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Aging is associated with an
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response of lung endothelial
cells in SARS-CoV-2 infection
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Advanced age is associated with an increased susceptibility to Coronavirus Disease

(COVID)-19 and more severe outcomes, although the underlying mechanisms are

understudied. The lung endothelium is located next to infected epithelial cells and

bystander inflammation may contribute to thromboinflammation and COVID-19-

associated coagulopathy. Here, we investigated age-associated SARS-CoV-2

pathogenesis and endothelial inflammatory responses using humanized K18-

hACE2 mice. Survival was reduced to 20% in aged mice (85–112 weeks) versus

50% in young mice (12–15 weeks) at 10 days post infection (dpi). Bulk RNA-

sequencing of endothelial cells from mock and infected mice at 2dpi of both age

groups (aged: 72–85weeks; young: 15weeks) showed substantially lower significant

differentially regulated genes in infected aged mice than in young mice (712 versus

2294 genes). Viral recognition and anti-viral pathways such as RIG-I-like receptor

signaling, NOD-like receptor signaling and interferon signaling were regulated in

response to SARS-CoV-2. Young mice showed several fold higher interferon

responses (Ifitm3, Ifit1, Isg15, Stat1) and interferon-induced chemokines (Cxcl10

and Cxcl11) than aged mice. Endothelial cells from infected young mice displayed

elevated expression of chemokines (Cxcl9, Ccl2) and leukocyte adhesion markers

(Icam1) underscoring that inflammation of lung endothelium during infection could

facilitate leukocyte adhesion and thromboinflammation. TREM1 and acute phase

response signaling were particularly prominent in endothelial cells from infected
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youngmice. Immunohistochemistry was unable to detect viral protein in pulmonary

endothelium. In conclusion, our data demonstrate that the early host response of the

endothelium to SARS-CoV-2 infection declines with aging, which could be a

potential contributor to disease severity.
KEYWORDS

host-pathogen interaction, pattern recognition receptors, cytokines, inflammation,
thromboinflammation
1 Introduction

Coronavirus disease 2019 (COVID-19) is caused by the severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with

phenotypes ranging from asymptomatic to severe complications

resulting in multiple organ failure and death (1, 2). With the

widespread vaccination campaigns and herd immunity, the

COVID-19 pandemic is approaching an endemic phase but

remains a persistent threat as the viral genome continues to

mutate. Moreover, COVID-19 has a disproportionate morbidity

depending on the patient’s age. The Centers for Disease Control and

Prevention (CDC) statistics revealed that compared with ages 18–

29 years, mortality is 3.5-fold higher in ages 30–39 years, and 350-

fold higher in individuals aged >85 years, demonstrating a

substantial age-dependent increase in disease severity (3).

Comorbidities, such as cardiovascular disease and diabetes

mellitus in older adults, likely contribute to severe outcomes, but

the pathogenic mechanisms of severe COVID-19 in elderly patients

remain incompletely understood (4).

Patients with dysfunctional endothelial cells (ECs), which line

the luminal side of the blood vessels, due to unresolved

inflammation and stress have a higher risk of thrombosis and

mortality from organ failure (5). Endothelium and blood vessels

are vulnerable to COVID-19-induced tissue injury (6) and are

prone to develop an inflammatory milieu associated with

spontaneous thrombosis in their arterial and venous beds, which

can result in deadly conditions such as pulmonary embolism, deep

vein thrombosis, arterial thrombosis, and organ failure (1, 7, 8).

SARS-CoV-2 does not appear to have intrinsic procoagulant effects

itself; rather, coagulopathy may arise from the profound COVID-

19-associated inflammatory response and endothelial activation/

damage (9). COVID-19 autopsy reports claim pulmonary

endothelial viral inclusions and apoptosis, increased angiogenesis,

and increased capillary microthrombi (10, 11). However,

investigators have inaccurately reported subcellular structures as

coronavirus particles and thus these observations remain debatable

(12). In humans, there is little convincing evidence for viral

dissemination and replication outside of the respiratory

tract. The extrapulmonary disease is likely attributable to the

systemic inflammation, not viral dissemination to other organs.
02
Furthermore, COVID-19 convalescent subjects experience ongoing

cardiovascular issues such as coagulopathy, bleeding disorders and

thromboinflammation (13, 14).

Approximately 30–50% of COVID-19 patients treated

in emergency care units experienced arterial and venous

thromboembolism despite the regular use of thromboprophylaxis,

suggesting that advanced treatment for endothelial impairment could

be beneficial to prevent thrombosis (15–19). However, it remains

unclear whether the contribution of ECs to hypercoagulation and

hyperinflammation is due to endothelial injury or dysfunction, direct

SARS-CoV-2 infection, or mediated indirectly through bystander

inflammation in vicinity to infected lung epithelial cells.

In our present study, unbiased whole-transcriptome sequencing

of isolated lung ECs from aged humanized transgenic ACE2 mice

showed less induction of adhesive markers (e.g., Icam1) and

inflammatory chemokines (e.g., Ccl2), and impaired interferon

(IFN) response, and TREM1-signaling compared to young mice

at 2 days post infection (2dpi). Immunohistochemistry of lungs

revealed that the ECs were lacking SARS-CoV-2 viral particle (N

protein). Thus, the responses seen in the pulmonary ECs in

humanized transgenic ACE2 mice may be indirect effects

mediated by local epithelial infection in lung. Overall, our

findings support that the age-associated pulmonary endothelial

dysfunction is likely shaped by a diminished immune response,

which may contribute to disease severity.

