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Constructing immune and
prognostic features associated
with ADCP in hepatocellular
carcinoma and pan-cancer
based on scRNA-seq and
bulk RNA-seq
Zhengwei Zhang1†, Yuying Li2†, Zhen Quan3†, Yapeng Li1,
Liying Zhu2*, Shibo Sun1* and Xiaoning Chen1*

1Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China, 2Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical
University, Harbin, China, 3Department of Critical Care Medicine, The Second Affiliated Hospital of
Harbin Medical University, Harbin, China
Aim: Despite the significant therapeutic outcomes achieved in systemic

treatments for liver hepatocellular carcinoma (LIHC), it is an objective reality

that only a low proportion of patients exhibit an improved objective response rate

(ORR) to current immunotherapies. Antibody-dependent cellular phagocytosis

(ADCP) immunotherapy is considered the new engine for precision

immunotherapy. Based on this, we aim to develop an ADCP-based LIHC risk

stratification system and screen for relevant targets.

Method: Utilizing a combination of single-cell RNA sequencing (scRNA-seq) and

bulk RNA-seq data, we screened for ADCP modulating factors in LIHC and

identified differentially expressed genes along with their involved functional

pathways. A risk scoring model was established by identifying ADCP-related

genes with prognostic value through LASSO Cox regression analysis. The risk

scoring model was then subjected to evaluations of immune infiltration and

immunotherapy relevance, with pan-cancer analysis and in vitro experimental

studies conducted on key targets.

Results: Building on the research by Kamber RA et al., we identified GYPA,

CLDN18, and IRX5 as potential key target genes regulating ADCP in LIHC. These

genes demonstrated significant correlations with immune infiltration cells, such

as M1-type macrophages, and the effectiveness of immunotherapy in LIHC, as

well as a close association with clinical pathological staging and patient

prognosis. Pan-cancer analysis revealed that CLDN18 was prognostically and

immunologically relevant across multiple types of cancer. Validation through

tissue and cell samples confirmed that GYPA and CLDN18 were upregulated in

liver cancer tissues and cells. Furthermore, in vitro knockdown of CLDN18

inhibited the malignancy capabilities of liver cancer cells.
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Conclusion: We have identified an ADCP signature in LIHC comprising three

genes. Analysis based on a risk scoring model derived from these three genes,

coupled with subsequent experimental validation, confirmed the pivotal role of

M1-type macrophages in ADCP within LIHC, establishing CLDN18 as a critical

ADCP regulatory target in LIHC.
KEYWORDS
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Introduction

According to the latest data from GLOBOCAN, conducted by

the International Agency for Research on Cancer (IARC), liver

cancer ranks sixth among cancers globally and is among the top

three cancer-related causes of death (1). Notably, when separating

the statistics for the two primary histological subtypes of primary

liver cancer, the proportion of intrahepatic cholangiocarcinoma

(iCCA) is relatively small, whereas liver hepatocellular carcinoma

(LIHC) accounts for over 80% of all liver cancer cases. The latter is

among the top three causes of cancer-related deaths in 46 countries

and ranks within the top five in 90 countries (2). Despite the

opportunity for surgical treatment in early-stage liver cancer

patients, the majority are unfortunately diagnosed at advanced

stages of the disease, facing poor outcomes with postoperative

recurrence and metastasis (3). For patients with advanced liver

cancer, systemic treatment becomes particularly crucial.

Approximately 50-60% of liver cancer patients undergo systemic

therapy, half of whom are initially diagnosed with advanced stage

LIHC, while the other half receive treatment following the

progression of LIHC (4).

LIHC is a malignant tumor characterized by a highly

immunosuppressive microenvironment, rendering immunotherapy

a promising treatment strategy (5). Antibody-based immunotherapy

holds a pivotal position in the realm of cancer immunotherapy,

especially in the treatment of specific cancer types. For instance, the

combination of atezolizumab and bevacizumab (6) as a first-line

treatment for liver cancer, the pairing of tremelimumab with

durvalumab (7), and the second-line treatments involving

durvalumab (8), as well as the U.S. approved alternative second-

line options for patients initially treated with sorafenib, including

pembrolizumab or nivolumab in conjunction with ipilimumab (9,

10), are all examples of antibody-based immunotherapy. However,

despite significant therapeutic advancements in systemic treatments,

only ≤30% of patients show an improved objective response rate

(ORR) to the current standard treatments (4). Therefore, the

development of more effective immunotherapy protocols

is imperative.

