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Deciphering the immune-
metabolic nexus in sepsis: a
single-cell sequencing analysis
of neutrophil heterogeneity and
risk stratification
Shaoxiong Jin1†, Huazhi Zhang2†, Qingjiang Lin1, Jinfeng Yang1,
Rongyao Zeng1, Zebo Xu1 and Wendong Sun1*

1Department of Emergency Surgery, The Second Affiliated Hospital of Fujian Medical University,
Quanzhou, Fujian, China, 2Department of Radiology, The Second Affiliated Hospital of Fujian Medical
University, Quanzhou, Fujian, China
Background: Metabolic dysregulation following sepsis can significantly

compromise patient prognosis by altering immune-inflammatory responses.

Despite its clinical relevance, the exact mechanisms of this perturbation are

not yet fully understood.

Methods: Single-cell RNA sequencing (scRNA-seq) was utilized to map the

immune cell landscape and its association with metabolic pathways during

sepsis. This study employed cell-cell interaction and phenotype profiling from

scRNA-seq data, along with pseudotime trajectory analysis, to investigate

neutrophil differentiation and heterogeneity. By integrating scRNA-seq with

Weighted Gene Co-expression Network Analysis (WGCNA) and machine

learning techniques, key genes were identified. These genes were used to

develop and validate a risk score model and nomogram, with their efficacy

confirmed through Receiver Operating Characteristic (ROC) curve analysis. The

model’s practicality was further reinforced through enrichment and immune

characteristic studies based on the risk score and in vivo validation of a critical

gene associated with sepsis.

Results: The complex immune landscape and neutrophil roles in metabolic

disturbances during sepsis were elucidated by our in-depth scRNA-seq

analysis. Pronounced neutrophil interactions with diverse cell types were

revealed in the analysis of intercellular communication, highlighting pathways

that differentiate between proximal and core regions within atherosclerotic

plaques. Insight into the evolution of neutrophil subpopulations and their

differentiation within the plaque milieu was provided by pseudotime trajectory

mappings. Diagnostic markers were identified with the assistance of machine

learning, resulting in the discovery of PIM1, HIST1H1C, and IGSF6. The

identification of these markers culminated in the development of the risk score

model, which demonstrated remarkable precision in sepsis prognosis. The

model ’s capability to categorize patient profiles based on immune

characteristics was confirmed, particularly in identifying individuals at high risk

with suppressed immune cell activity and inflammatory responses. The role of

PIM1 in modulating the immune-inflammatory response during sepsis was
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further confirmed through experimental validation, suggesting its potential as a

therapeutic target.

Conclusion: The understanding of sepsis immunopathology is improved by this

research, and new avenues are opened for novel prognostic and

therapeutic approaches.
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Introduction

Sepsis is a life-threatening condition characterized by a

dysregulated host response to infection, which can lead to organ

dysfunction. Globally, sepsis is estimated to affect over 30 million

people annually, potentially resulting in 6 million deaths (1).

Currently, the management of sepsis relies on prompt antibiotic

therapy, removal of the infection source, and supportive measures

to maintain hemodynamic stability and preserve organ function (2).

However, patient-specific response variability complicates

management, reflecting the limited understanding of sepsis

pathogenesis and signaling the need for more effective,

individualized treatment approaches. Tailored therapies, founded

on patient-specific biomarkers and stratification based on

immunological or genetic profiles, can enhance effectiveness and

reduce the likelihood of adverse effects.

Sepsis initiates a dynamic immune response that evolves over

time, marked by concurrent pro-inflammatory and anti-

inflammatory processes. Consequently, most sepsis patients

rapidly exhibit signs of profound immune suppression, resulting

in detrimental outcomes (3). Recent research has emphasized the

significance of metabolic dysfunction, epigenetic changes, myeloid-

derived suppressor cells, immature neutrophils with suppressive

properties, and immune variations in main lymphoid organs during

sepsis (4–6).

Metabolic dysfunction plays a crucial role in the initiation and

progression of sepsis. During sepsis, the body undergoes an

advanced level of metabolic emergency which can potentially lead

to organ dysfunction (7). Metabolic shifts are prominently observed

in various cell types during sepsis, particularly as immune cells

undergo transformation. Cellular metabolism, which exhibits

variable metabolic profiles across different cell types and stages of

the disease, plays a key role in the immune dysregulation and organ

failure associated with sepsis (3, 8). Metabolic reprogramming,

wherein glycolysis supersedes oxidative phosphorylation

(OXPHOS) as the primary source of energy production, is crucial

for immune cell activation while simultaneously contributing to

immunosuppression (9). Additionally, metabolites from OXPHOS

and glycolysis may serve as signaling molecules, modulating the

immune response throughout sepsis. The “energy crisis” induced by
02
sepsis leads to impaired cellular functions and potentially severe

organ dysfunction (10). Although metabolic reprogramming can

partially mitigate this energy deficit, fostering host tolerance and

enhancing cell survival, reversion to OXPHOS is imperative for

cellular function restoration (11). In the intricate landscape of

molecular and cellular biology, significant rewiring of metabolic

pathways and epigenetic modifications has been identified as a

pivotal factor in triggering and perpetuating immune system

changes linked to sepsis. These alterations precipitate profound

changes in gene expression patterns which lie at the heart of sepsis-

induced immunological transformations (12). From a broader

perspective, immune cells require metabolic profile alterations to

achieve effective functionality. These metabolic changes are

tentatively linked to the progression of immune responses during

sepsis (13). This metabolic deceleration is akin to the cellular

hibernation noted in organ dysfunction related to sepsis (14).

Therefore, exploring the interplay between metabolism and

immunity in the context of sepsis is a critical area of research,

pivotal for identifying novel therapeutic targets to restore immune

homeostasis following sepsis.

