioma (featuring mutated IDH and a 1p/19q

code), and glioblastoma (with wild-type IDH) (4). It is crucial to

highlight that the terms “pediatric” and “adult” types in this context
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do not refer to the patient’s age but rather to distinct molecular and

genetic profiles (5).

This paradigmatic transition underscores the need to re-

evaluate both diagnostic and therapeutic strategies. The emphasis

is now on personalized medicine, particularly in the realm of

immunotherapy. The CNS, contrary to previous beliefs, is an

immuno-competent region (6). However, the immunosuppressive

microenvironment in GBM tumors, fueled by a combination of

molecular and cellular elements such as interleukin-6 (IL-6),

interleukin-10 (IL-10), transforming growth factor-beta (TGF-b),
M2macrophages, microglia, and regulatory T cells (T-regs), thwarts

effective anti-tumor responses (7).

In this context, numerous studies have underscored the

significance of examining the role of immune checkpoint (IC)

molecules and the potential benefits of inhibiting these pathways

(8–13). To date, the Food and Drug Administration (FDA) has

approved two immune checkpoint blockade (ICB) therapeutic

strategies (14). Anti-PD1 and/or anti-CTLA-4 drugs are

commonly administered to patients with advanced and recurrent

glioblastoma and may be combined with temozolomide (TMZ)-

based chemotherapy or radiotherapy (15, 16). While these therapies

offer certain benefits, such as reinvigorating the functional state of

tumor-infiltrating lymphocytes (TILs) and enhancing the

expression of Interferon-Gamma (IFN-g) and Interleukin-2 (IL-

2), they have yet to demonstrate a significant improvement in

overall survival (16, 17). Therefore, it might be prudent to

investigate novel blockade approaches, focusing on promising

immune checkpoints like VISTA, TIGIT, A2AR, and NR2F6, all

of which have been linked to advanced glioma (18–21).

Consistent with this approach, the present study seeks to

ascertain the potential role of Butyrophilin Subfamily 3 Member

A1 (BTN3A1 or CD277) in advanced gliomas. BTN3A molecules

are members of the immunoglobulin family and exist in three

distinct isoforms: BTN3A1, BTN3A2, and BTN3A3, which exhibit

95% of structural homology (22). These paralogous genes encode

transmembrane proteins featuring both IgV and IgC extracellular

domains, as well as a B30.2 intracellular region pivotal for

downstream signaling (23). BTN3A1 appears to be the only one

that can efficiently elicit signal transduction, either after stimulation

by binding to its putative ligand on its extracellular domain, or by

the direct interaction of a phosphoantigen with the B30.2
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intracellular domain. Studies have highlighted the significant role of

the intracellular domain B30.2 in cell signaling (24). Unlike

BTN3A1 and BTN3A3, BTN3A2 lacks it, which limits its

involvement in signaling processes (24). Regarding BTN3A3,

despite the presence of the intracellular domain B30.2, it would

appear to be less efficient than BTN3A1 in cell signaling due to

slight changes in amino acid residues in the B30.2 structure (25)

The BTN3A1 molecule is expressed on a variety of cells, including T

cells, B cells, monocytes, dendritic cells, natural killer (NK) cells,

and even tumor cells (26). Most studies on BTN3A1 focus mainly

on how it activates gd T cells, whereas BTN3A molecules are also

involved in ab T cell immunomodulation (27). As previously

demonstrated, BTN3A1 is implicated in CD4+/CD8+ ab T-cells

inhibition. Using genetically engineered APCs expressing BTN3A1,

Kyle K. Payne et al. demonstrated reduced IFNg release and CD4

+/CD8+ T-cell proliferation (27). Jinghua. W and coworkers

highlighted the interaction between BTN3A1 on T cells and

LSECtin on melanoma cells, resulting in decreased production of

IFN-g, IL-2, and TNF-a (28). The ability of BTN3A2 and BTN3A3

to induce these inhibitions on CD4+/CD8+ ab T-cells has not yet

been fully demonstrated. While some studies have identified

LSECtin as a ligand for BTN3A1, the definitive binding partner

for this molecule remains inadequately characterized (28, 29). As

such, the prognostic value of BTN3A1 is intricately tied to the

specific cancer type and the signaling pathways activated upon

binding with its presumptive ligand on APC/tumor cells (26). For

instance, overexpression of BTN3A1 in ovarian cancer (OC) has

been linked to suppressed ab T cell proliferation and reduced T

helper 1 (Th1) cytokine production, culminating in unfavorable

patient outcomes (30). Additionally, the correlation of BTN3A

expression with immune evasion strategies of pancreatic tumor

(PC) cells reinforces the role of BTN3A in facilitating tumor

progression (31). A notable recent study elucidated that BTN3A1

overexpression in esophageal squamous cell carcinoma (ESCC)

augments radioresistance by modulating the expression and

phosphorylation of UNC-51-like autophagy-activating kinase

(ULK1), subsequently correlating with adverse prognoses (32).