Antibody-dependent cel lular phagocytosis (ADCP)

immunotherapy is regarded as a new engine for precision
02
immune treatment, involving the identification and marking of

cancer cells by antibodies, followed by the recognition of these

marked targets by phagocytic cells such as macrophages, leading to

their phagocytosis. This approach has proven effective in the

treatment of most tumors (11). Kamber RA and colleagues,

through a comprehensive genome-wide CRISPR knockout

overexpression screening platform, had discovered numerous

ADCP regulatory factors and identified a set of genes that

impeded antibody-dependent cellular phagocytosis (12). To date,

no therapies that explicitly mediate ADCP have been established,

but related research has begun to emerge. Arulanandam A and

others had demonstrated the efficacy of CYT-303, designed against

GPC3, in triggering ADCP in hepatocellular carcinoma cell lines

(13). Similarly, Chen Y and associates had developed OBI-888,

targeting Globo H, which had triggered antibody-dependent cell-

mediated cytotoxicity and ADCP in various xenograft cancer

models, including liver cancer, inhibiting tumor growth (14).

The s e find ing s unde r s co r e th e po t en t i a l v a l u e o f

ADCP immunotherapy.

In our study, we integrated the use of scRNA-seq and Bulk

RNA-seq data to screen for ADCP regulatory factors identified in

the research by Kamber RA et al. within the context of LIHC. This

enabled the identification of differentially expressed genes and their

potential functional pathways. Through LASSO Cox regression

analysis, ADCP-related genes with prognostic value were

identified to establish a risk scoring model. Additionally,

assessments related to immune infiltration and immunotherapy

were conducted on the risk scoring model, along with pan-cancer

analyses of key target. Our findings unveiled several critical ADCP-

related genes involved in the progression of LIHC.
Methods

Data collection

RNA-seq data and clinical information for LIHC were

downloaded from The Cancer Genome Atlas (TCGA) database.

This dataset includes samples from 374 LIHC tumors and 50

normal liver tissues. Patient information typically includes, but is
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not limited to, the patient’s age, gender, pathological stage,

treatment history, survival time, and survival status. It is noted

that within the database, patient data for hepatocellular carcinoma

exhibiting missing values in various clinicopathological

characteristics at follow-up and cases with incomplete

clinicopathological data were excluded from analyses related to

clinical correlations. Single-cell datasets were obtained from the

Gene Expression Omnibus (GEO) website, under the accession

number GSE149614. The gene set related to ADCP was derived

from PMID: 34497417, encompassing a total of 620 genes.
Single-cell data quality control

Single-cell data quality control was conducted using the LIHC

single-cell dataset generated with the Cell Ranger software package,

leading to the creation of a Seurat object that included a gene

expression matrix and sample annotation information. Subsequent

single-cell analyses were performed using Seurat v3.1.4. During the

quality control phase, cells with gene counts between 100 and 6000,

unique molecular identifier (UMI) counts greater than 200, and

mitochondrial gene expression below 10% were retained. Setting a

lower limit for gene counts is intended to exclude low-quality cells

with minimal gene expression data, while establishing an upper

limit is aimed at excluding situations involving doublets or clusters

of multiple cells. Setting a minimum value for UMI counts ensures

that the selected cells contain sufficient RNA molecules, thereby

reflecting the true biological state of the cells. Standard Seurat

procedures were followed, encompassing normalization,

identification of highly variable genes, scaling, principal

component analysis, and batch effect correction using Harmony.

Cells achieving an accumulated variance of 80% were preserved for

further clustering analysis.
Cluster analysis and cell annotation

Clustering was performed at the optimal resolution value

identified through t-SNE visualization. To enhance the accuracy

of cell annotation, samples derived from both tumor and normal

tissues were not distinguished at this stage. Cell subtypes were

annotated based on their molecular expression patterns. The

exploration of differentially expressed genes between subtypes and

groups was conducted using the FindAllMarkers function in Seurat,

employing the Wilcoxon test as the statistical method with

default parameters.
Construction of clinical prognosis model

Initially, the intersection of differentially expressed genes and

ADCP-related genes was identified. Subsequently, the R caret

package was employed to perform cross-validation on the gene

expression matrix, which possessed complete clinical information,

segregating the dataset into a training set (train) and a test set (test)

in a random 0.7:0.3 ratio. The training set was utilized to construct a
Frontiers in Immunology 03
risk prognosis model for LIHC, while the test set served to evaluate

the model’s performance. Utilizing the prognosis model based on

ADCP-related genes, risk scores for 424 LIHC samples from the

TCGA database were computed. Through LASSO Cox regression

analysis, genes to construct a risk model were identified. This

method maintains the model’s predictive capability while

reducing the number of variables through regularization to avoid

overfitting. It involves adding a penalty term to the Cox model’s

likelihood function, where the penalty is typically the sum of the

absolute values of all coefficients multiplied by a tuning parameter

l. The selection of genes to be included in the final model is

typically achieved through a variable selection process. This process

involves using cross-validation to select an optimal l value. For

each l, the model is estimated, and the l that minimizes the cross-

validation error is chosen for the model. Patients were classified into

high-risk (≥ median risk score) and low-risk (< median risk score)

categories. The survival outcomes of the two groups were compared

using the Kaplan-Meier method and illustrated via survival curves.