In this study, scRNA-seq was employed to investigate the

immune cell composition of sepsis patients, revealing a specific

enrichment of immune cell types. The application of the MuSiC

algorithm and intercellular communication assessments uncovered

notable interactions among immune cells, highlighting the crucial

role of neutrophils in sepsis and their connection to metabolic

activity. The analysis of neutrophil heterogeneity has led to the

identification of four distinct subtypes, each characterized by unique

functional attributes. Furthermore, the developmental trajectories

of neutrophils were traced, leading to the identification of essential

genes and the characterization of subpopulation lineage

differentiation. By utilizing WGCNA, gene co-expression

networks were constructed to identify significant genes for further

investigation. Gene enrichment assays were then performed to

elucidate the biological functions of these genes. Machine learning

algorithms were employed to identify potential biomarkers for

atherosclerosis, leading to the development of a diagnostic model

with enhanced predictive capabilities. Using a customized riskScore

model, we stratified patients based on their risk profiles and

investigated the molecular and immune characteristics associated
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with different risk levels. The validation of characteristic genes in

vivo sepsis models underscored the significance of these targeted

genes in the disease’s pathology.
Methods

Acquisition of raw data

scRNA-seq data of peripheral blood from a cohort of five

healthy individuals and four patients with advanced-stage sepsis

were retrieved from the Gene Expression Omnibus (GEO)

repository, specifically under accession number GSE175453.

Concurrently, aggregated transcriptomic datasets associated with

sepsis were acquired from GEO (accession numbers: GSE65682,

GSE95233, GSE63042) and the ArrayExpress database (accession

number: E-MTAB-5273). After the acquisition, these datasets

underwent a logarithmic transformation to base 2 and

normalization utilizing the Robust Multi-array Average (RMA)

algorithm available within the “affy” package in the R

statistical environment.
scRNA-seq data processing and
cell annotation

Utilizing the R package “Seurat,” single-cell RNA sequencing

(scRNA-seq) data was analyzed with meticulous attention to

precision. Initially, the dataset underwent a rigorous gene filtering

process where only genes present in no fewer than three individual

cells were considered for further examination. This initial step

ensures that the focus remains on genes with sufficient

representation across the cell population, thus enhancing the

robustness of downstream analyses. Concomitantly, cells were

filtered based on their gene expression profiles, retaining cells that

exhibited an expression range of 200 to 3000 genes. This specific

criterion was set to exclude cells with abnormally low or high gene

counts, which could otherwise introduce noise into the dataset.

Additionally, cells were subjected to further filtering based on

two additional parameters: the total RNA count (nCount_RNA)

and mitochondrial gene expression. Specifically, a threshold was

established to retain cells with an nCount_RNA below 20,000 to

exclude potential doublets or multiplets that could distort the

results. Mitochondrial gene expression was also monitored and

kept under 10%, as an elevated mitochondrial gene percentage is

often indicative of low-quality or dying cells. These stringent

filtering criteria ensured that only high-quality cells were retained,

culminating in a dataset comprising 40,584 cells deemed suitable for

advanced analyses.

To prepare the selected cell population for subsequent steps, the

data was normalized and scaled using Seurat’s “NormalizeData”

and “ScaleData” functions. Normalization adjusted the gene

expression measurements for each cell to account for differences

in sequencing depth, resulting in the expression levels on a

comparable scale across all cells. Scaling further refined these

measurements by centering the data and scaling each gene to unit
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variance, thereby mitigating the effects of any highly variable or

abundant genes.

Following this preliminary processing, the most variable genes

were identified to capture the underlying biological heterogeneity

within the cell population. Using the “FindVariableFeatures”

function in Seurat, the top 3,000 genes exhibiting the highest

variability across the dataset were pinpointed. Given the dataset’s

multi-sample origin, it was crucial to address potential batch effects

that could confound the analyses. This was achieved using the

“RunHarmony” function, which harmonizes the data across

different samples, thereby reducing batch-induced biases.

Subsequent dimensionality reduction was performed using

principal component analysis (PCA), a technique that enables the

condensation of the data’s complexity by projecting it into a set of

orthogonal components. We focused on the top 20 principal

components, which encapsulated the most significant variance in

the dataset. To further elucidate cell population structures, these

components were subjected to t-distributed stochastic neighbor

embedding (t-SNE) analysis, which projected the high-

dimensional data into a two-dimensional space. This visualization

technique facilitated the discernment of significant cellular

conglomerates and patterns.

In the clustering phase, Seurat’s “FindNeighbors” and

“FindClusters” functions were executed, with the latter set to a

resolution parameter of 0.3. This clustering approach partitioned

the cells into 13 distinct clusters. The resolution parameter was

tuned to balance the granularity of the clusters, ensuring a

meaningful yet interpretable clustering outcome. The resulting

clusters were visually represented in a t-SNE plot, providing an

intuitive overview of the cellular landscape.

Subsequent cluster annotation involved a thorough manual

examination, wherein each cluster was classified into major cell

types based on established marker gene profiles. Marker genes serve

as distinctive identifiers for various cell types, allowing for accurate

classification. To characterize the markers within each cellular

contingent, the “COSG” package in R was employed. The

parameters were specifically configured with a mean expression

threshold of 10 and a user-defined gene count of 100, facilitating a

comprehensive and precise marker characterization essential for

downstream biological interpretations.
Evaluation of metabolic activity at single-
cell resolution

In each cell population, the metabolic processes of singular cells

were mapped and measured utilizing the ‘scMetabolism’ package in

R, a cutting-edge tool designed for single-cell metabolic activity

quantification (15). This tool processes a matrix of single-cell data,

employing the VISION algorithm to assess individual cell metabolic

pathway scores. Embedded within the ‘scMetabolism’ tool are the

comprehensive KEGG and Reactome pathway databases. Before the

metabolic examination, the dataset underwent a uniform

transformation. The VISION algorithm played a pivotal role in

computing the metabolic scores. Comparative analysis of metabolic

activities across different cellular groupings pinpointed pathways
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with notable variances. For this investigation, the analysis harnessed

KEGG metabolic gene sets coupled with the “VISION” technique.