2 Methods

2.1 Mice

Heterozygous transgenic humanized ACE2 (K18-hACE2) mice

(strain: 2B6.Cg-Tg(K18-ACE2)2Prlmn/J) were obtained from the

Jackson Laboratory (Bar Harbor, ME) and maintained in Tecniplast

green line individually ventilated cages (Tecniplast, Buguggiate,

Italy). Mice were maintained on a 12:12 light cycle at 30–70%

humidity and provided ad libitum water and standard chow diets

(LabDiet, St. Louis, MO, USA). Experimental procedures with

animals were approved by the Boston University Biomedical

Research, Institutional Biosafety Committee and Institutional

Animal Care and Use Committee (IACUC).
frontiersin.org
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2.2 SARS-CoV-2 propagation

The propagation of SARS-CoV-2 followed established

procedures (20). The SARS-CoV-2 isolate 2019-nCoV/USA-

WA1/2020 (NCBI accession number: MN985325; WA-1) was

obtained from the CDC (Atlanta, GA, USA) and BEI Resources

(Manassas, VA, USA). African green monkey kidney Vero E6 cells

(ATCC® CRL-1586™, American Type Culture Collection,

Manassas, VA) were seeded at a concentration of 1x107 cells in

a T175 flask one day before virus generation. Then, the cells were

infected with the virus diluted in 10 mL of Opti-MEM

(ThermoFisher Scientific, Waltham, MA, USA) and incubated

for 1 hour at 37°C for virus adsorption. Thereafter, 15 mL of

DMEM containing 10% FBS and 1% penicillin/streptomycin was

added, and the cells were incubated overnight. Subsequently, the

media was removed, cells were rinsed with 1X PBS, pH 7.5

(ThermoFisher Scientific), and 25 mL of fresh DMEM

containing 2% FBS was added. The cells were monitored for

cytopathic effect, the media was harvested, filtered through a

0.22 mm filter, and concentrated using a sucrose gradient. The

concentrated virus was suspended in sterile 1X PBS, pH 7.5,

aliquoted, and stored at −80°C.
2.3 SARS-CoV-2 titration via plaque assay

Viral stock titration was evaluated using plaque assay. Vero E6

cells were seeded into a 12-well plate at a concentration of 2x105

cells/well. The next day, the cells were exposed to 10-fold serially

diluted viral stock and incubated for 1 hour at 37°C. Afterwards, 1

mL of overlay media (comprising 1.2% Avicel (DuPont,

Wilmington, DE, USA; RC-581) in DMEM with 2% FBS and 1%

Pen/Strep) was added per well. Three days later, the overlay media

was discarded, and the cells were fixed with 10% neutral buffered

formalin (ThermoFisher Scientific) for 1 hour at room temperature.

Subsequently, the formalin was removed, and the cells were stained

with 0.1% crystal violet (Sigma-Aldrich) in 10% ethanol/water for

30 min at room temperature. The stain was rinsed off, cells were

washed with water, and plaque-forming units (PFU) were counted

to determine viral titers.
2.4 SARS-CoV-2 infection of mice

Male and female K18-hACE2 transgenic mice (12–15 and 72–

112 weeks of age) were intranasally inoculated with 1x104

(survival) or 1x106 (endpoint studies) PFU of SARS-CoV-2 in

50 mL of sterile 1X PBS or sham inoculated. Inoculations were

performed under 1–3% isoflurane anesthesia. Survival was

assessed up to 12dpi. Mice were euthanized with ketamine/

xylazine at predetermined time points for sample collection or

earlier if they met euthanasia criteria (defined by an IACUC-

approved clinical scoring system).
Frontiers in Immunology 03
2.5 Clinical monitoring

An IACUC-approved clinical scoring system was used to

monitor disease progression and to establish humane endpoints

of infected mice (21). The evaluated categories were body weight,

general appearance, responsiveness, respiration, and neurological

signs. Clinical signs and body temperature were recorded once daily

for the full duration of the studies.
2.6 Lung dissociation and EC isolation

Microvascular lung ECs were isolated from K18-hACE2 mice

infected with 1x106 PFU of SARS-CoV-2 or mock-infected K18-

hACE2 mice. Lungs were placed in DMEM containing 2% FBS

prior to dissociation with a Miltenyi Biotec mouse lung dissociation

kit (cat.# 130–095-927) following the manufacturer’s protocol.

Tissues were minced using a Miltenyi GentleMACS, filtered

through a 70-mm cell strainer, centrifuged at 300 x g at 4°C for

8 min, and cell pellets were suspended in MACS buffer prior to

endothelial isolation.

ECs were isolated using a two-step sorting method. First, cells

were negatively selected with a CD45 Microbead mouse kit

(Miltenyi Biotec; cat.# 130–052-301) per manufacturer’s protocol.