Receiver Operating Characteristic (ROC) curves were plotted to

establish the model, with the Area Under the Curve (AUC)

calculated to interpret predictive accuracy. Histograms predicting

1, 3, and 5-year survival rates were constructed using the rms and

survival packages.
Immune infiltration analysis

Different immune cells play distinct roles within the tumor

microenvironment. To accurately assess the composition of

immune cells in LIHC patient samples, we employed the

CIBERSORT algorithm to examine the proportions of immune

cells. Input files included expression data and a leukocyte signature

matrix file (LM22.txt). Differences in the proportions of immune cells

between high-risk and low-risk patients were compared using the

Wilcoxon rank-sum test, with the statistical test results visualized

through the R ggpubr package. Beyond immune cells, the tumor

microenvironment also comprises tumor cells and stromal cells. The

ESTIMATE package was utilized to calculate the tumor purity

(ESTIMATEScore), stromal cell score (StromaScore), and immune

score (ImmuneScore) for LIHC patients. The ggpubr and stats

packages were used to explore the correlation between risk scores

and the tumor immune microenvironment.
Prediction of immune therapy response
and drug sensitivity

We utilized the IMvigor210 cohort to assess the efficacy of anti-

PD-L1 immune therapy, with a particular focus on investigating the

predictive role of high-risk and low-risk patients in the context of

immune checkpoint blockade (ICB) treatment. Using the chi-square

test, we evaluated the differences in immune therapy response among

patients with varying risk scores. Employing the Genomics of Drug

Sensitivity in Cancer (GDSC) database, we predicted drug sensitivity

for each sample using the R package “oncoPredict.” Additionally, we

estimated the IC50 values for each sample and utilized the Wilcoxon
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rank-sum test to statistically analyze the differences in drug sensitivity

between high-risk and low-risk patients.
Cell culture

Human hepatoma cell lines (HepG2, Hep3B, Huh7, HCCLM3,

PLC/PRF/5) and normal human hepatic cell lines (LO2, Chang

liver, WRL68) were obtained from Zhongqiaoxinzhou Biotech

(Shanghai, China). HepG2, Hep3B, Huh7, HCCLM3, Chang liver,

and WRL68 were cultured in Dulbecco’s Modified Eagle Medium

(DMEM) supplemented with 10% fetal bovine serum and 1%

penicillin-streptomycin. The LO2 cell line was cultured in Roswell

Park Memorial Institute 1640 medium (RPMI-1640) with the same

supplements. Meanwhile, PLC/PRF/5 was cultured in Minimum

Essential Medium (MEM) also supplemented with the same

components. Cultures were maintained in a 37°C incubator with

5% CO2.
Patient specimens

Human hepatocellular carcinoma and adjacent non-tumor

tissues were obtained from surgical waste specimens at the

Affiliated Hospital of Harbin Medical University. These tissues

were subsequently preserved via cryopreservation and paraffin

embedding. The study protocol was approved by the Medical

Ethics Committee of the Second Affiliated Hospital of Harbin

Medical University, with written informed consent obtained from

the patients.
RNA isolation and real-time quantitative
reverse transcription polymerase
chain reaction

Total RNA was extracted using Trizol reagent (Invitrogen,

Carlsbad, CA, USA). The RNA was then reverse transcribed into

cDNA using a reverse transcription kit (Toyobo, Japan).

Quantitative assessment of mRNA levels was performed using

SYBR Green Master Mix (Toyobo, Japan), with GAPDH or 18s

serving as the internal control. Primers used are listed in

Supplementary Table S1.
Immunohistochemical staining

Paraffin sections of 5mm thickness were prepared, followed by

deparaffinization and gradual rehydration through an ethanol gradient,

and then thoroughly rinsed. Subsequently, the sections were mounted

on poly-L-lysine-coated slides. Immunohistochemical staining was

performed using multiple antibodies. A selection of primary

antibodies was screened, including those against CLDN18 (#21126-1-

AP, Proteintech, Wuhan, China, dilution 1:400) and GYPA (#bs-

2575R, Bioss, Beijing, China, dilution 1:500).
Frontiers in Immunology 04
Transfection

siRNA was transfected into cells using jetPRIME® transfection

reagent (Polyplus, France). The sequences for human si-CLDN18

were as follows: si-CLDN18-#1 (target sequence: CAAGCACG

ACUAUGUGUAA); s i -CLDN18-#3 ( targe t sequence :