Subsequently, for graphical representation, we utilized the

“DotPlot.metabolism” and “BoxPlot.metabolism” functions.
Annotating cell types in bulk RNA
−seq dataset

Single Cell Multi-Subject (SCMS) serves as an effective

approach to determining the prevalence of distinct cell

populations. This methodology applies gene expression profiles

particular to each cell type obtained from scRNA-seq to ascertain

the comparative frequency of a range of cell subsets within a

composite RNA-seq dataset. To appraise the respective

contributions of cell types within aggregate peripheral blood

samples, a uniform procedure was employed. Subsequently, the

variations across diverse cell categories among different cohorts

were graphically represented.
Trajectory analysis

The differentiation pathways within the identified cell clusters

were examined using the Monocle2 algorithm (16). To isolate the

cell clusters of interest, we employed the “subset” function from the

Seurat package, followed by the construction of a CellDataSet object

with the “newCellDataSet” method in Monocle2, setting the

“lowerDetectionLimit” to 0.5. To enhance the quality of the

dataset, low-quality cells and genes were filtered out by

employing the “detectGenes” and “subset” methods with the

“min_expr” threshold set at 0.1. This step occurred after size

factor computation and dispersion estimation. Differential gene

expression along the determined trajectories was identified using

the “differentialGeneTest”. Dimensionality reduction was

accomplished through the “reduceDimension” function,

leveraging the “DDRTree” approach. For visualization, functions

such as “plot cell trajectory”, “plot genes in pseudotime”, and “plot

genes branched heatmap” were implemented following cell

ordering. Additionally, a CytoTRACE analysis, which is a method

for the unsupervised prediction of cells’ relative differentiation

states from their single-cell transcriptomes, was conducted (17).

This analysis was carried out using the default parameters specified

in recommended protocols to augment our understanding of cell

trajectory. Visualization of the results was achieved through the

“plotCytoGenes” and “plotCytoTRACE” functions.
Cell communication analysis

The “Cel lChat” R package (ava i l ab le a t h t tps : / /

www.github.com/sqjin/CellChat) (4) facilitated the construction

of CellChat objects, with the UMI count matrices pertinent to

each subset (Normal and AD) serving as the foundation. The

“CellChatDB.human” database was prioritized for ligand-receptor

pairings during the analysis. The examination of cellular
Frontiers in Immunology 04
communication was executed with the preconfigured default

settings. Subsequently, to discern the cumulative interaction count

and the comparative intensity of these interactions, CellChat objects

respectively to each subset were amalgamated via the

“mergeCellChat” command. To display the variances in

interaction numbers or strengths across different cellular types

between Normal and AD groups, both “compareInteractions” and

“netVisual_circle” functions were employed. Lastly, the

“netVisual_bubble” function allowed for the illustration of the

signaling gene expression distribution across the groups.
WGCNA analysis

WGCNA, a method used for the construction of gene co-

expression networks in GSE65682, was facilitated by the WGCNA

package in R. The steps for processing were as outlined: initially,

genes with missing values were fi ltered out using the

‘goodSamplesGenes’ function. An optimal soft-thresholding

power was then visually selected to ensure a robust network

construction. Subsequently, the gene expression data were

transformed into an adjacency matrix, and this was further

converted into a topological overlap matrix (TOM) to map out

genetic interconnections. By examining TOM dissimilarities, genes

were clustered using average linkage hierarchical clustering. The

clustering dendrogram was dynamically cut to delineate highly

correlated modules. The module eigengenes (MEs) served as the

representative core of each gene cluster, capturing the module’s

overall gene expression profile. The association between MEs and

clinical traits was assessed using Pearson correlation to establish

their relevance. In conclusion, the focus was on genes within

modules that exhibited the strongest correlation to the

sphingolipid score for downstream investigation.
Construction and validation of the
risk scoring

To conduct a univariate examination of the intersecting genes

to uncover those statistically linked to the patient’s overall survival

rate, a significance threshold of P<0.05 was adopted. This analysis

was implemented using R, initiating with data preparation which

involved importing the gene expression and survival data into R.

After ensuring proper data structuring with the ‘survival’ package,

univariate Cox proportional hazards regression was employed. This

facilitated the identification of genes with significant prognostic

value based on their P-values being less than 0.05 through the

coxph function.

Subsequent refinement involved leveraging the LASSO (Least

Absolute Shrinkage and Selection Operator) Cox regression

analysis, carried out using the ‘glmnet’ package. Here, a matrix

was constructed from the expression data of the significant genes

identified from the univariate analysis, and a corresponding

response vector containing survival times and event status was

prepared. With the LASSO method being sensitive to the values’

scales, standardization was ensured before model fitting. The model
frontiersin.org
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fitting was performed using the cv.glmnet function to identify the

optimal parameters via cross-validation, focusing on the lambda

value that minimized the cross-validated error (17, 18). Through

coef, the best set of genes and their associated risk coefficients,

having significant associations with patient outcomes, were selected.

For survival analyses, the log-rank (Mantel-Cox) methodology

was operationalized to find the gene group with the most significant

prognostic value. This process was facilitated through the survdiff

function, which compared survival curves across different gene

expression groups, and the gene group achieving the lowest P-

value was noted.

Risk scores for each sepsis patient were subsequently calculated

from the coefficients derived from the log-rank test. These scores

allowed for stratification of patients into high-risk and low-risk

groups based on the median value of the risk scores, ensuring clear

demarcation between the two cohorts.

Kaplan-Meier plots, generated using the survfit function from the

‘survival’ package, visually represented the survival probabilities over

time for both risk groups, providing a clear prognosis evaluation

through survival curves. To further scrutinize the predictive model’s

performance, ROC (Receiver Operating Characteristic) curves were

constructed using the ‘pROC’ package, focusing on the measurement

of sensitivity and specificity across varying thresholds.