In our study, we endeavored to probe and underscore the

significance of BTN3A1 in gliomas. By leveraging the TCGA

database in tandem with our in-house cohort, we scrutinized the

relationship between BTN3A1 expression, and clinicopathological

as well as molecular factors. Our findings indicated that BTN3A1

could play a part in promoting tumor progression, and its

overexpression correlates with poor prognosis. We are optimistic

that our findings will pave the way for devising potential anti-

BTN3A1 therapeutic avenues for addressing advanced gliomas.
Materials and methods

Ethics approval and consent to participate

The present study received approval from the Ethical Board of

Ibn Rochd University Hospital, Casablanca, with the approval code

28/15. Written informed consent was secured from all glioma

patients, with consent from parents or legal guardians obtained
Frontiers in Immunology 03
for participants below 18 years of age. All methods were conducted

in accordance with relevant guidelines and regulations.
Patients and specimens

A total of 34 biopsies were included in our transcriptomic

analysis: 9 specimens of grade 1, 7 of grade 2, 7 of grade 3, and 11 of

grade 4/Glioblastoma (refer to Supplementary Material 1 for

clinicopathological parameters). Additionally, 27 formalin-fixed

and paraffin-embedded (FFPE) glioma tissues were assessed,

consisting of 6 specimens of grade 1, 5 of grade 2, 8 of grade 3,

and 8 of grade 4/Glioblastoma. All samples were sourced from

patients who underwent neurosurgical resection of gliomas at the

Neurosurgery Department of Ibn Rochd University Hospital. Every

participant was informed about the research purpose, and written

consent was obtained.
Data source and data processing

We procured patient mRNA expression data and associated

clinical information from the Merged Cohort (Lower Grade

Glioma/TCGA, Firehose Legacy + Glioblastoma Multiforme/

TCGA, Firehose Legacy) via the open access database at http://

cbioportal.org. Any samples lacking RNA-seq data or

clinicopathological details were excluded and our inclusion

criteria encompassed comprehensive RNA-seq data and

clinicopathological details for each specimen. A total of n = 667

patients was then taken into account for downstream analyses.

(refer to Supplementary Material 2 for data processing).
Normalization methods

During the analysis, initial normalization was conducted using

the DESeq2 function available at https://bioconductor.org/

packages/release/bioc/. Subsequently, RNAseq expression values

underwent Log2 transformation to ensure dependable results for

differential gene expression and comparisons among samples. We

delineated the “high BTN3A1” and “low BTN3A1” clusters based

on the median. These designations respectively represent patients

with elevated and reduced BTN3A1 expression.
RNA extraction, complementary
DNA synthesis

Total mRNA was isolated and purified from fresh frozen tissues

(n=34) employing the Trizol reagent (Invitrogen, France) as

described by the manufacturer’s protocol. We gauged the quality

and concentration of the extracted RNA with the NanoVue™ Plus

spectrophotometer (GE Healthcare, UK). The cDNA synthesis was

performed in two steps. Initially, approximately 1 mg of total RNA
was mixed with 1 ml of Random Hexamer Primer (25 mg, Bioline,
France) and 4 ml of RNase-Free Water. This mixture was incubated
frontiersin.org
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at 70°C for 5 minutes, serving to dismantle the RNA’s secondary

structure and ready the reaction milieu. Subsequently, a solution

containing 4 ml of Tetro Reverse Transcriptase buffer, 4 ml of dNTP
(10 mM), 0.5 ml of RNase Inhibitor (Invitrogen, France), 0.5 ml
Tetro Reverse Transcriptase Enzyme (Bioline, France), and 1 ml of
RNase-Free Water was added. This was incubated at 25°C for 10

minutes, 45°C for 30 minutes, and finally at 85°C for 5 minutes.
Quantitative real-time polymerase
chain reaction

For qRT-PCR, we employed the SYBR™Green PCRMasterMix

(Thermo Fischer), adhering to the manufacturer’s specifications, and

utilized the croBEE® Real-Time PCR Detection System. The

ubiquitously expressed b-Actin gene served as an internal

benchmark, facilitating the assessment of BTN3A1’s relative

expression. The PCR was programmed as follows: an initial step of

10 minutes at 95°C for polymerase activation and sample

denaturation. This was succeeded by 40 cycles of 15 seconds at 95°

C for cDNA double-strand denaturation and 1 minute at 60°C for

primer hybridization and extension, and finally annealing at 95°C for

15 seconds, 60°C for 1 minute and 95°C for 15 seconds. This final

phase is imperative for overseeing amplification quality and

specificity. The mRNA expression was measured using the 2^-DCt
(DCt = Ct target gene − Ct b-Actin) method. The Sequences of the

primers for qPCR are designed as:
Fron
BTN3A1 Forward Primer: 5’-CTTCAGCTGCTCATGCCTCA-3’

BTN3A1 Reverse Primer: 5’-CAGATCAGCGTCTTCACCCA-3’

b-Actin Forward Primer: 5′- GAGATGGCCACGGCTGCTT-3′
b-Actin Reverse Primer: 5′- GCCACAGGACTCCATGCCCA-3′
Immunohistochemical detection
of BTN3A1