CAGAAGAAACCAACUACAAAG).
Scratch test and migration

Cells were cultured and transfected in serum-free medium

within 6-well plates. Subsequently, wounds were created using the

tip of a 10ml pipette, and changes in wound area from 0 to 24 hours

were documented using a microscope (Olympus, Japan). In the

transwell migration assay, treated cells were suspended in serum-

free culture medium, and 200mL of the cell suspension was placed in

the upper chamber. The lower chamber was filled with 500mL of

culture medium containing 10% fetal bovine serum. After 24 hours,

cells that had migrated to the lower surface were fixed with cold

methanol and stained with crystal violet. Migration of the cells was

recorded using a microscope (Olympus, Japan).
Statistical analysis

Statistical analyses were primarily conducted using R software,

version 4.1.0. Differential expressions were deemed statistically

significant when the absolute value of the log fold change (FC)

exceeded 2 and the p-value was less than 0.05. All experimental

results were expressed as the mean ± standard error of the mean

(SEM) of at least three independent experiments. Comparisons

between two groups were conducted using Student’s t-test (two-

tailed, unpaired), while comparisons among multiple groups were

performed using one-way analysis of variance (ANOVA) followed

by Dunnett’s multiple comparisons test. Data analysis was carried

out using GraphPad Prism 9.0 software.
Results

Single-cell data processing

Initially, to ensure the cells included in the dataset exhibited

reasonable levels of gene expression, we filtered the dataset based on

the number of genes and the percentage of mitochondrial gene

expression. From the quality control charts, it was observed that by

controlling the number of detected genes (> 200 and < 8000) and

the percentage of mitochondrial gene expression (< 10%), we

retained 60,288 cells (Figure 1A). Further analysis was conducted

to explore cellular states and potential biological processes,

revealing correlations between RNA counts, mitochondrial

content, and erythrocyte counts (Figure 1B). For accurate

clustering, we examined clustering results across a range of

resolutions from 0.1 to 1, identifying the optimal clustering
frontiersin.org
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resolution at 0.5 (Figure 1C). Finally, to further validate the

reliability and biological significance of the clustering, we

visualized the clustering results using UMAP and t-SNE

dimensionality reduction techniques (Figures 1D, E).

Next, we utilized the singleR package, an automated tool for cell

type identification and annotation in single-cell RNA sequencing

data, for cell annotation. Initially, we identified highly variable genes,

which measure the variability among cells based on standard

deviation. The variation of the top 2000 genes was found to
Frontiers in Immunology 05
represent the overall variability in the dataset (Figures 2A, B).

Subsequently, we employed the plotScoreHeatmap function to

display scores of all cells across all reference labels, examining the

confidence of predicted labels across the dataset and presenting

optimal annotation results (Figure 2C). We annotated a total of

eight cell types: B cells, CD8+ T cells, endothelial cells, epithelial cells,

fibroblasts, macrophages, monocytes, and NK cells. Furthermore, we

visualized the distribution of cell types based on the t-SNE

dimensionality reduction method (Figures 2D).
A

B

D E

C

FIGURE 1

Quality control and visualization of single-cell data were conducted. (A) The dataset was filtered based on the number of genes and the percentage
of mitochondrial genes. (B) An analysis of the correlations among RNA counts, mitochondrial content, and erythrocyte counts was performed. (C)
Cells were clustered into groups based on their gene expression patterns. (D, E) The results of the clustering were visualized for further
interpretation through UMAP and t-SNE.
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Single-cell differential expression analysis

Following this, we leveraged single-cell data to conduct

differential expression analysis between normal and tumor tissues.

The analysis results, as depicted in Figure 3A, concurrently

showcased the top 8 significantly upregulated genes (GPNMB,

KRT6A, HSPA6, NTS, GPX2, SCGB3A2, ALDH3A1, CDKN2A)

(Figure 3B) and the top 8 significantly downregulated genes

(MSMB, TFF3, BPIFA1, SLPI, BPIFB1, SCGB3A1, SFTPC,
Frontiers in Immunology 06
SCGB1A1) (Figure 3C). Subsequent to this, we performed

enrichment analysis on these differentially expressed genes,

uncovering their involvement in biological processes such as

granulocyte chemotaxis and the humoral immune response

mediated by circulating immunoglobulins, as well as their

association with chemokine-mediated molecular functions.

Moreover, the IL-17 signaling pathway emerged as one of the

significant pathways they partake in (Figures 3D, E). These

findings contribute to a deeper understanding of the gene
A B

D E

C

FIGURE 2

Cell annotation for single-cell data was undertaken. (A, B) Highly variable genes were identified. (C) The confidence levels of cell annotations were
checked. (D) The distribution of cell types was visualized.
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expression differences between normal and tumor tissues, thereby

revealing potential biological processes and pathways associated

with tumor pathogenesis and progression.
Analysis of genes associated with ADCP

Subsequently, we conducted a differential expression analysis

on TCGA expression profile data, identifying a total of 4,704

differentially expressed genes (2,139 upregulated and 2,565

downregulated) and illustrated the results in a volcano plot

(Figure 4A). Following this, we intersected the differential analysis

results from single-cell data, TCGA differential analysis, and the

ADCP gene set, yielding 15 ADCP-related genes (Figure 4B).