Finally, the robustness and generalizability of the derived

prognostic signature were assessed across four independent

datasets. The model’s Area Under the Curve (AUC) values were

calculated using roc function from the ‘pROC’ package, serving as a

critical validation measure to confirm the model’s consistent

performance across different patient cohorts.
Assessment of the prognostic model

To estimate the 28-day overall survival probabilities, a

predictive nomogram was constructed, which includes age,

gender, and a composite risk score as separate prognostic

determinants. To assess the predictive precision of the

nomogram, calibration plots were generated. Additionally, the

clinical utility and added value of the nomogram were evaluated

through decision curve analysis (DCA), comparing its net benefit to

the use of clinical characteristics in isolation.
Enrichment analysis

Utilizing the “clusterProfiler” R package, as previously specified

in the literature (8), we executed enrichment analyses for the KEGG

and GO. The scope of the GO biological function covered three

domains: BP, MF, and CC. To determine statistical relevance, p-

values less than 0.05 were identified as significant.

Furthermore, the Gene Set Variation Analysis (GSVA) was

conducted using the ‘GSVA’ R package to elucidate the heterogeneity

of biological processes and the activity of various pathways (19). For

GSVA, hallmark gene sets from the MSigDB database were selected as

the targeted gene sets. The “limma” R package was instrumental in

identifying significant differences between biological functions and
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signaling pathways, with the threshold for statistical significance set

to GSVA scores exceeding an absolute t-value of 2.

Additionally, gene set enrichment analysis (GSEA) was

conducted to probe the differences in pathway activities, using

“clusterProfiler” (20). Pathway activities were ranked according to

the Normalized Enrichment Score (NES), with a p-value below 0.05

maintained as the criterion for statistical significance.

Lastly, the activity scores of key disease-related signaling pathways

across different cohorts were assessed using the progeny R package,

with p-values under 0.05 considered to ascertain statistical significance.
Assessing the scores of
different phenotypes

To discern the distinct phenotypic signatures—namely, those

relevant to cholesterol efflux, lysosomal activity, endoplasmic

reticulum (ER) stress, angiogenesis, phagocytic function, hypoxic

response, acute inflammation, autophagy, and ferroptosis—

pertinent gene markers were retrieved from the Molecular

Signatures Database (MSigDB). Subsequently, we employed the

AUCell algorithm, applying its standard parameters, to calculate

phenotype-associated scores across various groups. This process

was facilitated by utilizing the irGSEA package.
Sepsis immunity

The levels of immune cell infiltration were analyzed utilizing the

ssGSEA method incorporated within the GSVA softwere (9). In

essence, the relative proportions of diverse immune cells were

quantified across all samples by leveraging universally recognized

gene markers. Subsequently, these algorithms were implemented to

ascertain the degree of enrichment or relative quantities for each

category of the immune cell. Assessment of the variations in

immune cell infiltration across different groups was performed

using the Wilcoxon rank-sum test. To depict the extent of

immune cell penetration within each AD specimen, divided by

algorithm, heatmaps served as a visual aid. Furthermore, the

“ESTIMATE” R script played a role in deducing the levels of

immune infiltration in patients afflicted with sepsis. Moreover,

immune checkpoints consist of an array of molecules such as

those involved in antigen presentation, cellular adhesion, co-

inhibition, co-stimulation, ligand engagement, and receptor

activity—found on immune cells—which modulate the intensity

of the immune response. As critical regulators in averting overactive

immune responses, we scrutinized and contrasted the expression

rates of renowned immune checkpoint genes between the cohorts.
Establishment and verification of a sepsis
rat model with altered PIM1 expression

To investigate the role of PIM1 in sepsis, two cohorts of

Sprague-Dawley male rats weighing 250-300g were developed.

These animals were raised in a controlled environment with
frontiersin.org
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regulated temperature, humidity, and a 12-hour light/dark cycle,

and were given unrestricted access to food and water. The animal

procedures were approved by the animal ethics committee of Fujian

Medical University. The sepsis condition was induced via the well-

established cecal ligation and puncture (CLP) technique, which was

performed under aseptic conditions and after administering

anesthesia (50 mg/kg sodium pentobarbital intraperitoneally). The

cecum was ligated, punctured while preserving intestinal continuity,

and then returned to the abdomen. Sham-operated rats received all

surgical interventions except the CLP procedure. Postoperative care

included rehydration through subcutaneous administration of

saline. After 24 hours post-operatively, whether CLP or sham, the

rats were sedated, and peripheral blood was drawn from the heart

into EDTA tubes, subsequently centrifuged, and the samples were

preserved for future examination.

For a detailed study on the role of PIM1 in sepsis, a model with

diminished PIM1 expression was additionally created via in vivo

silencing. Adenoviral vectors containing shRNA sequences that

specifically target the PIM1 gene in rats (shPIM1) were employed,

in comparison with a non-targeting control shRNA sequence

(shNC), both of which were procured from RiboBio, located in

Guangzhou, China. The experimental group rats were injected via

the tail vein with about 30 billion PFU of shPIM1 in 200 mL saline,

whereas the control group received an equivalent dosage of shNC.

The potency of gene suppression was evaluated on the 14th day

following injection through qRT-PCR. Blood RNA isolated with

Trizol reagent was subjected to qRT-PCR with PIM1-specific

primers for quantitative expression analysis. On the day of

analysis, sepsis was induced in the genetically altered subjects,

and blood samples were taken using the same collection and

preservation method as before for further analysis.
RT-qPCR

Peripheral blood samples were used to isolate total RNA

employing Trizol reagent (Life Technologies, USA). The isolated

RNA was subsequently reverse-transcribed to cDNA using the

RevertAid First Strand cDNA Synthesis Kit, following the

manufacturer’s protocol. Quantitative RT-PCR analyses were

performed with the ABI PRISM 7500 system (Applied

Biosystems, USA) using the SYBR Premix EX Taq (Takara,

Japan) kit. The relative quantification of mRNA expression levels

was achieved by normalizing the CT values of the target gene

against those of b-actin, with results presented as relative fold

changes calculated by the comparative 2-DDCT method.
Enzyme-linked immunosorbent assay