Formalin-fixed paraffin-embedded (FFPE) glioma tissue blocks,

comprising 6 specimens of grade 1, 5 of grade 2, 8 of grade 3, and 8 of

grade 4 (Glioblastoma), were sectioned into 4-mm thickness. These

sections were then mounted on slides using an albumin-water

solution and dried in an oven at 60°C for one hour and

subsequently stored at 37°C overnight. The immunohistochemical

staining was conducted using the Dako EnVision™ FLEX, High pH

(Link) (Code K8000) detection system. Antigen retrieval employed

the Heat-Induced Epitope Retrieval (HIER) method in a Tris/EDTA

buffer (pH 9), subjected to 98°C for 20 minutes. To inhibit

endogenous peroxidase activity, slides were treated with the

EnVision FLEX peroxidase blocking reagent (Dako, Denmark) for

10 minutes at ambient temperature. After which, they were rinsed

twice with the wash buffer (EnVision flex wash buffer, Dako) for 2

minutes each. Primary antibodies, BTN3A1 polyclonal antibody

(OACA02656) (https://www.avivasysbio.com/btn3a1-antibody-

oaca02656.html) at a 1:300 dilution and rabbit IgG isotype control
tiers in Immunology 04
(bs-0295P) (https://www.biossusa.com/products/bs-0295p) at a 1:200

dilution, were applied to the tissue sections and allowed to incubate

for 30 minutes at room temperature. Post incubation, slides were

washed as described and then treated with a horseradish peroxidase-

conjugated goat anti-rabbit IgG secondary antibody (EnVision Flex/

HRP, Dako, USA) for 20 minutes at room temperature. DAB

chromogen was subsequently applied for 10 minutes, highlighting

the binding of the BTN3A1 antibody to the tissue. Counterstaining

was achieved using Hematoxylin and eosin for one minute, followed

by sequential dehydration in ethanol and toluene baths. Slides were

then mounted for observation under a light microscope.
Staining quantification

Membrane and cytoplasmic expression of BTN3A1 in glioma

tissues was evaluated to provide a semi-quantitative measure of protein

expression. This was determined using the Immunoreactivity Score

(IRS), which ranges from 0 to 12. The IRS is calculated as follows: IRS

= Percentage of Positive Cell Staining (PS) (ranging from 0 to 4)

multiplied by Staining Intensity (SI) (ranging from 0 to 3).

For the Percentage of Positive Cell Staining:
• 0 corresponds to 0%

• 1 corresponds to 1–24%

• 2 corresponds to 25–49%

• 3 corresponds to 50–74%

• 4 corresponds to 75–100%
For Staining Intensity:
• 0 denotes Absence

• 1 denotes Low

• 2 denotes Moderate

• 3 denotes Strong
Estimation of tumor-infiltrating immune
cells by TIMER

The Tumor IMmune Estimation Resource (TIMER) (http://

timer.cistrome.org/) facilitates a comprehensive analysis and

estimation of tumor-infiltrating immune cells. In the TCGA GBM

cohort (n=153), we assessed the correlation between BTN3A1

expression and the immune infiltration of CD8+ T cells, CD4+ T

cells, B cells, and macrophages. A Spearman correlation was

considered significant at p < 0.05.
Analysis of single-cell expression of
BTN3A1 by TISCH

BTN3A1 expression at the single-cell level across various cell types

was analyzed using the GSE databases: Glioma_GSE131928_Smartseq2
frontiersin.org
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(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131928)

(33) and Glioma_GSE163108_Smartseq2 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE163108) (34) both of which

are available on the Tumor Immune Single-cell Hub (TISCH) open-

access database (http://tisch.comp-genomics.org).
Enrichment analysis

We conducted the gene set enrichment analysis using the GSEA

v4.3.2 software (https://www.gsea-msigdb.org/gsea/downloads.jsp).

Based on the median value, patients were categorized into High-

BTN3A1” and “Low-BTN3A1” groups in glioblastoma. We then

evaluated the association between BTN3A1 expression and

hallmark genes from biological immune pathways. Nominal p

values were estimated using 1000 permutations. Results were

considered statistically significant if the p value was less than 0.05

and the False Discovery Rate (FDR) was below 0.25.
Statistical analysis

All figures and statistical analyses were executed using

GraphPad Prism v8.0.1. We applied the non-parametric Mann-

Whitney test for comparisons between two independent conditions/

groups and the Kruskal-Wallis test when comparing gene

expression across more than two conditions/groups. The

correlation between selected genes was determined using

Spearman’s non-parametric test. All statistical tests were two-

tailed, with significance set at p < 0.05. For survival differences

between groups, the Kaplan-Meier survival curve analysis, based on

the log-rank test, was employed. Two independent individuals in

the laboratory assessed the various statistical tests.
Results

BTN3A1 is upregulated in glioblastoma/
Grade 4 and IDH wild-type glioma

We first evaluated BTN3A1 mRNA expression in our cohort of

Moroccan glioma patients (n = 34): 9 patients with grade 1, 7 with

grade 2, 7 with grade 3, and 11 with grade 4/Glioblastoma. We found

that BTN3A1 expression was higher in Grade 4 compared to both

Grade 2 (p < 0.01; Figure 1A) and Grade 3 (p < 0.01; Figure 1A>).

Our findings were further validated in the TCGA cohort. We

assessed BTN3A1 transcriptomic expression according to various

clinicopathological parameters (Table 1; Figures 1B–D), considering

the 5th edition of the WHO classification of central nervous system

tumors (4). In the TCGA dataset, BTN3A1 expression was

significantly higher in Glioblastoma compared to both

Oligodendroglioma and Astrocytoma (p < 0.0001; Figure 1B). This

higher expression in grade 4 was also seen when compared to grades

3 and 2 (p < 0.0001; Figure 1C). Regarding the IDH status, IDHwild-
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type patients exhibited elevated BTN3A1 expression compared to

their IDH mutant counterparts (p < 0.0001; Figure 1D).

To complement our transcriptomic data, we examined the

protein expression profile of BTN3A1 by immunohistochemistry,

using samples from 6 patients with grade 1, 5 with grade 2, 8 with

grade 3, and 8 with grade 4/Glioblastoma. In alignment with our

earlier results, BTN3A1 was significantly upregulated in grade 4 and

grade 3 gliomas compared to grade 2 (p < 0.01; Figure 2).