Further analysis of these genes using GO (Gene Ontology) and

KEGG (Kyoto Encyclopedia of Genes and Genomes) revealed that

the intersected genes were involved in NF-kB-mediated TNF-a
Frontiers in Immunology 07
signaling, the interferon-gamma (IFN-g) response in inflammation,

and the IL-6/JAK/STAT3 signaling pathway (Figures 4C, D).
Construction of a prognostic model based
on ADCP-related genes

By conducting LASSO Cox regression analysis within the

TCGA database, we identified three genes (GYPA, CLDN18, and

IRX5) for the establishment of a risk model (Figures 5A, B). The risk

score was calculated using the following formula, based on the

coefficients of these genes: Risk Score = GYPA × (0.159) + CLDN18

× (0.118) + IRX5 × (0.096) (Figure 5C). This formula was employed

to compute the risk score for each patient. Subsequently, LIHC

patients were divided into high-risk and low-risk groups based on

the median risk score. Figure 5D displayed the distribution of risk

scores and survival status. As shown in Figure 5E, the overall
A B

D E

C

FIGURE 3

Differential expression analysis using single-cell data was performed. (A) The gene expression differences between normal and tumor tissues were
compared using single-cell data. (B) The top eight genes with the most significant increases in expression were listed. (C) The top eight genes with
the most significant decreases in expression were listed. (D, E) The biological functions and pathways involved with these differentially expressed
genes were analyzed.
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survival (OS) of high-risk patients was significantly worse than that

of low-risk patients, as determined by Kaplan-Meier survival curve

analysis (p = 0.0013). Following this, 1-year, 3-year, and 5-year

ROC curves were generated, demonstrating the model’s robust

predictive capability (Figure 5F). According to univariate and

multivariate Cox analyses, the risk model served as a crucial

indicator for assessing the prognosis of LIHC patients (Figure 5G).
Immune infiltration analysis

Subsequent to this, we compared the changes in 22 types of

immune cells between high-risk and low-risk patients, finding

significant enrichment of M2 macrophages in the high-risk group.

Conversely, neutrophils, dendritic cells (DCs) and M1 macrophages

were significantly enriched in low-risk patients (Figure 6A).

Further, the immune status of LIHC patients was analyzed based

on the prognostic model. The ESTIMATE algorithm was used to

calculate stromal, immune, and ESTIMATE scores for low-risk and
Frontiers in Immunology 08
high-risk patients, respectively. The results demonstrated

significant differences in stromal and ESTIMATE scores between

low-risk and high-risk patients (Figure 6B). Lastly, immune

infiltrating cells were examined to determine their correlation

with risk scores. A positive correlation was observed between

activated memory CD4+ T cells and risk scores, while monocytes,

resting mast cells, resting memory CD4+ T cells, and resting

dendritic cells showed a negative correlation with risk scores

(Figures 6C-G).
Application of prognostic models

Initially, we analyzed the association between three key genes

and survival in high- and low-risk groups, finding that GYPA and

CLDN18 acted as risk factors, while IRX5 showed no significant

relation to survival (Figure 7A). To assess the accuracy of the

prognostic model, patients were subgrouped based on vital clinical

indicators such as age, gender, and clinical staging. Survival rate
A B

DC

FIGURE 4

Analysis of genes associated with ADCP was conducted. (A) Differential expression analysis was performed on TCGA-LIHC expression profile data,
where blue represented downregulated genes and red indicated upregulated genes. (B) An intersection was made between the results of the single-
cell data differential analysis, TCGA differential analysis, and the ADCP gene set. (C, D) GO and KEGG analyses were conducted on the
intersected genes.
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analysis was conducted by comparing high-risk and low-risk

patients within each subgroup. The results indicated that, across

different subgroups considering age, gender, and tumor TNM

staging, low-risk patients exhibited significantly better overall

survival rates than high-risk patients (p-value < 0.05), thereby

validating the prognostic model as an independent predictor of

patient prognosis (Figure 7B). Furthermore, nomogram was created

to facil itate the application of this model in clinical

practice (Figure 7C).