Peripheral rat blood was collected and the concentrations of

cytokines IL-17A, IL-6, TNF-a, and IL-10 were measured using

ELISA following protocols supplied by R&D Systems, USA. The

blood samples were centrifuged at 2000g for 10 minutes and the

supernatants were subsequently harvested for analysis. A reagent

diluent was dispensed into each microplate well before the addition
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of either a blood sample or a standard control. The microplates were

sealed and incubated for 2 hours at ambient temperature. After

incubation, the contents of the wells were discarded, and the wells

were washed thrice. A conjugate reagent (100 µL) was then added to

each well, followed by a secondary incubation at room temperature

for 2 hours. A subsequent aspiration and washing step was

performed before the addition of 100 µL of substrate solution to

each well. After a 20-minute incubation, the enzymatic reaction was

halted with 50 µL of stop solution. Optical densities at 450 nm were

immediately recorded using a spectrophotometer. Cytokine

concentrations were quantified against established standard curves.
Statistical analysis

The R platform was utilized for the management and

calculation of our dataset and statistical figures. The survival

comparison across the two cohorts was conducted by analyzing

Kaplan-Meier plots in conjunction with a log-rank assessment. The

‘ggsurvplot’ package in R facilitated the construction of all survival

plots. Prognostic determinants were assessed through univariate

Cox regression. The Lasso technique within Cox regression was

applied to pinpoint factors with a more substantial impact on the

outcomes. Visualization of data points was conducted using ggplot2

in R, while overall survival computations were performed with the

survival package. To deduce the association between a pair of

continuous variables, Spearman’s rank correlation was executed.

The disparities in continuous data between the cohorts were probed

via either the Wilcoxon rank-sum test or the two-tailed t-test. Chi-

square assessments were put to use for the analysis of categorical

variable differences between groups. All statistical evaluations were

conducted within the R environment. A P-value below 0.05 was

regarded as a threshold for statistical significance.
Result

scRNA-seq analysis of GSE175453

The methodology of this study was delineated in a flowchart

(Figure 1). scRNA-seq analysis was employed to extensively

characterize the immune cell landscape within the dataset

GSE175453. After quality control, a total of 40,584 high-quality

cells were obtained, with 22,196 cells derived from healthy controls

and 18,388 from sepsis samples, all deemed appropriate for further

analysis. Figure 2A illustrates the distribution of cell clusters in

GSE175453, revealing 15 clusters and 11 immune cell types,

categorized as follows: Neutrophils (CD3FR-marked), CD4^+ T

cells (CD4-marked), CD8^+ T cells (CD8B-marked), Natural Killer

(NK) cells (GNLY-marked), megakaryocytes (TUBB1-marked),

macrophages (C1QA-marked), B cells (MS4A1-marked),

dendritic cells (DCs; FCER1A-marked), mast cells (CPA3-

marked), plasma cells (DERL3-marked), and monocytes (VCAN-

marked) with respective cell counts shown in Supplementary Figure

S1. The distribution of these cell clusters within each sample,

control group, and sepsis group is depicted in Figures 2B-D,
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FIGURE 1

The study flow chart.
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FIGURE 2

scRNA-seq cell annotation. (A) The UMAP plot display distribution of the cell clusters of GSE175453. (B)The UMAP plot display distribution of the cell
clusters of 5 Healthy control and 4 late septic patients. (C) The UMAP plot display distribution of the cell types of Healthy control. (D) The UMAP plot
display distribution of the cell types of late sepsis patients. (E) A heatmap displayed the distribution of the top 6 differentially expressed genes specific
to different cell subtypes. (F) Cell type fractions of 5 Healthy control and 4 late septic patients.
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respectively. Furthermore, Figure 2E illustrates the six most

characteristic genes for each cell type, and Figure 2F depicts the

proportional representation of each cell type across all samples in

dataset GSE175453.
Evaluation of metabolic activity at single-
cell resolution

In this section, the metabolic activities of individual cells in

transcriptomic dataset GSE175453 are analyzed. Diverse cell types

exhibited enrichment in distinct metabolic pathways, reflecting

their unique metabolic roles in the context of sepsis. To

summarize, B cells are associated with the one-carbon pool by

folate metabolism, CD4+ T cells with drug metabolism involving

other enzymes and the pentose phosphate pathway, and CD8+ T

cells with propanoate metabolism, as well as cysteine and

methionine metabolism. Dendritic cells (DC) were linked to

oxidative phosphorylation, glycolysis/gluconeogenesis, drug

metabolism involving other enzymes, and cysteine and
Frontiers in Immunology 08
methionine metabolism. Macrophages were noted for oxidative

phosphorylation, while mast cells were involved in riboflavin

metabolism, porphyrin, and chlorophyll metabolism, phosphonate

and phosphinate metabolism, nitrogen metabolism, and fatty acid

biosynthesis. Megakaryocytes were related to glutathione

metabolism and arachidonic acid metabolism, monocytes to

pantothenate and CoA biosynthesis, neutrophils to the pentose

phosphate pathway, natural killer (NK) cells to fatty acid

elongation, and plasma cells to propanoate metabolism,

phenylalanine metabolism, oxidative phosphorylation, N-Glycan

biosynthesis, and cysteine and methionine metabolism (Figure 3A).

The metabolic pathway activity for each cell type is presented in

Figure 3B. Neutrophils, CD8+ T cells, B cells, and monocytes

demonstrated relatively low metabolic activity, whereas NK cells,

plasma cells, and mast cells exhibited higher activity. Notably,

compared to the control group, the metabolic activity in the

immune cells from the sepsis group was significantly reduced

(Figure 3C). Moreover, the differentially enriched pathways

among the global cell subtypes are depicted in Figure 3D.