The collected negative fraction was washed thrice with MACS buffer

prior to a positive selection for lung ECs using a CD31 Microbead

mouse kit (cat.# 130–097-418) following the manufacturer’s

protocol. The positive fraction was washed thrice with MACS

buffer then resuspended in 500 mL of MACS buffer. All sorting

protocols were performed on an AutoMACS Pro Cell separator

using manufacturer’s recommended settings. After final isolation

and washing, 50 mL of each sample was checked for purity by flow

cytometry. The remaining 450 mL was centrifuged at 300 x g at 4°C

for 8 min and the cell pellets were lysed in 600 mL QIAGEN RLT

buffer containing beta-mercaptoethanol for RNA isolation

(QIAGEN, Venlo, Netherlands).
2.7 Flow cytometry

Cell suspensions (50 µL) from the positive or the negative

fraction were stained using surface staining protocol as previously

described (22) with the PE-conjugated CD31 (PECAM-1)

monoclonal antibody (clone 390, 1:100) and isotype control

(clone eBR2a) (eBioscience, USA). Samples were fixed with 4%

paraformaldehyde for 1 hour then washed twice with 1X PBS.

Sample acquisition was performed on a LSRII instrument (BD

Biosciences, USA), and data were analyzed using FlowJo v10.10.0

(FlowJo, Ashland, OR, USA).
2.8 Histology and immunohistochemistry

The lungs were prepared as described before (21).

Immunohistochemistry was performed using a Ventana Discovery
frontiersin.org
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Ultra (Roche, Basel, Switzerland). The followingmonoclonal antibodies

were used: mouse SARS-CoV-2 Nucleocapsid protein (clone:1C7C7;

Cell Signaling Technology, Danvers, MA, USA); rabbit mouse on

mouse linking antibody (clone M204–3; Abcam,Waltham, MA, USA),

HRP anti-rabbit IgG polymer (Vector Labs, Neward, CA, USA),

developed with 3,3’-Diaminobenzidine, and counter stained with

hematoxylin. Slides were imaged using a Vectra Polaris whole slide

scanner (Akoya Biosciences, Marlborough, MA, USA) and analyzed

utilizing the HALO™ image analysis platform (Indica labs,

Albuquerque, NM, USA).
2.9 RNA-seq

RNAwas extracted usingQIAGENRNAeasy Plusmicro kit. Ultra-

low input RNA-seq was performed by Genewiz (Azenta US, Inc., NJ,

USA). The FASTQ (150bp; paired-end) files from Genewiz were

aligned to a custom combined reference (FASTQ and GTF) of

mouse (GRCm39, Gencode v27) and SARS-CoV-2 (isolate Wuhan-

Hu-1; NCBI accession ID: NC_045512.2) genomes using STAR aligner

(v2.7.9a). The aligned reads were indexed and sorted using samtools

(v1.10) and quantified using featureCounts from the subread (v1.6.2)

(23) package. Further analyses were performed in RStudioServer/R

(v4.1.1) framework with the DESeq2 (v1.34.0) (24) package. The

principal components were visualized using pcaExplorer (v2.20.1)

(25) after regularized log transformation and variance stabilizing

transformation (vst) of counts. Differential expression (DE) analysis

was based on Wald’s test with multiple test adjustment using

Benjamini-Hochberg (BH) method in DESeq2 and shrinkage of

log2-fold changes using the apeglm (v1.16.0) (26) package. The

mouse DE genes (DEGs) were annotated from Ensembl (release 104)

through the biomaRt (v2.50.1) (27) package; for the SARS-CoV-2

DEGs, gene symbols from the quantification step were retained.

Statistical significance threshold was set at adjusted P<0.05. Venn

data were estimated from the VennDetail (v1.10.0) (28) package.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment for significant DEGs was performed using clusterProfiler

(v4.2.1) (29) with BH multiple testing, and pathways with adjusted

P<0.05 considered statistically significant. QIAGEN Ingenuity Pathway

Analysis (IPA, QIAGEN Inc., https://digitalinsights.qiagen.com/IPA)

(30) was also performed with pathway significance threshold set at

P<0.05 based on right-tailed Fisher’s exact test, and the enrichment was

restricted to ECs through IPA’s tissue and cell filtering option.

Heatmaps were constructed using the vst counts for DEGs with

baseMean>50 with the ComplexHeatmap (v2.10.0) (31) package and

all other figures were generated using ggplot2 (v3.3.5) (32). The

heatmap visualizing z-scores for IPA enrichment was constructed

using GraphPad Prism (v9.5.1; GraphPad Software, San Diego, CA,

USA). Weighted gene co-expression network analysis (WGCNA) was

performed using the WGCNA package (v1.72–5) (33) to identify co-

regulated genes. The vst counts data were used as input after filtering

out outlier genes as determined by the goodSamplesGenes function of

WGCNA. The scale free topology was analyzed at different powers

ranging from 10 to 30 for signed networks. However, as none of the

powers reached an R2 of 0.9, potentially due to biological heterogeneity

between aged and youngmice, we selected a soft-thresholding power of
Frontiers in Immunology 04
18 as suggested by the WGCNA developers for signed networks for

<20 samples (34). The network construction and module detection

were performed using the blockwise approach with the parameters:

maxBlockSize = 50000, TOMType = “signed”, power = 18,

numericLabels = TRUE, randomSeed = 1234, saveTOMS = TRUE,

minModuleSize = 30, mergeCutHeight = 0, pamRespectsDendro =

FALSE (35). The correlation (Pearson) between module eigengenes

and experimental groups and its statistical significance (Student

asymptotic p-value) were calculated through WGCNA. A module

eigengene represents the expression profiles of genes in a module

(33). The experimental groups were coded in a binary format (0/1)

through WGCNA’s binarizeCategoricalColumns function and

included the groups aged mock, aged 2dpi, young mock, young 2dpi.