In summary, BTN3A1 expression appeared associated to a

more aggressive and pathogenic state of glioma.
BTN3A1 expression, detected in both
immune and tumor cells, correlates with
the infiltration of B cells, CD8+ T cells,
CD4+ T cells (Th1), Treg, and Macrophages
(M0, M2) in glioblastoma

The immune infi l trat ion profi le within the tumor

microenvironment critically informs the characterization of the

immune phenotype. Highlighting the correlation between BTN3A1

expression and immune cell type infiltration can offer deeper insights

into the immune system’s modulation. Utilizing the Tumor Immune

Single Cell Hub (TISCH) web resource—specifically the

GSE163108_Smartseq2 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE163108) andGSE131928_Smarseq2 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131928)

databases— we found BTN3A1 expressed at the single-cell level in

conventional CD4+ T cells, CD8+ T cells, and CD4+ Treg cells

(Figure 3A). Notably, BTN3A1 expression was observed in

exhausted CD8 +T cells and pro-tumor cells, including astrocyte-

like (AC-like) cells (Figures 3B, C).

We further probed the correlation between BTN3A1 expression

and the infiltration of these specific immune cells using the Tumor

IMmune Estimation Resource (TIMER). For more reliable results,

we employed the two principal methodologies for estimating

immune infiltration in the tumor microenvironment: the

deconvolution-based method (via TIMER, MCP-Counter,

CIBERSORT) and the marker-based approach (xCell, quanTIseq).

Interestingly, TIMER estimations revealed positive correlations

between BTN3A1 expression and the immune infiltration of B

cells and CD4+ T cells (Figures 4A, B). Moreover, BTN3A1

expression correlated positively with immune infiltration of

memory B cells, CD8+ T cells, and naive CD4+ T cells as gauged

by the xCell and MCP-Counter methods (Figures 4C–E).

In accordance with the TISCH analysis, BTN3A1 expression is

associated with pro-tumor immune characteristics. We identified a

negative correlation between BTN3A1 expression and M0

macrophages, non-regulatory CD4+ T cells especially Th1 cells

(Figures 4F–H. Conversely, a positive correlation was observed with

M2 macrophage immune infiltration as measured by CIBERSORT

and quanTIseq (Figures 4I, J). Additionally, our TCGA data

indicated a positive correlation between Treg (FoxP3) and

BTN3A1 expression (Figure 4K; r = 0.2348; p < 0.0001).
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Taken together, our findings suggest that BTN3A1 might foster

an immunosuppressive phenotype within the Glioblastoma

patient’s microenvironment.
Highly expressed BTN3A1 is associated
with pro-tumour immune-related
molecules in glioblastoma

The nature of the immune response in the tumour

microenvironment is shaped by a myriad of interactions among

cells and factors, including cytokines, chemokines, cytoplasmic

granule toxins, and both soluble and membrane-bound immune

checkpoints (35). Building upon our previous results into immune

cell infiltration and its relationship with BTN3A1 expression, we

delved deeper into the association between BTN3A1 expression and
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both pro- and anti-tumor molecules. Our results revealed that a slight

increase in the expression of IL-10 and TGF-b is associated with

heightened levels of BTN3A1 (Figure 5A; p-value < 0.05). Specifically,

there was a positive correlation between BTN3A1 expression and IL-

10 (Figure 5B) (r = 0.3321; p < 0.0001). However, no significant

correlation was identified between BTN3A1 expression and TGF-b
(Figure 5C). With regard to inhibitory immune checkpoints, only

TIM3 expression was notably higher in patients with elevated

BTN3A1 expression compared to those with reduced BTN3A1

levels (Figure 5D; p-value < 0.05). This observation is further

reinforced by the significant positive correlation observed between

BTN3A1 and TIM3 expression (Figure 5E) (r = 0.3443; p < 0.0001).

It is plausible, therefore, to hypothesize that BTN3A1 may

facilitate immunosuppression in the tumor microenvironment in

conjunction with TIM3. This hypothesis will be elaborated upon

and critically assessed in the discussion section.
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A

FIGURE 1

Association between BTN3A1 expression and clinical parameters. (A) High level of BTN3A1 mRNA expression in grade 4 Moroccan glioma patients (n
= 34). (B) BTN3A1 was upregulated in Glioblastoma compared with Oligodendroglioma and Astrocytoma in TCGA dataset. (C) BTN3A1 expression is
associated with grade progression in TCGA dataset. (D) IDH-Wild-Type glioma patients exhibit high levels of BTN3A mRNA in TCGA dataset. ns, not
significant; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001.
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Association between elevated BTN3A1
expression and immune pathway-related
hallmark genes in glioblastoma

In our analysis, the next logical step was to evaluate the various

biological and immune pathways linked to BTN3A1 expression. We

employed the DEseq method to normalize RNAseq data, and based

on the median expression, patients were categorized into two groups:

“high-BTN3A1” and “low-BTN3A1”.”. A Gene Set Enrichment

Analysis (GSEA) was subsequently conducted to pinpoint hallmark

genes associated with immune processes. We deemed results as

statistically significant if the p-value was below 0.05 and the false

discovery rate (FDR) did not exceed 0.25. In the “high-BTN3A1”

group, 35 pathways were enriched, of which 20 were statistically

significant (refer to Supplementary Material 3). Eight of these 20

pathways were enriched in hallmark genes associated with the

immun e r e s p o n s e (HAL LMARK_ INTER F ERON_

GAMMA_RESPONSE) (HALLMARK_INTERFERON_

ALPHA_RESPONSE) (HALLMARK_INFLAMMATORY

RESPONSE) (HALLMARK_TNFA_SIGNALING_VIA_NFKB)

( H A L L M A R K _ I L 6 _ J A K _ S T A T 3 _ S I G N A L I N G )

(HALLMARK_COMPLEMENT) (HALLMARK_IL2_STAT5_

SIGNALING) (HALLMARK_TGF_BETA_SIGNALING)

(Figure 6A) and three pathways were linked to tumor progression

(HALLMARK_KRAS_SIGNALING_UP) (HALLMARK_P53_

PATHWAY) (HALLMARK_PI3K_AKT_MTOR_SIGNALING)

(Figure 6B). On the other hand, no significant immune or tumour

processes were observed in the “low BTN3A1” group, except for the

HALLMARK_MYC_TARGETS_V1 and HALLMARK_MYC_

TARGETS_V2 pathways (Supplementary Material 4).

These findings indicate that BTN3A1 expression may play a

role in modulating inflammatory responses and potentially

promote the activation of tumorigenic processes in glioblastoma.
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BTN3A1 upregulation is associated with
poor outcomes in human glioma patients

In light of our previous observations, we evaluated the influence

of BTN3A1 expression on patient survival. We conducted a Kaplan-

Meier survival analysis comparing patients with low BTN3A1

expression to those with high BTN3A1 expression in the TCGA

dataset. The analysis included all patients for whom expression,

event and month data were available. Of the 667 patients, only 665

and 629 had complete information for the OS and DFS analyses

respectively. Missing information was marked as NA: Not Available

in the TCGA clinical data and was therefore not considered.

We observed that upregulation of BTN3A1 was associated with

a significant decrease in both OS (Figure 7A; p < 0.0001) and DFS

(Figure 7B; p < 0.0001).

From these findings, we could infer that high levels of BTN3A1

adversely affect the survival of patients diagnosed with high-

grade gliomas.
Discussion

The central nervous system is an intricate and meticulously

organized structure responsible for many crucial biological

functions. Pathological disturbances within this system can lead

to significant lifestyle implications (36). Glioblastoma (GBM),

which accounts for over 50% of gliomas, is classified as an IDH-

wildtype and grade 4 tumor according to the latest WHO

classification of the CNS (4). The aggressive and invasive nature

of GBM can compromise the integrity of the blood-brain barrier

(BBB) and hampers the CNS’s proper functioning, resulting in a

markedly low survival rate (37). Immunotherapy emerges as a

promising therapeutic strategy that extends patient care beyond

conventional treatments (38). While CTLA-4 and PD-1/PD-L1

immune checkpoint blockades have yielded significant results in

various cancers, such as melanoma, non-small cell lung cancer

(NSCLC), and bladder cancer (BC), their survival benefits have not

yet been established in gliomas (39–41). Consequently, the

exploration of new immune checkpoint candidate molecules

might yield better outcomes for glioma patients. The BTN3A1

(CD277) molecule, a member of the immunoglobulin superfamily

receptors, has been shown to play a role in Vg9Vd2 T-cell activation
through the sensitivity of its B30.2 domain to phosphoantigens

(pAg). Recently, there has been growing interest in investigating the

relationship between BTN3A1 and cancer, with prior results

indicating its dual role in tumor progression (26). In this study,

we assessed the expression pattern and potential role of BTN3A1

using both TCGA datasets and our own Moroccan glioma cohort.

Transcriptomic and protein expression analyses of BTN3A1

expression in our Moroccan cohort revealed a significant

upregulation in grade 4 gliomas when compared to grades 2 and

3. This was corroborated by the TCGA dataset, which displayed a

heightened expression of BTN3A1 in grade 4 gliomas relative to

grades 2 and 3, and also in grade 3 compared to grade 2. Following

the World Health Organization CNS5 guidelines, glioblastomas are

now categorized as IDH-WILD type/grade 4 gliomas (5). Our
TABLE 1 Expression of BTN3A1 according to the clinicopathological
parameters in the glioma patient of the TCGA dataset.

Parameters Number (%) P-value

Sex

Male 381 (57%) 0,4083

Female 285 (43%)

WHO grade (5th edition)

Low grade (2) 249 (37,4%)

High grade (3–4) 417 (62,6%) <0,0001

Histological type

Astrocytoma (IDH-mutant) 194 (36%)

Oligodendroglioma (IDH-mutant and 1p/
19q-codeleted)

191 (36%)

Glioblastoma (IDH-wild-type) 152 (28%) <0,0001

IDH mutation status

Mutant 385 (72%)