Additionally, variations in classical phenotypes between the
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FIGURE 3

Evaluation of metabolic activity at single-cell resolution (A) Dot plots showing differentially metabolic pathways among the global cell subtypes.
(B) Boxplot showing the metabolic pathway activity among the global cell subtypes. (C) Boxplot showing the metabolic pathway activity between
control and sepsis group. (D) Heatmap showing the differentially enriched pathways among the global cell subtypes. (E) Boxplots showing
phenotypic scores (cholesterol efflux, lysosome, endoplasmic reticulum stress, angiogenesis, phagocytosis, hypoxia, acute inflammatory response,
autophagy, and ferroptosis) between control and sepsis groups. **p < 0.01; ****, P < 0.0001.
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control and sepsis groups were analyzed, revealing that phenotypes

such as cholesterol efflux, angiogenesis, phagocytosis, autophagy,

and lysosome activity were more pronounced in the control group,

whereas hypoxia, acute inflammatory response, and endoplasmic

reticulum stress were predominantly observed in the sepsis group

(Figure 3E). In conclusion, the findings indicated that metabolic

activity is suppressed during sepsis. Among the cell types studied,

neutrophils exhibit the lowest metabolic activity, suggesting that

neutrophil function may critically regulate metabolic processes in

the context of sepsis.
Intercellular communication analysis of
neutrophils in sepsis

The distribution of cell subgroups in the bulk transcriptome

dataset GSE65682 was estimated within the single-cell set using the

MuSiC algorithm. Notably, it was observed that neutrophils were

most prominently enriched in the sepsis group, correlating

significantly with metabolic activity (Figure 4A). Therefore, in

subsequent analyses, Neutrophil was separately extracted for

further analysis. In the subsequent analysis, cellular interactions

between neutrophils and other cell types were investigated in both

control and sepsis groups. As illustrated in Figure 4B, a greater

number of inferred interactions between neutrophils and other cells
Frontiers in Immunology 09
were observed in the control group, whereas the interaction

strength, depicted in Figure 4C, was found to be weaker. In the

control group, Neutrophils showed intensive interaction strength

and large interaction number with CD4+ T cell, CD8+ T cell, B cell,

plasma, macrophage, and Neutrophil (Figure 4D). In the sepsis

group, Neutrophil displayed strong interaction strength and large

interaction number with CD4+ T cell, CD8+ T cell, NK cell, B cell,

macrophage, megakaryocyte, DC, mast cell, monocyte, plasma, and

Neutrophil (Figure 4E). The significant ligand-receptor pairs

between neutrophils and other cell types were subsequently

further explored. Functions as a ligand, Neutrophil strongly

increased the activity of RETN-CAP1 to interact with the

majority of receptor cells (CD4+ T cell, CD8+ T cell, NK cell,

macrophage, megakaryocyte, B cell, DC, and plasma cell) in the

sepsis group and lightly decreased the activity of ANXA1-FPR1

interact with CD4+ T cell (strong), GRN-SORT1 interact with

macrophage (light), TNFSF13B-TNFRSF17 interact with plasma

cell (light). While Neutrophil only up-regulated TNFSF13B-

TNFRSF17 as ligands to interact with plasma cell in control

group and decreased the activity of ANXA1-FPR1 interact with

CD4+ T cell (strong), MIF-(CD74+CXCR4) interact with CD8+ T

cell and plasma cell (light), GRN-SORT1 interact with macrophage

(light), MIF-(CD74+CD44) interact with B cell (strong) (Figure 4F).

Nevertheless, while acting as a receptor, Neutrophils connected

with plasma cells by up-regulating MIF-(CD74+CD44) (strong) in
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FIGURE 4

Intercellular communication analysis of Neutrophil in sepsis. (A) The distribution of cellular subpopulations within the single-cell cluster in the bulk
transcriptome dataset GSE65682. The bar graph illustrates the numbers of inferred interactions (B) and interaction strength (C) between neutrophils
and other cells in the control and sepsis groups in GSE175453. (D) The strength of interaction between Neutrophil and other cells in the control
group in GSE175453. (E) The strength of interaction between Neutrophil and other cells in the sepsis group in GSE175453. (F) The neutrophil
functions as a ligand that mediates intercellular communication in sepsis. (G) Neutrophils functions as a receptor in the pathogenic intercellular
communication in sepsis.
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both sepsis and control group, but connected with CD8+ T cell, NK

cell, B cell, and DC by down-regulating MIF-(CD74+CD44) in both

sepsis and control group (Figure 4G). In this section, intensive

communication between neutrophils and other cell types,

particularly within the sepsis group, was observed.
The development trajectory of neutrophils
from control and sepsis samples

To further elucidate the dynamics of the immune response, a

pseudoprime developmental trajectory analysis was conducted on

neutrophils, with the objective of fitting the most optimal trajectory

curve of cellular development or differentiation in sepsis. This

analysis inferred the lineage structure of neutrophils within the

atherosclerotic plaque milieu based on the developmental

trajectory. As time advanced, the pseudotime analysis delineated

the principal evolutionary trajectory of neutrophils, which

bifurcated into two unique cellular fates (Figure 5A).

Subsequently, the developmental trajectories of neutrophils were

segregated into control and sepsis groups. Predominantly,

neutrophils from the control group were clustered within cellular

fate 1, whereas those from the sepsis group were sparsely distributed

between both cellular fate 1 and 2 (Figure 5B). Neutrophils from the
Frontiers in Immunology 10
sepsis group were classified into three distinct differentiation states

(Figure 5C). Furthermore, the differential expression of specific

genes (S100A9, VCAN, and IFITM2) was validated within the

sepsis trajectory. Of these, S100A9 showed high expression in

state 3, with VCAN being chiefly expressed in states 1 and 3, and

IFITM2 uniformly present in all three states (Figure 5D). The

trajectories of lineage-dependent gene expression patterns,

accompanying cellular transformations, were further visualized in

Figure 5E. CytoTRACE predictions suggested neutrophils in states

2 and 3 possess a higher potential for differentiation in sepsis,

contrasting with those in state 1 who showed minimal potential

(Figure 5F). Finally, the phenotypes present within the three cellular

states were illustrated, with state 3 incorporating the widest

spectrum of phenotypes and state 2 encompassing the

narrowest (Figure 5F).
Identification of characteristic genes

The WGCNA algorithm was employed to construct a gene co-

expression network for GSE65682. By using an optimal soft-

thresholding power (b) of 9, a hierarchical clustering algorithm

was implemented on the sample data, leading to the identification of

nine unique gene co-expression modules, each differentiated by
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FIGURE 5