Lastly, we utilized the IMvigor210 immunotherapy cohort to

assess the relationship between risk scores and outcomes of

immunotherapy. Patients achieving partial response (PR) or

complete response (CR) exhibited lower risk scores compared to

those with stable disease (SD) or disease progression (PD)

(Figure 8A). Furthermore, the proportion of patients achieving

CR/PR was significantly lower in the high-risk group compared to

those with low risk scores (p < 0.001) (Figure 8B). Finally, drugs

closely associated with the risk scores were identified through

Spearman correlation analysis. The results demonstrated a

significant association between risk scores and six drugs in the

GDSC database, including Tamoxifen, Staurosporine, and SGX

−523, among others (Figure 8C).
Frontiers in Immunology 09
Pan-cancer analysis of CLDN18

Subsequently, we investigated the expression levels of CLDN18

across various cancer types and found that CLDN18 was highly

expressed in multiple cancer types (Figure 9A). Moreover, we

observed an increase in CLDN18 expression levels with the

progression of several cancer types (e.g., LIHC, KIRC)

(Figure 9B). A forest plot also revealed that CLDN18 was

associated with the prognosis of multiple cancers (Figure 9C). We

examined the relationship between CLDN18 expression levels and

MSI (Microsatellite Instability) and TMB (Tumor Mutation

Burden) to determine if CLDN18 could serve as a predictive

marker for the response to immunotherapy across various cancer

types. CLDN18 expression was positively correlated with TMB in

ESCA, STAD, SKCM, and KIRC, and negatively correlated with

TMB in PRAD, DLBC, READ, and BRCA (Figure 9D).

Additionally, CLDN18 expression was positively correlated with

MSI in ACC, KICH, and STAD, and negatively correlated with MSI

in CESC, GBM, and TGCT (Figure 9E). Immune infiltration

analysis revealed correlations between CLDN18 expression and

various types of immune cells in several cancer types, including

LIHC (Figure 9F).
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FIGURE 5

Prognostic model was built using ADCP-related genes. (A, B) LASSO Cox regression analysis was conducted using TCGA-LIHC data. (C) Patients’ risk
scores were calculated based on three prognostic genes. (D) The correlation between risk scores and survival status was analyzed. (E) Differences in
survival between high-risk and low-risk groups were examined through Kaplan-Meier survival curve analysis. (F) The predictive capability of the
model was demonstrated through ROC curve analysis. (G) The effectiveness of the model in prognostic evaluation was determined through
univariate and multivariate Cox analysis. **p < 0.01; and ***p < 0.001.
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Experimental validation of GYPA
and CLDN18

We initially compared the expression differences of GYPA and

CLDN18 between human hepatocellular carcinoma and adjacent

non-tumor tissues using immunohistochemistry staining. We

observed a significant upregulation of GYPA and CLDN18 in

hepatocellular carcinoma tissues (Figure 10A; Supplementary

Figure S1A). Subsequently, we assessed the differences in mRNA

expression levels of GYPA and CLDN18 between human

hepatocellular carcinoma and adjacent non-tumor tissues, as well

as between normal liver cell lines and hepatocellular carcinoma cell

lines. Our findings indicated an upregulation of GYPA and

CLDN18 mRNA levels in hepatocellular carcinoma tissues, with

CLDN18 expression elevated in hepatocellular carcinoma cell lines

and GYPA expression increased in most hepatocellular carcinoma

cell lines (Figure 10B; Supplementary Figure S1B). Following this,

we investigated the impact of CLDN18 expression on cell
Frontiers in Immunology 10
migration. Scratch assays and Transwell migration experiments

demonstrated that knockdown of CLDN18 significantly inhibited

the migration of HepG2 and Hep3B cells (Figures 10C, D). And the

validation of knockdown efficiency for CLDN18 was shown in

Supplementary Figure S1C.
Discussion

To date, only a handful of studies have designed experiments to

explore the role of ADCP in LIHC, focusing on targets that are

relatively singular and nonspecific (13, 14). Our study represents the

first comprehensive report to analyze the regulation of genes

involved in ADCP within the context of LIHC. Building upon the

foundation laid by the research of Kamber RA et al., which

identified genes associated with ADCP, our study employed

bioinformatics and corroborative experimental validation to sift

through these genes, identifying those with significant prognostic
A B

D
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C

FIGURE 6

Immunological assessment of high-risk and low-risk groups was performed. (A) A comparison of changes in 22 types of immune cells was made
between high-risk and low-risk group patients. (B) A comparison of stromal, immune, and ESTIMATE scores was conducted between high-risk and
low-risk patients. (C-G) The correlation between immune infiltrating cells and risk scores was analyzed. *p < 0.05; **p < 0.01; and ***p < 0.001.
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value and immune sensitivity as ADCP-related biomarkers. We

discovered that GYPA, CLDN18, and IRX5 could be pivotal genes

regulating ADCP in LIHC. These genes showed a promising

correlation with the efficacy of immunotherapy in LIHC and were

closely linked to clinical pathological staging and patient prognosis.

Within our risk model, the prognostically significant genes GYPA

and CLDN18 were validated using clinical samples. Furthermore,

CLDN18 was subjected to pan-cancer analysis and related in vitro

regulatory experiments, establishing its central targeting role.