Wild-type 152 (28%) <0,0001
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findings suggest that an increased expression of BTN3A1 is

associated with more aggressive glioma subtypes. This suggests

that BTN3A1 could serve as a potential biomarker for glioma

diagnosis and grading. In clinical scenarios, elevated BTN3A1

expression could raise suspicion for grade 4 gliomas, leading to a

more precise classification and facilitating timely and appropriate

clinical management. Previous research has demonstrated that
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soluble plasma levels of BTN3A1 (sBTN3A1) may predict the

efficacy of nivolumab therapy in patients with metastatic renal

cell carcinoma (mRCC) (42). Therefore, recognizing elevated

BTN3A1 expression as a marker for grade 4 gliomas could

augment the molecular characteristics delineated in the fifth

edition of the WHO classification of central nervous system

tumors (WHO CNS5).
FIGURE 2

Immunohistochemical staining of BTN3A1 using anti-BTN3A1 (OACA02656) and 3,30-diaminobenzidine (DAB; brown). Haematoxylin was used for
nuclear counterstaining (blue). (A) Strong positive staining with anti BTN3A1 in grade 4 glioma tissue (magnification ×40). (B) Strong positive staining
with anti BTN3A1 in grade 3 glioma tissue (magnification ×40). (C) Low positive staining with anti BTN3A1 in grade 2 glioma tissue (magnification
×40). (D) BTN3A1-negative staining with anti BTN3A1 in grade 1 glioma tissue. (E) Representation of the difference in BTN3A1 expression between
the different glioma grades. The Immunoreactivity-score IRS (0 ~ 12) = Percentage of positive cell staining (PS) (0 ~ 4) x Staining Intensity (SI) (0 ~ 3).
Scale bare 100 µm; ns, not significant; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001.
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Our single-cell analysis indicated that BTN3A1 is expressed in

both immune and glioma cells. Interestingly, Recent findings have

delineated four distinct glioblastoma cell states: Neural-Progenitor-

like (NPC-like), Oligodendrocyte-Progenitor-like (OPC-like),

Astrocyte-like (AC-like), and Mesenchymal-like (MES-like). Each

of these states mirrors the neurodevelopmental differentiation and

damage responses observed in the normal neural lineage (33). While

the reaction of normal neural cells to tumor cells plays a role in
Frontiers in Immunology 09
shaping the tumor microenvironment, altered responses from

glioblastoma progenitor cells lead to overlapping effects that

significantly influence the propagation and persistence of

glioblastoma (33). Our results revealed an upregulation of BTN3A1

in the AC-like cell state. Notably, the AC-Like state is characterized

by aggressive and proliferative cells (33). Furthermore, adult diffuse

gliomas exhibit a higher proportion of AC-Like cells compared to

pediatric diffuse gliomas. This distinction could partially account for
B

C

A

FIGURE 3

Single-cell expression of BTN3A1 in immune and malignant cells in Glioblastoma. (A, B), Uniform Manifold Approximation and Projection (UMAP) plot
showing the distribution and expression levels of BTN3A1 in different immune and malignant cell types in the GSE163108_Smartseq2 and
GSE131928_Smarseq2 datasets. (C) The distribution of BTN3A1 expression levels in the GSE131928_Smarseq2 dataset. AC-like, Astrocyte-Like
Malignant; MES-like, Mesenchymal-like; Mono/Macro, monocyte-macrophages; NPC, neural-progenitor; OPC, oligodendrocyte-progenitor.
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the more aggressive nature of adult gliomas (33, 43). Given these

findings, the pronounced expression of BTN3A1 in AC-Like cells

supports our initial observations, underscoring BTN3A1’s potential

as a promising marker for glioblastomas.

With respect to the profile of immune infiltration, we observed

that BTN3A1 expression directly correlated with the infiltration

levels of B cells, CD8+ T cells, general CD4+ T cell populations, and

M2 macrophages. Conversely, there was a negative correlation with

Th1 and M0 macrophages. Recent research posits the Central

Nervous System (CNS) as an immune-competent region.

Moreover, evidence indicates that the glioma environment can

impair and render the Blood-Brain Barrier (BBB) permeable, thus

promoting the migration of immune effectors (6, 44).

In light of our findings, BTN3A1 seems to drive a pro-tumor

immune response by bolstering M2 macrophage activities. Studies

have demonstrated that M2 macrophages foster tumor progression

and engender an immunosuppressive microenvironment within

gliomas, notably through the secretion of cytokines IL-6, TGF-b,
and IL-10, which in turn recruit Treg cells (45, 46). This assertion

aligns seamlessly with our observations where elevated BTN3A1

levels were associated with heightened IL-10 and TGF-b expression.

However, there wasn’t any significant difference in the expression of

IFN-g and Granzyme B between “high-BTN3A1” and “low-

BTN3A1” groups. Notably, BTN3A1 exhibited a positive

correlation with IL-10 and FoxP3, and single-cell analysis

indicated that exhausted CD8+ T cells expressed BTN3A1.
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Drawing from the data, we hypothesize that (1) BTN3A1

propels its pro-tumor effect in glioblastoma by inciting M2

macrophages to produce IL-10. This, in turn, activates and

attracts Treg cells, culminating in CD8+ T-cell exhaustion. Earlier

research also identified an association between BTN3A1

upregulation in ovarian cancer and the suppression of ab T cell

activity, ostensibly due to BTN3A1’s interference with CD45-

mediated signaling, thereby obstructing TCR-mediated T cell

activation (27). Adding to this, Wang J. et al. presented evidence

that BTN3A1, when expressed on T-cells, binds to LSECtin on

melanoma cells, resulting in the suppression of T cell proliferation

and the production of cytokines like (28). A holistic analysis

spanning various omics data sets revealed a positive association

between BTN3A1 and immune cells such as B cells, CD8+ T cells,

CD4+ T cells, macrophages, neutrophils, and dendritic cells in

conditions like Breast Cancer (BRCA), Lung Adenocarcinoma

(LUAD), and Lung Squamous Cell Carcinoma (LUSC) (47).