Development trajectory of neutrophils from control and sepsis samples. (A-C) The developmental trajectory of neutrophils, colored-coded by the
pseudotime (A), group (B), and states (C). (D) Representative gene expression in neutrophils during sepsis initiation and progression. Intensity of
color indicates normalized gene expression. (E)Heatmap showing different blocks of DEGs in each cell fate along the pseudotime of sepsis initiation
and progression, colored by cell fates. (F) Development trajectory of neutrophils colored by the CytoTRACE scores and Phenotype.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1398719
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2024.1398719
color, in the clustering dendrogram (Figures 6A, B). Interestingly,

the black module showed the most significant correlation (R=-0.77)

with neutrophils, yielding a total of 1,089 genes for further scrutiny

(Figure 6C). The development trajectory analysis of neutrophils

provided 444 neutrophil Differentiation-Related Genes (NDRGs).

Following this, an intersection of data from WGCNA and the

trajectory analysis resulted in the recognition of 29 characteristic

genes, as portrayed in Figure 6D.

In the next step, enrichment analyses were carried out to

illuminate the potential biological functions of these 29 genes. GO

analysis revealed that these genes have a wide-ranging involvement

in BP, such as the metabolic process of porphyrin-containing

compounds and heme. In terms of CC, the genes could be found

in ubiquitin ligase complex, cullin-RING ubiquitin ligase complex,

and basal plasma membrane, among others. With regards to MF,

these genes were involved in activities such as ubiquitin-protein

transferase and ubiquitin-like protein transferase (Supplementary

Figure S2A). Additionally, the KEGG analysis uncovered

substantial enrichment in areas such as bacterial and viral

infections, and metabolisms of substances inside and outside cells

(Supplementary Figure S2B).
Construction of neutrophils related
riskScore system in sepsis

The univariate Cox proportional hazards analysis was

performed on 29 NDRGs, revealing 12 genes that demonstrated a

statistically significant association with the overall survival of
Frontiers in Immunology 11
patients in the bulk sepsis transcriptome data GSE65682

(represented as a univariate analysis hazard ratio [HR])

(Figure 7A). This was followed by the least absolute shrinkage

and selection operator (LASSO) Cox regression analysis and the

log-rank (Mantel-Cox) tests to refine the identification of survival-

associated genes (Figures 7B–E). The analysis culminated in the

identification of three hallmark genes (IGSF6, HIST1H1C, and

PIM1), based on which the neutrophil-related riskScore model

was created. The riskScore calculation is (-0.3196490 × IGSF6) +

(0.1483832 × HIST1H1C) + (0.3325431 × PIM1). Patients from the

bulk sepsis transcriptome data were divided into high- and low-risk

categories using the median riskScore.
The evaluation of the riskScore system

The effectiveness of the riskScore-based prognosis predictive

model was evaluated using survival analysis, exhibiting consistency

across all assessments. The prediction accuracy of riskScore

reflected robustly in the four datasets: GSE65682, GSE63042,

GSE95233, and E-MTAB-5273) with AUC values for 28-day

mortality exceeding 0.65 (Figures 8A–D). This high accuracy

continued to prevail in combined dataset evaluations for 7, 14, 21,

and 28-day mortality, wherein AUC values all surpassed 0.65

(Figure 8E). Further division of sepsis samples into two risk

categories, high-risk and low-risk, revealed trends of reduced

mean survival periods in high-risk patients, often succumbing in

the early illness phase. Low-risk patients revealed a consistent

increase of IGSF6 expression as opposed to their high-risk
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FIGURE 6

Identification of characteristic genes. (A) Ideal soft threshold for adjacency computation of WGCNA. (B) Dendrogram of co-expression module
clustering. (C) The WGCNA analysis investigated the modules of with the most remarkable correlation to neutrophils. (D) Interaction of characteristic
genes screened from WGCNA and development trajectory analysis of neutrophils.
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counterparts who showed increased expressions of PIM1 and

HIST1H1C (Figure 8F). Interestingly, survival analysis reiterated

the enhanced survival probabilities for low-risk patients compared

to high-risk patients (Figure 8G).

In addition, a prognostic nomogram for sepsis was developed,

integrating demographic variables such as age and sex, based on the

neutrophils-related risk score. Each predictor in the nomogram

warranted a particular score, with the total score across all

predictors designating a cumulative score reflecting the likelihood

of a negative outcome in sepsis. This cumulative score was visibly

represented in Figure 9A. The calibration plot verifies the predictive

accuracy of the nomogram as shown in Figure 9B. The clinical

applicability of our nomogram, standing on the calculated risk

score, was further substantiated by DCA (Figure 9C). Moreover, a

schematic representation of the demographic distribution by age,

sex, and survival statuses, categorized into two risk groups, has been

provided. No significant variation in the age and gender distribution

across cohorts was brought to light by this analysis (Figure 9D).

To further elucidate the neutrophil-associated mechanisms in

sepsis, characteristic genes of both high- and low-risk groups in

GSE65682 were examined. Upon identification, these said genes were

put through enrichment analysis using both GSVA and GSEA
Frontiers in Immunology 12
methods. Divergent pathway enrichment patterns were observed