In addition, correlation between eigengenes and infection status

(binarized format: infected = 1, uninfected = 0) and age (aged = 1,

young = 0) were also assessed. Gene ontology biological process (GO

BP) enrichment of modules of biological relevance was performed

using clusterProfiler with BH multiple testing, and processes with

adjusted P<0.05 considered statistically significant. Genes that showed

significant positive correlation with the module (correlation >0,

correlation P<0.05) were used for the enrichment analysis.

Correlation heatmap was visualized using pheatmap (v1.0.12) and

module e igengene heatmaps were constructed using

ComplexHeatmap. All other plots were generated using ggplot2.

WGCNA heatmap and boxplot were based on code from (36).
2.10 Statistical analysis

Statistical analysis was performed with Prism v8 software

(GraphPad). Sample sizes and number of technical and biological

replicates are included in the figure legends. Data in the bar graphs

represent mean ± standard error of the mean (s.e.m.). Comparison

of two groups was performed based on the two-sided Student’s t test

while multiple group testing was through one-way analysis of

variance (ANOVA) with Tukey multiple comparison test.

Statistical significance threshold was set at P<0.05.
3 Results

3.1 Aged mice show higher lethality after
SARS-CoV-2 infection compared to
young mice

To explore age-related infection outcomes, we investigated the

pathogenicity of SARS-CoV-2 in aged (85–112 weeks) and young

(12–15 weeks) mice. Due to high lethality rates at 1x106 dose (21,

37), an inoculation dose of 104 PFU of SARS-CoV-2 WA-1 was

used for survival experiments. Survival studies revealed a

significantly higher mortality rate in aged mice than young mice

when challenged with SARS-CoV-2 (Figure 1A). Both young and

aged mice lost 10% body weight between 8–10dpi and reached a

nadir of 25% body weight loss between 10–12dpi (Figure 1B).

However, no significant differences in body weight were observed.

Similarly, there were no significant differences in body temperature
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between young and aged mice (Figure 1C). Although there was no

difference in overall clinical score (Figure 1D), the aged mice

displayed more ruffled fur, hunched postures, and labored

breathing compared to young mice at 6dpi.
3.2 SARS-CoV-2 infects lung epithelial cells
but not ECs in humanized ACE2 mice

We next evaluated the histopathological changes in infected

aged and young mice. Histological examination of the lung cross-

sections revealed mild-to-moderate multifocal mononuclear

immune cell infiltration at 2dpi in both young and aged mice

(Figure 1Ea-d). In both age groups mononuclear inflammation was

observed in peribronchiolar, perivascular, and interstitial

compartments, consistent with an interstitial pneumonia. The

endothelium was frequently hypertrophied in areas with

perivascular mononuclear infiltrates suggestive of dysfunction.

Next, we examined viral loads (N protein) in lung cross-sections

at 2dpi by immunohistochemistry (Figure 1F). Both young and

aged mice showed abundant N protein presence in alveolar

epithelial cells (type I and II alveolar cells) although there were
Frontiers in Immunology 05
no significant differences between age groups (Figure 1G).

Importantly, careful examination of arteries and veins of lung

cross-sections revealed the absence of detectable SARS-CoV-2 N

protein in ECs (Figure 1Fc-d).

In summary, these findings suggest that infection of lung

epithelial cells is predominant, while EC infectivity of SARS-CoV-

2 is an unlikely event in K18-hACE2 mice at the studied time point.
3.3 Transcriptomic profiling of lung ECs
from SARS-CoV-2-infected humanized
ACE2 mice

To investigate the age-dependent alterations during COVID-19,

we performed bulk RNA-seq of lung ECs. ECs were MACS isolated

and cell purity was evaluated by flow cytometry (Supplementary

Figures 1A–C). RNA was isolated from highly enriched ECs for

bulk RNA-seq. The principal component analysis plot illustrated

clear differences between experimental groups (Figure 2A). SARS-

CoV-2 induced significant changes in the abundance of many genes

at 2dpi versus mock in aged mice (n=712; 229↓/483↑; P<0.05;
Figure 2B; Supplementary Table 1), young mice (n=2294; 1068↓/
A B