Our research underscored the presence of BTN3A1 in both

immune and glioblastoma cells. Its expression was clearly

associated with immune cell infiltration and immunosuppressive

activity. We highlighted the potential role of BTN3A1 in the

establishment of an immunosuppressive microenvironment, thus

contributing to the inhibition of ab T cell activity in gliomas. In a

recent study, Wang Y and coworkers demonstrated that high

BTN3A1 protein expression could predict a favorable Vg9Vd2 T-

cell-mediated cytotoxic response in glioblastoma (48). Increased
B C D
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FIGURE 4

The correlation between BTN3A1 expression and infiltration of B cells, CD4+ T cells, CD8+ T cells, and Macrophages in Glioblastoma. (A, B)
Estimation of B cell and CD4+ T cell infiltration using the Timer algorithm. (C, E, G), Estimation of the infiltration of memory B cells, naive CD4+ T
cells and Th1 CD4+ T cells using the XCELL algorithm. (D) Estimation of CD8+ T cell infiltration using the MCPCOUNTER algorithm. (F, J) Estimation
of non-regulatory CD4+ T cell, M2 macrophage infiltration using QUANTISEC algorithm. (H, I) Estimation of M0 and M2 macrophage infiltration
using the CIBERSORT algorithm. TIMER, quanTIseq and CIBERSORT algorithms use deconvolution-based methods to estimate immune cell
infiltration. xCell and MCP-counter algorithms use the Marker-based approaches to estimate Immune cell Infiltration. (K) BTN3A1 expression is
positively correlated with Tregs (FoxP3) in our Glioblastoma TCGA database.
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levels of BTN3A1 may enhance phosphoantigen presentation to gd T
cells, improving their anti-tumor responses. In such a glioma

microenvironment, the higher the expression of BTN3A1, the more

effective the cytotoxicity of gd T cells should be, leading to tumour

regression and improved prognosis. Although this hypothesis is fully

cogent, it does, have some limitations. gd T cells are uncommon,

representing less than 5% of all T lymphocytes (49). In addition, as

mentioned in the related study, the cytotoxicity of the gd T cells

against GBM cells was limited (≈30%) (48). High levels of BTN3A1

will tip the balance in favor of tumour progression and ab T cell

inhibition, despite the low compensation of gd T cell activation. By

prioritizing the reversal of ab T cell inhibition over gd T cell

activation, our results suggest that blocking BTN3A1 may be an

effective strategy and will represent a promising avenue for

immunotherapy in glioblastoma. Alternatively, a strategy based on

preventing BTN3A1-induced inhibition of ab T cells, combined with

stimulation of gd T cells, will contribute meaningfully to improving

anti-tumor response. In their study, Kyle K. Payne et al.

demonstrated that CTX-2026, an anti-BTN3A1 antibody, can both

hinder BTN3A1-mediated inhibition of ab T-cells and activate gd T
cells (27). To summarize, the tumor microenvironment specificity is

pivotal and governs how some therapeutic strategies can be
Frontiers in Immunology 11
implemented to foster relevant outcomes. Our findings suggest

targeting BTN3A1 may present a promising avenue for

immunotherapy in glioblastoma.

Combined therapies have consistently demonstrated superior

efficacy compared to monotherapies. Notably, while the efficacy of

immunotherapies for glioblastoma remains constrained, there’s

compelling evidence supporting enhanced survival outcomes

through combination immune checkpoint blockade strategies

(50). In our investigation into the relationship between BTN3A1

and various checkpoints such as PD-1, CTLA-4, VISTA, TIGIT,

and TIM-3, we discerned a significant association. Elevated

BTN3A1 expression correlated positively with heightened TIM-3

expression in glioblastoma. Previous research has highlighted TIM-

3’s role in advancing glioblastoma progression by curtailing the

effector functions of CD8+ T cells and Th1 cells and attenuating

IFNg production (51). Additionally, TIM-3 plays a pivotal role in

the migration and polarization of pro-tumoral M2 macrophages

(52). Our findings, juxtaposed with prior research, suggest that (2)

BTN3A1 might expedite glioma progression through the activation

of the IL-6/JAK/STAT3 pathway (as depicted in Figure 6A). This

leads to the upregulation of TIM-3, potentially inhibiting T cell

activities while stimulating M2 macrophages. Furthermore, existing
B C
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FIGURE 5

Expression profile of anti and pro-tumor immune-related molecules according to Low and High BTN3A1 expression in glioblastoma (A) Higher
expression of BTN3A1 is associated with a slight increase in IL-10 and TGF-b levels. (B) BTN3A1 expression is positively correlated with IL-10 expression.
(C) No correlation between BTN3A1 expression and TGF-b. (D) Higher BTN3A1 expression is associated with high levels of TIM3. (E) Positive correlation
between BTN3A1 expression and TIM3. ns, not significant; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001
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FIGURE 6

Gene set enrichment analysis (GSEA) according to BTN3A1 mRNA expression. (A) The different plots represent the significant immune pathways-
related hallmark genes in the “high-BTN3A1” group. (B) The different plots represent the significant protumoral pathways-related hallmark genes in
the “high-BTN3A1” group. The ranking metric measures a gene’s correlation with a phenotype. The value of the ranking metric goes from positive to
negative as you move down the ranked list. A positive value indicates correlation with the first phenotype (Low-BTN3A1 group) and a negative value
indicates correlation with the second phenotype (High BTN3A1 group).
BA