To begin, we utilized single-cell data to conduct a differential

expression analysis between normal and LIHC tumor tissues,

identifying several top upregulated and downregulated genes that

had been reported in tumor immunity. These differential genes were

associated with granulocyte chemotaxis and migration, humoral

immune responses mediated by circulating immunoglobulins,

chemokines, and participated in the IL-17 signaling pathway.

Neutrophils, crucial innate immune cells, play a key role in

various diseases, including cancer (15). Bispecific antibody

therapy could recruit cell types, including macrophages and

neutrophils, as effector cells in cancer immunotherapy to induce

ADCP (16). The novel recombinant SIRPa-Fc fusion protein

IMM01 could activate macrophages during the ADCP induction

process. Activated macrophages exert anti-tumor effects by

increasing immune cell infiltration through the secretion of

chemokines (17). IL-17, a pro-inflammatory cytokine produced

by a specialized group of T helper cells known as Th17 cells,

operates through a signaling pathway independent from ADCP.

However, IL-17 could alter the local environment by promoting the

production of inflammatory mediators, potentially enhancing the

recruitment and activation of phagocytic cells, thereby augmenting
Frontiers in Immunology 11
the effects of ADCP (18). Therefore, our findings underscored the

pivotal role of ADCP in the pathophysiology of LIHC. Furthermore,

in colorectal cancer with amplified RBP4+NTS+ cancer cell

subpopulations, macrophage-induced ADCP is more pronounced

and correlates with a favorable prognosis (19). NTS was among the

top differential genes we identified.

Similarly, the ADCP-related genes identified in our LIHC study

were involved in the TNF-a signaling pathway of NF-kB, the IFN-g
response in inflammatory reactions, and the IL-6/JAK/STAT3

signaling pathway. Besla R et al. discovered that T-cell dependent

bispecific antibodies could activate NK cells, enhancing their

antibody-dependent cellular cytotoxicity, while also increasing the

ability of macrophages to execute ADCP. This enhancement was

triggered by cytokines released during antibody therapy, with IFN-g
being the primary driver for ADCP enhancement, and TNFa
further augmenting the cytotoxic capability of macrophages (20).

Through LASSO Cox regression analysis, we identified three genes

(GYPA, CLDN18, and IRX5) to construct a risk model. To date,

there have been no reports on the role of GYPA in LIHC and

ADCP. IRX5 has also not been explored in the context of ADCP.

Current research suggested IRX5 was a potential downstream target

of miR-136-5P, which could increase the tumorigenicity of LIHC

cells (21). Additionally, IRX5 could inhibit apoptosis in HCC cells

by suppressing the p53 signaling pathway (22). Whether its roles in

tumorigenicity or anti-apoptosis are related to ADCP remains

unknown, and further investigation is needed to determine if

IRX5 enhances the malignant capabilities of liver cancer cells by

conferring resistance to ADCP. CLDN18 has been identified as a

potential prognostic marker and immunotherapeutic target in

LIHC (23). Furthermore, researchers have developed a novel
A

B C

FIGURE 7

Further analysis of the prognostic model was conducted. (A) Survival analysis was performed on three prognostic genes. (B) Survival rates of high-
risk and low-risk patients within various clinical subgroups were compared. (C) The prognostic risk model was analyzed using nomogram. *p < 0.05;
**p < 0.01; and ***p < 0.001.
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bispecific antibody, PT886, targeting CLDN18.2 and CD47.

CLDN18.2 is overexpressed in the majority of gastric

adenocarcinomas and pancreatic cancers. Antibodies targeting

CLDN18.2 could redirect macrophage-mediated phagocytic

activity towards tumor cells, thereby enhancing anti-tumor

activity (24). Our study also confirmed the role of CLDN18 in

regulating ADCP in LIHC, underscoring the validity and potential

translational value of our research. We hypothesized that the tumor

microenvironment might induce glycosylation changes in GYPA,

interfering with the antibody binding sites and thereby reducing the

efficiency of ADCP. Furthermore, the overexpression of CLDN18

could enhance the barrier function of tumor cells, obstructing

macrophage contact with and recognition of tumor cells. In the

risk scoring model, patients in the low-risk group exhibited better

prognoses, characterized by a higher infiltration of neutrophils, M1-

type macrophages, and dendritic cells, and a reduced infiltration of
Frontiers in Immunology 12
M2-type macrophages. Neutrophils are specialized phagocytes that

protect the host from infections. In oncology research, rituximab

has been shown to induce neutrophil-mediated phagocytosis of B-

cell lymphoma cells. Indeed, neutrophil-mediated ADCP has been

reported in various monoclonal antibody therapies, including

obinutuzumab , o fa tumumab, and tras tuzumab (15) .