C D

E

F

G

FIGURE 1

Age-dependent clinical decline of SARS-CoV-2-infected humanized ACE2 mice. K18-hACE2 mice young (12–15 weeks) and aged (85–112 weeks)
were inoculated intranasally with 1x104 plaque-forming units (PFU) or received saline (mock). (A) Survival, (B) %-change in body weight of non-
survivors, (C) change in body temperature, (D) clinical scores were monitored. Aged mice showed less survival compared to young mice, despite no
difference in body weight up to 6dpi (data combined from two independent experiments). Data are shown as the mean ± SEM, n=20 mice/group.
(Ea-d) Histology of lung cross-sections at 2dpi from K18-hACE2 mice (young and aged) infected with SARS-CoV-2 and mock. n=3 per group; scale
bar=200µm. (Fa-d) Immunohistochemistry of N protein in lung cross-sections at 2dpi from K18-hACE2 mice (young and aged) infected with SARS-
CoV-2 and mock. n=3 per group; scale bar=200µm. Artery and vein (magnified images) showed no detectable N protein in endothelial cells (ECs).
(G) Quantification of N protein in lung epithelium (n=3 per group). V=vein; B=bronchiole; AS=alveolar sac; AD=alveolar duct; A=artery. A, Survival of
mice was analyzed by the Kaplan–Meier method and the log-rank test. G, Data were analyzed by Student’s t-test. *P<0.05; ns: not significant.
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1226↑; P<0.05; Figure 2C; Supplementary Table 2), and young

versus aged mice (n=1440; 878↓/562↑; P<0.05; Figure 2D;

Supplementary Table 3). Interestingly, ~83% of the DE genes in

young mice (n=1889; P<0.05) and ~43% in aged mice (n=307;

P<0.05) were specific to each age group (Figure 2E; Supplementary

Table 4). A subset of genes was dysregulated in both young and aged
Frontiers in Immunology 06
mice (n=422; 299↑/106↓; P<0.05; Figure 2E; Supplementary

Table 4). Viral transcripts represented <1–2% of all mapped reads

at 2dpi.

KEGG enrichment analysis showed predominant upregulation

of viral infection pathways (overlapping with Herpes simplex virus

1, influenza A, Measles, and Epstein-Barr virus infection), NOD-
A B C

D E

F

G

H

FIGURE 2

Transcriptomic profile of lung endothelial cells (ECs) during SARS-CoV-2 infection. Young (15 weeks) and aged (72–85 weeks) K18-hACE2 mice
were infected with SARS-CoV-2 (1x106 PFU) and lung ECs were isolated at 2dpi. (A) Principal component analysis of top 5000 variable genes after
regularized log transformation of RNA-seq counts data from lung ECs of young and aged infected and respective mock mice displays age-
dependent distinct clusters; n=4 per group. (B) Volcano plot of aged_2dpi versus mock. (C) Volcano plot of young_2dpi versus mock. (D) Volcano
plot of young_2dpi versus aged_2dpi. (E) Venn diagram of significant differentially expressed genes (adjusted P<0.05) from aged_2dpi and
young_2dpi compared to respective mock groups. (F) KEGG pathway enrichment analyses of significant (adjusted P<0.05) up- and downregulated
differentially expressed genes in aged_2dpi vs mock. (G) KEGG pathway enrichment analyses of significant (adjusted P<0.05) up- and downregulated
differentially expressed genes in young_2dpi versus mock. (H) Heatmap of significant differentially expressed genes (adjusted P<0.05) in aged_2dpi
versus mock, young_2dpi versus mock or common to both aged (2dpi) and young (2dpi) infected mice. Normalized expression values (Z-score from
-2/green to +2/red). Key genes of interest are labelled.
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like receptor signaling pathway, virus sensing RIG-I-like receptor

signaling pathway in both aged and young infected mice

(Figures 2F, G). IPA enrichment analysis revealed that compared

to their respective mock controls, TREM1 signaling, PI3/AKT

signaling, and Role of RIG1-like Receptors in Antiviral Innate

Immunity pathways were more highly activated in young mice

than aged mice (Supplementary Figure 2A), while eNOS signaling,

and coronavirus pathogenesis pathways were more repressed in

aged mice than young mice (Supplementary Figure 2A). Similarly,

IFN, Death receptor, and Pyroptosis signaling pathways were more

activated in infected young mice versus aged mice (Supplementary

Figure 2B). The heatmap of up- and downregulated genes highlights

relevant genes connected to antiviral response, coagulation factors,

and apoptosis signaling (Figure 2H). In summary, SARS-CoV-2

infection drastically dysregulated the endothelial transcriptome in

young and aged mice compared to respective mock controls with

young mice showing enhanced responses to infection.
3.4 Endothelium from aged mice
shows a reduced inflammatory
response compared to young mice
after infection with SARS-CoV-2

Aging is accompanied by progressive biological changes in the

immune system leading to a functional decline as evidenced by

increased susceptibility to respiratory infections such as influenza

and novel coronaviruses (38). Thus, we investigated changes in IFN

signaling in lung ECs from young and aged mice at 2dpi. Young

mice displayed a more pronounced IFN response compared to aged

mice (Figure 3A). For instance, IFNb (while only weakly expressed

at the studied 2dpi time point) was upregulated in young mice

compared to mock controls and aged mice, while aged mice

demonstrated no difference compared with mock controls

(Figure 3B). Stat1 (type I, II, III) and Stat2 (type I, III) are key

transcription factors of IFN signaling, and are essential components

of the cellular antiviral response and adaptive immunity (39). Stat1

and Stat2 expressions were ~2-fold higher in young mice compared

to aged mice (Figures 3C, D). The IFIT gene family encodes defense

proteins that are induced after viral infection or pathogen-

associated molecular pattern recognition (40). ECs from young

mice expressed ~20-fold higher Ifit1, Ifit3, and Isg15 compared to

mock controls; aged murine ECs exhibited relatively less induction

of Ifit1, Ifit3, and Isg15 than young mice (Figures 3E–G). Similarly,

Ifitm3 induction was lower in old mice (~2-fold) during infection

relative to young mice (~5-fold) (Figure 3H). A schematic diagram

of the signaling pathways based on the expression profile in young

and aged mice at 2dpi is presented in Figure 3I.