FIGURE 7

Survival analysis according to BTN3A1 expression in all glioma patients in the TCGA dataset. (A) Higher BTN3A1 expression is associated with worse
Overall Survival (OS) in glioma patients. (B) Higher BTN3A1 expression is associated with worse Disease-Free Survival (DFS) in glioma patients.
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studies have characterized a pro-tumoral glioma phenotype

distinctively marked by the TIM-3/interleukin 6 interaction (51,

52). It should also be noted that in addition to the IL-6/JAK/STAT3

pathway, Tim-3 seems to promote tumor progression through the

NF-kB signaling pathway (53). Herein, we found that high

expression of BTN3A1 was associated with the activation of the

NF-kB via the TNF-a signaling pathway. The involvement of NF-

kB in oncogenesis is well established (54, 55) Thus, co-expression of

BTN3A1 with TIM-3 may result in a synergistic pro-tumor effect by

enhancing the IL-6/JAK/STAT3 and TNF-a/NF-kB pathways.

Previous studies demonstrated that the combination of anti-TIM-

3 with anti-PD1 has aroused more encouraging results than with

anti-PDL1 in melanoma, NSCLC, and ESCC (53). Combined

immune checkpoint blockade is a fairly recent strategy in the

treatment of gliomas, as evidenced by the ongoing clinical trial

which will assess the combination of Anti-Tim-3 with Anti-PD-1

(56). This positive correlation between BTN3A1 and TIM-3 holds

promising implications for potential combined immune-checkpoint

blockade strategies in glioblastoma.

Our GSEA analysis probed the influence of BTN3A1 in

orchestrating both immunological and tumor pathways.

Overexpression of BTN3A1 was associated with hallmark genes

implicated in inflammatory responses, encompassing INF-a, INF-g,
TNF-a, and the complement system. Distinct research underscores

the ambivalent role of these inflammatory agents in glioblastoma

(57). For instance, in addition to INF-a, INF-g, and TNF-a’s pro-
inflammatory functions, INF-g has been shown to amplify PD-L1

expression and foster T-reg differentiation in glioblastoma, thereby

abetting glioma cells in evading immune surveillance (7, 58).

Preliminary transcriptomic analyses aimed at deriving a risk score

grounded on INF-g expression posited that elevated INF-g levels

correlated with a more adverse clinicopathological and molecular

prognosis in glioblastoma (59, 60). Simultaneously, TNF-a
exhibited heightened expression in GBM and was implicated in

bolstering tumor proliferation (61). Current literature remains

scant regarding the roles of INF-a and the complement system in

glioblastoma. Our research suggests that BTN3A1 is potentially

instrumental in triggering inflammatory cascades, as evidenced by

its association with hallmark genes of inflammatory responses.

Subsequently, an immune-suppressive microenvironment seems

to be established, steered by increased expression of BTN3A1.

Furthermore, our data reveals an association of heightened

BTN3A1 expression in glioblastoma with signature genes of

pathways such as IL6/JAK/STAT3, TGF-b, KRAS, P53, and PI3K/

AKT/MTOR. It’s intriguing that BTN3A1’s role in tumorigenesis

can oscillate between pro-tumoral and anti-tumoral, contingent on

the pathological milieu and the specific downstream signaling

cascades activated by specific interactions between the IgC

extracellular domain of BTN3A1 and its putative ligand (26, 29).

Prior investigations affirm the profound implications of pathways

like KRAS, P53, and PI3K/AKT/MTOR in the onset, evolution, and

metastasis of glioblastoma (62–64). We postulate that (3) BTN3A1

may champion glioblastoma establishment and expansion by

actuating the KRAS, P53, and PI3K/AKT/MTOR signaling

conduits. BTN3A1’s correlation with hallmark genes of the IL6/

JAK/STAT3 and TGF-b pathways reaffirms and validates our
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preceding observations. These observations indicated that (1)

BTN3A1 mediates a pro-tumoral influence in glioblastoma,

principally through the induction of M2 macrophages to

synthesize IL-10 and TGF-b. This cascade eventually leads to

CD8+ T-cell exhaustion and (2) accentuates glioma development

via the IL-6/JAK/STAT3 pathway.

The analysis of BTN3A1’s prognostic significance revealed an

association between elevated BTN3A1 expression and poorer

prognosis in glioma patients. Elevated BTN3A1 expression has

also been linked to unfavorable outcomes in esophageal

squamous cell carcinoma (ESCC), metastatic gastrointestinal

stromal tumors (mGISTs), and ovarian cancer (OC) (27, 32, 65).

The present study suggests that BTN3A1 expression can serve

as a prognostic indicator for worse outcomes in advanced

human gliomas.
Conclusion

In summary, our study posits that elevated BTN3A1 expression

correlates with an immunosuppressive microenvironment in

gliomas, precipitating a heightened aggressive pathological state.

BTN3A1 seems to foster a pro-tumor response, operating in

association with TIM3, M2 macrophages, Tregs, and other pro-

tumor pathways. Consequently, BTN3A1 expression may serve as a

pioneering immunological indicator to foresee unfavorable

outcomes in advanced human gliomas.

However, our study remains limited due to the limited size of

our Moroccan patient cohort. Further exploration is essential to

validate the mechanistic and functional significance of BTN3A1 in

the modulation of immune cells, paving the way for potential anti-

BTN3A1 immunotherapies.
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