Macrophages, a crucial component of the innate immune system,

are broadly categorized into two subtypes in the tumor

microenvironment: the tumor-suppressing M1 type and the

tumor-promoting M2 type. Li H and colleagues found that M1-

type macrophages elicited a more effective ADCP response than M2

types (25). Similarly, Yan M et al. discovered that FcgR-dependent
M1-type macrophage-mediated ADCP was essential for

maintaining anti-lymphoma activity, suggesting that strategies

promoting the recruitment of M1-type macrophages or

repolarization of macrophages could enhance the response to
A B

C

FIGURE 8

The relationship between the prognostic model and immunotherapy was evaluated. (A) The relationship between risk scores and outcomes of
immunotherapy was assessed. (B) The proportions of CR/PR in high-risk and low-risk patients were compared. (C) The association between risk
scores and drug sensitivity was evaluated through Spearman correlation analysis.
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immunotherapy in lymphoma (26). This aligns with the trends

observed in our liver cancer study. Therefore, we believe that the

infiltration of neutrophils, M1-type macrophages, and dendritic

cells is abundant in patients with low-risk, and this is directly

related to their better prognosis. Our immunoscore and assessment

of immunotherapy response further validated the accuracy of our

risk scoring model. A pan-cancer analysis of our core target,

CLDN18, revealed significant associations with prognosis and

immunity across various cancers, confirming its potential for

broad application. Further experimental validation in tissue and

cell samples demonstrated that CLDN18 was upregulated in cancer

tissues and cells, and knocking down CLDN18 inhibited the

malignant behavior of liver cancer cells. This suggests that
Frontiers in Immunology 13
CLDN18, as an immunological target, may not only confer

resistance to ADCP in liver cancer cells but also enhance their

malignancy. In summary, the prognostic and therapeutic value of

CLDN18 in LIHC warrants further investigation.

Moreover, our study is not without its limitations. Firstly, the

results of our analysis should be validated through more

comprehensive clinical staging. The role of targets in ADCP within

LIHC requires further in-depth in vitro and in vivo investigation.

Secondly, although we have explored the correlation between the risk

model and therapeutic drugs, we have not delved into the potential

mechanisms of action of these drugs in ADCP. Additionally, despite

our comprehensive pan-cancer analysis, the generalizability of our

findings still necessitates further evidential support.
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FIGURE 9

A pan-cancer analysis of CLDN18 was carried out. (A) The expression levels of CLDN18 across various cancers were analyzed. (B) The correlation
between CLDN18 expression and cancer progression was assessed. (C) The association between CLDN18 expression and cancer prognosis was
evaluated. (D) The relationship between CLDN18 expression and cancer TMB was analyzed. (E) The association between CLDN18 expression and
cancer MSI was evaluated. (F) The correlation between CLDN18 expression and cancer immune infiltration was assessed. *p < 0.05; **p < 0.01; and
***p < 0.001.
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Conclusion

Through the integration of scRNA-seq and Bulk RNA-seq data

in hepatocellular carcinoma, we have identified ADCP regulatory

factors, uncovering an ADCP signature comprising three genes

associated with LIHC immunity and prognosis. Analysis based on a

risk scoring model derived from these three genes, followed by

experimental validation, confirmed the pivotal role of M1-type
Frontiers in Immunology 14
macrophages in ADCP within LIHC, with CLDN18 being

identified as a crucial ADCP regulatory target in LIHC.
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FIGURE 10

Experiments were conducted to validate CLDN18. (A) Immunohistochemical staining was utilized to analyze the expression levels of CLDN18 in
hepatocellular carcinoma and adjacent non-tumor tissues. The scale bars in the stained tissue images measured 50 mm, 20 mm (n = 3). (B) The
expression levels of CLDN18 in hepatocellular carcinoma, adjacent non-tumor tissues (n = 15), normal hepatic cell lines, and hepatocellular
carcinoma cell lines (n = 6) were analyzed using RT-qPCR experiments. (C) Transwell assays were conducted to investigate the effects of CLDN18
knockdown on the migratory capabilities of HepG2 and Hep3B cells in vitro (n = 4). (D) Scratch assays were performed to explore the impact of
CLDN18 knockdown on the migration abilities of HepG2 and Hep3B cells in vitro (n = 4). **p < 0.01; and ***p < 0.001.
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SUPPLEMENTARY FIGURE 1

Experiments were conducted to validate GYPA and CLDN18. (A)
Immunohistochemical staining was employed to examine the expression

levels of GYPA in hepatocellular carcinoma and surrounding non-tumorous
tissues. The scale bars in the stained tissue images measured 50 mm, 20 mm (n

= 3). (B) The expression levels of GYPA in hepatocellular carcinoma, adjacent
non-tumor tissues (n = 15), normal hepatic cell lines, and hepatocellular

carcinoma cell lines (n = 6) were analyzed using RT-qPCR experiments. (C)
The knockdown efficiency of CLDN18 was validated in the HepG2 and Hep3B
cells (n = 4). **p < 0.01; and ***p < 0.001.
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