Pathway analysis revealed that Triggering Receptor Expressed on

Myeloid cells-1 (TREM1) signaling was highly activated in young

mice compared to aged mice (Supplementary Figure 2A). TREM1 is

an immunoreceptor expressed on neutrophils, monocytes/

macrophages, and ECs (41). It amplifies the inflammatory response

driven by Toll-Like Receptor (TLR) engagement. Several TREM1-

associated signaling molecules, receptors, and transcriptional factors

(Tlr2, Tlr3, Cd40,Myd88, Jak2, Stat3, Akt3, Icam1) were significantly
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more upregulated in young mice than in aged mice (Figure 3J).

Induction of TREM1-mediated chemokine ligand 2, Ccl2/MCP1 (42),

was profoundly abrogated in aged mice relative to young mice

(Figure 3K). Interestingly, the negative regulator, Sigirr (single

immunoglobulin IL-1R-related molecule) (43), was significantly

downregulated in young mice with comparatively less

downregulation in aged mice versus the respective mock controls

(Figure 3L). The schematic diagram shows the signaling pathways

based on the expression profile in young and aged mice at

2dpi (Figure 3M).

The pathway analyses above highlight key inflammatory

responses that are activated by the regulated genes in response to

infection. However, biological responses are typically not driven by

a single gene but a set of genes that are regulated together and share

similar expression patterns. To identify whether coregulated genes

in aged and young mice define specific responses during infection

with SARS-CoV-2, we performed WGCNA (33, 35). In total, we

identified 87 modules of co-expressed genes (module eigengenes).

The correlation between the modules and experimental groups is

presented in Supplementary Figure 3. Infection status was

significantly correlated with module ME1 (Supplementary

Figure 3). Genes in ME1 were highly induced in young mice

2dpi, while aged 2dpi mice showed diminished induction

(Supplementary Figures 4A, B). Genes positively correlated with

ME1 were enriched in host defense processes such as interferon

response and cytokine production (Supplementary Figure 4C). ME1

genes included chemokines (e.g., Cxcl9, Cxcl10, Cxcl11), interferon-

induced genes (Isg15, Rsad2) and genes involved in viral sensing

(Oasl1) that were highly induced in young mice 2dpi compared to

young mock controls. ME1 genes were also induced in infected aged

mice, albeit at a lower level than infected young mice, and included

immune-related genes such as Ifit1 , Rsad2 and Oasl1

(Supplementary Table 5). The complete gene-module and gene-

group correlation data is presented in Supplementary Table 6.

Overall, these findings suggest that senescent lung ECs mount an

impaired immune response at 2dpi in humanized ACE2 mice,

suggesting delayed pathogen defense mechanisms that might

contribute to delayed viral clearance and reactive hyperinflammation,

which in turn lead to high mortality.
3.5 Endothelium from aged mice displays
distinct cytokine/chemokine and acute
phase response signaling than young mice
infected with SARS-CoV-2

As the aged mice demonstrated defective IFN response

(Figure 3A), we examined age-dependent expression changes in

cytokine, chemokine, and acute phase response signaling in lung

ECs during SARS-CoV-2 infection at 2dpi. Young mice exhibited a

more prominent cytokine/chemokine response in lung ECs than

aged mice (Figure 4A). Consistent with the IFN response genes,

IFN-regulated chemokines (44), such as Ccl2 (~10-fold), Cxcl9

(~50-fold), Cxcl10 (~180-fold), and Cxcl11 (~400-fold), were

significantly upregulated in young mice compared to aged mice

(Figures 3K and 4B–D). Notably, aged mice ECs manifested
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FIGURE 3

Age-dependent changes in interferon and TREM1 signaling in lung endothelial cells (ECs) during SARS-CoV-2 infection. Ingenuity Pathway Analysis
enrichment was performed for significant (adjusted P<0.05) differentially expressed genes in young and aged infected (2dpi) mice versus respective
mock controls with tissue filter set to ECs. (A) Heatmap of significant differentially expressed genes (adjusted P<0.05) enriched in interferon signaling
pathway in young_2dpi versus mock, aged_2dpi versus mock or common to both young (2dpi) and aged (2dpi) infected mice. Normalized
expression values (Z-score from -2/green to +2/red). (B) Ifnb expression (normalized counts). (C–H) Relative expression of genes calculated from
normalized count values for the different genes; expression was normalized to young_mock group. (C) Stat1, (D) Stat2, (E) Ifit1, (F), Ifit3, (G), Isg15,
(H) Ifitm3. (I) Schematic diagram of interferon pathway highlighting the distinct expression profile of enriched genes in young and aged mice at 2dpi
versus mock. The text in dark gold and blue colors represents elements of the type I and type II interferon response, respectively. (J) Heatmap
showing enriched genes in the TREM1 signaling pathway based on significant differentially expressed genes (adjusted P<0.05) in young_2dpi versus
mock. Corresponding genes from aged_2dpi versus mock are shown for comparison as TREM1 signaling was not significantly enriched in aged
(2dpi) infected mice. Normalized expression values (Z-score from -2/green to +2/red). (K, L) Relative expression of genes calculated from
normalized count values for the different genes; expression was normalized to young_mock group. (K) Ccl2, (L) Sigirr. (M) Schematic diagram of
TREM1 pathway highlighting the distinct expression profile of enriched genes in young and aged mice at 2dpi versus mock. (B–H, K, L): Data are
shown as the mean, n=4 mice/group; data were analyzed through one-way ANOVA followed by Tukey multiple comparison test. *P<0.05; **P<0.01;
***P<0.001; ****P<0.0001; ns: not significant.
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significantly higher Cxcl1 expression (~20-fold) compared with

young mice (Figure 4E).

Acute-phase response genes are directly activated as a part of

the adaptive stress response during infection and various other

disease states. Acute-phase protein concentrations are altered with

disease severity in COVID-19 patients, suggesting their potential

utility in diagnosis and treatment (45). In our study, lung ECs after

SARS-CoV-2 infection of young mice showed an increased

activation of acute-phase response signaling in comparison to

aged mice (Figure 4F). Various transcriptional factors were

significantly upregulated (e.g., Ralb, Relb, and Nfkb2) or

downregulated (e.g., Elp1, Map2k6) in young mice relative to old

mice. Complement genes like C1ra, C2 and C4b were especially

highly induced in young mice. Aging was associated with a

diminished capacity to induce acute-phase genes like PAI-I
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(Serpine1) and C1-inh (Serping1) as well as transcriptional factors

such as Map2k1 and Stat3 (Figures 4G–J).

In conclusion, aged lung ECs exhibited impaired cytokine/

chemokine expression and inadequate acute phase response

signaling in humanized ACE2 mice at 2dpi.
4 Discussion

The susceptibility to SARS-CoV-2 infection increases

proportionally with age, placing older individuals at a

significantly higher risk of developing severe COVID-19.

Therefore, gaining insight into age-dependent pathological

changes during SARS-CoV-2 infection is imperative for effectively

safeguarding vulnerable populations. To better characterize the
A B C D E
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FIGURE 4

Age-dependent changes in cytokines/chemokines and acute phase response signaling in lung endothelial cells (ECs) during SARS-CoV-2 infection.
Ingenuity Pathway Analysis enrichment was performed for significant (adjusted P<0.05) differentially expressed genes in aged and young infected
(2dpi) mice versus respective mock controls with tissue filter set to ECs. (A) Heatmap of significant differentially expressed cytokines and chemokines
(adjusted P<0.05) in aged_2dpi versus mock, young_2dpi versus mock or common to both aged (2dpi) and young (2dpi) infected mice. Normalized
expression values (Z-score from -2/green to +2/red). (B–E) Relative expression of genes calculated from normalized count values for the different
genes; expression was normalized to young_mock group. (B) Cxcl9, (C) Cxcl10, (D) Cxcl11, (E) Cxcl1. (F) Heatmap of acute phase response signaling
associated significant differentially expressed genes (adjusted P<0.05) in aged_2dpi versus mock, young_2dpi versus mock or common to both aged
(2dpi) and young (2dpi) infected mice. Normalized expression values (Z-score from -2/green to +2/red). (G–J) Relative expression of genes
calculated from normalized count values for the different genes; expression was normalized to young_mock group. (G) Serpine1/PAI-1, (H) Serping1/
C1-inh, (I) Map2k1, (J) Stat3. (B–E, G–J) Data are shown as the mean, n=4 mice/group; data were analyzed through one-way ANOVA followed by
Tukey multiple comparison test. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001; ns: not significant.
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contribution of lung ECs to the age-dependent pathology of

COVID-19, including endothelial infectivity, we performed a

transcriptomic study in K18-hACE2 mice infected with SARS-

CoV-2. Our unbiased bulk RNA-seq approach demonstrated that

lung ECs in aged mice displayed an impaired inflammatory

response compared to young mice. Young mice mounted several-

fold higher IFN responses (Ifitm3, Ifit1, Ifit3, Isg15) and IFN-

induced chemokines (Cxcl10 and Cxcl11) than aged mice,

indicating a markedly dampened immune response with aging.

Furthermore, lung epithelial cell infectivity was predominant, and

endothelial infectivity of SARS-CoV-2 seems an unlikely event at

2dpi in humanized ACE2 mice.

We noticed that aged K18-hACE2 mice infected with SARS-

CoV-2 showed significantly higher mortality compared to young

mice, in line with previous studies (46, 47). Both young and aged

mice exhibited increased inflammation in peribronchiolar,

perivascular, and interstitial compartments, consistent with

interstitial pneumonia in both age groups. Immunohistochemistry

analysis provided additional insights, revealing a significant

presence of the N protein in alveolar epithelial cells in both

young and aged mice. Quantification of the N protein showed no

significant difference between the two age groups at 2dpi, suggesting

that the viral load in the lung is independent of age and alternative

factors may contribute to the higher lethality in aged mice. This

finding contrasts with the higher viral burden in older mice

especially at 4dpi reported by Chen et al., although their study

involved the B.1.1.7 variant and quantified viral loads based on

SARS-CoV-2 RNA-dependent RNA polymerase, which may

account for the differences (46).

The vascular endothelium, as the innermost layer of blood

vessels, functions as a dynamic interface between circulating blood

and various tissues and organs, playing a crucial role in maintaining

tissue homeostasis (48). SARS-CoV-2 infection of endothelium is

less studied than airway epithelium and alveolar pneumocytes.

Accumulating evidence suggests that COVID-19 affects the pan-

vasculature in the extrapulmonary systems by directly (via virus

infection) or indirectly (via cytokine storm) (49–51) causing

endothelial dysfunction (endotheliitis, endothelialitis and

endotheliopathy) and multi-organ injury (52). The elevated D-

dimer and thrombocytopenia in severe COVID-19 cases may be

attributed to dysregulated inflammation and the formation of

microthrombi, complicated by endothelial dysfunction (53). This

underscores the importance of aggressively addressing endothelial

impairment to mitigate thrombotic events. Despite the thrombo-

inflammatory phenotype, direct SARS-CoV-2 infection of ECs or

the presence of viral particles has not been definitively

demonstrated in existing animal models or human biopsies (54).

According to early observations, SARS-CoV-2 infects ECs and

induces vascular complications (11, 55). However, owing to the

challenges of interpreting transmission election microscopy and the

high observer variability of those images, the presence of viral

particles in the endothelium remains debatable (56, 57).

Transcriptomic analysis of lung ECs from young and old K18-

hACE2 mice infected with SARS-CoV-2 at 2dpi unraveled age-

dependent endothelial signatures of COVID-19. Despite SARS-

CoV-2 infection drastically dysregulating the lung endothelial
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transcriptome in both groups compared to respective mock

controls, the proportion of DEGs was relatively higher in young

mice than aged mice. Pathway analysis revealed that SARS-CoV-2

infected young mice exhibited an amplified endothelial IFN

response, significantly attenuated in aged mice. In support of our

findings, Chen et al. demonstrated earlier using homogenized lung

tissues that the innate IFN response and adaptive antibody response

against SARS-CoV-2 infection were significantly impaired in aged

mice compared to young mice (46). Thus, a diminished IFN

response may curtail anti-viral response against SARS-CoV-2

infection in lung ECs of aged mice compared to young mice.

Additionally, the low autochthonous IFN expression in the ECs

of our study supports endothelial dysfunction in COVID-19 being

mediated indirectly due to proximity to inflamed IFN-producing

epithelium. In our datasets, TREM1 signaling and cytokines were

elevated to a greater extent in young mice than aged mice, which is

in contrast to clinical studies (58). Overall, the endothelium of aged

mice at 2dpi showed a dampened inflammatory profile relative to

young mice. These differences could potentially be explained by the

early infection time point of our experiments, which may

correspond to the presymptomatic phase when compared to data

from human patients, during which blood samples and lung

autopsy samples are typically not available and are sampled at

later time points. An insufficiently low inflammatory response in

the ECs of older mice during the early stage could allow for the

spread of infection and, consequently, lead to reactive

hyperinflammation and lower survival.

The inflammatory response is an essential host defense

mechanism. However, exacerbated inflammatory responses can be

catastrophic leading to tissue injury, multi-organ damage and

mortality, as observed in sepsis. On the flip side, age-associated

blunting of the interferon response may also be catastrophic due to

diminished ability to fight against the infection. While tissue/cell type,

type of pathogen, and the stage of infection dictate the magnitude and

type of immune response, certain patterns of host response are

common across pathogens and tissues. For instance, in a study by

Lee et al. (59) on peripheral blood mononuclear cells, both patients

with severe COVID-19 and influenza showed elevated expression of

immune-related genes such as TLR2, IFI35, and NFKBIA compared

to the respective healthy controls (59). Another study by Wang et al.

on whole lung transcriptome observed an increased induction of pro-

inflammatory genes such as Saa3, Cxcl10, and Cxcl11 in both

influenza and COVID-19 infected mice (60).

Infection and inflammation trigger the induction of acute-phase

reaction proteins as part of the host stress response. Acute-phase

reaction proteins, produced primarily by hepatocytes with

contribution from other cells such as ECs, have been implicated

in pathogenesis, disease severity, mortality, and even post-acute

sequelae of COVID-19 (45, 61). In line with the curtailed

inflammatory response in aged mice during COVID-19, the acute

phase proteins were relatively less abundant in the aged

endothelium compared to young mice, which demonstrated a

hyperactive response consistent with clinical reports.

Finally, it is possible that severe disease and pathology are driven

by local lung infection in epithelial cells which leads to release of

mediators triggering endothelial dysfunction. In conclusion, our
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study suggests that a suppressed immune landscape is a key driver of

age-associated endothelial dysfunction during COVID-19. Targeting

these immune pathways in ECs may have prognostic and therapeutic

benefits although further studies, including dissecting these

functional changes at a single-cell level, are needed.
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