between the two groups. In the high-risk group, notable enrichment

was seen in pathways relating to Metabolic Processes, Cellular Stress

Responses, and Cell Cycle. This encompassed pathways such as Heme

Metabolism, Hypoxia, Oxidative Phosphorylation, Estrogen Response

Early, Pi3k Akt Mtor Signaling, Mtorc1 Signaling, E2f Targets,

Unfolded Protein Response, Xenobiotic Metabolism, Notch

Signaling, Reactive Oxygen Species Pathway, Mitotic Spindle, and

P53 Pathway. Conversely, the low-risk group demonstrated

significant involvement in several biological functions critical to

immuno-inflammatory responses, namely the Interferon Alpha

Response, Androgen Response, Apoptosis, Complement, Protein

Secretion, Interferon Gamma Response, Allograft Rejection, Jak-Stat3

Signaling, Bile Acid Metabolism, Tnf-a Signaling Via Nf-kb, and Wnt

Beta Catenin Signaling pathways (Figure 10A). Proceeding with the

investigation, the top 5 up-regulated (Porphyrin And Chlorophyll

Metabolism, Nitrogen Metabolism, Nitrogen Metabolism, Purine

Metabolism, Ubiquitin Mediated Proteolysis) and top 5 down-

regulated pathways (Natural Killer Cell-Mediated Cytotoxicity, B Cell

Receptor Signaling Pathway, Nod Like Receptor Signaling Pathway,

Cytokine Cytokine Receptor Interaction, Toll-Like Receptor Signaling

Pathway) within the high-risk group were further discerned through
B

C

D E

A

FIGURE 7

Construction of neutrophils related riskScore system in sepsis. (A) Univariate cox analysis on the intersection genes. (B) Tuning feature selection in
the LASSO model. (C) LASSO coefficient profiles of the DDR-related characteristic genes. (D) The specific coefficient value of the 3 Genes associated
with GM identified by the optimal lambda value. (E) Kaplan-Meier analysis of gene combinations, the top 7 signatures were ranked and the signature
comprising four genes was selected due to its relatively large negative logarithm (-log10) of the p-value combined with a minimal gene count.
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FIGURE 8

The evaluation of the RiskScore system. The ROC curve was used to evaluate the performance of the riskScore model in the GSE65682 (A),
GSE63602 (B), GSE95233 (C), E-MTAB-5273 (D), and the combination dateset (E). (F) The distribution of the riskscore, patients’ survival status as well
as gene expression signature in the combination dateset. (G) Overall survival situation between the low- and high-risk group.
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FIGURE 9

Construction and validation of a prognostic prediction model based on the riskScore. (A) Construction of a nomogram based on riskScore and
clinical characteristics in the combination dateset. (B) Correction of the characteristic curve based on riskscore and pathological characteristic.
(C) DCA indicating the clinical benefit of the nomogram. (D) The distribution of clinical features and survival status in the low- and high-risk groups.
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GSEA (Figures 10B, C). Pathogenetic pathway variability was also

evident among different-risk sepsis patients. Particularly, high-risk

patients demonstrated significant activity in the EGFR, Estrogen, and

Trail pathways. On the other hand, low-risk patients showed

hyperactivity in the WNT, TNF-a, NF-KB, PI3K, and VEGF

pathways compared to their high-risk counterparts (Figure 10D).
Immunological features of sepsis patients
at low and high risk

To elucidate the infiltration of immune cells in patients with

sepsis categorized into high- and low-risk groups, each further

classified by stable or unstable clinical statuses, a comparative

analysis of 26 immune cell subtypes was initially performed. This

was executed through the calculation of the 26 immune cell scores

using the ssGSEA algorithm (Figure 11A). Generally, the low-risk

group displayed higher levels of immune cell infiltration compared

to the high-risk group, aligning with previous results that exhibited

higher immune cell scores in the majority of immune cell types

within the low-risk group (Figure 11B). Moreover, the variations in
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immune modulators between the high- and low-risk groups were

evaluated, based on different statuses, genders, and ages, as an

attempt to further clarify the immune characteristics of sepsis

patients (Figure 11C). In summary, immune genes associated

with antigen presentation (HLA-DQA), cell adhesion (SELP), co-

inhibitor (CD276 and PDCD1LG2), co-stimulator (ICOSLG),

ligand (CCL5, CD40LG, CD70, CX3CL1, and VEGFB), receptor

(CD27, EDNRB, IL2RA, LAG3, and PDCD1), among others

(PRF1), were visibly elevated in the high-risk group. However,

low-risk samples illustrated substantial expression of antigen

presentation (HLA-A, HLA-B, HLA-C, MICA, and MICB), cell

adhesion (ICAM1 and ITGB2), co-inhibitor (CD274 and SLAMF7),

ligand IL1B, TGFB, and TNF), receptor (CD40, HAVCR2, TIGIT,

TLR4, and TNFRSF14), among others (ENTPD1) (Supplementary

Figures S3A–G). Furthermore, a comparative analysis of immune

scores from each risk group was carried out, yielding a

comprehensive review of immunological attributes. Patients in the

low-risk group achieved higher immune scores compared to those

in the high-risk group (Figure 11D). Additionally, a correlation

analysis indicated that elevated risk scores negatively affected the

entirety of immune cell types and demonstrated higher immune
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FIGURE 10

Molecular characteristic and functional annotation of the neutrophils-related riskScore model in sepsis. (A) The GSVA identified significant
differences in biological functions between the high- and low-risk groups. Positive values indicate that the biological function is enriched in the
high-risk group, while negative values indicate that the biological function is enriched in the low-risk group. (B)Top five up-regulated pathways in
the high-risk group. (C)Top five pathways down-regulated in the high-risk group. (D) Heatmap displaying the difference of pathogenic pathways in
sepsis patients at low and high risk. Age, gender, and survival status are displayed as patient annotations. ***p < 0.001, ****p < 0.0001.
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infiltration levels (Figure 11E). Based on the findings of our study, a

relative decrease in the activity of immune cells, immune responses,

and immune-related pathways was observed in high-risk sepsis

patients, indicating a symptomatic immune suppression

during sepsis.
Validation of hallmark genes in a rat model
of sepsis

To substantiate the involvement of signature genes in the

development of a neutrophil-related risk score model for sepsis,

in vivo validation experiments were conducted. Initially, a sepsis

model was established in rats, followed by an analysis of gene

expression in their peripheral blood via reverse transcription-

quantitative polymerase chain reaction (RT-qPCR). Among the

genes studied, PIM1, HIST1H1C, and IGSF6 demonstrated a

marked upregulation in the septic rats (see Figure 12A). PIM1

was selected for in-depth validation due to its significant

contribution to the risk score model. Subsequent RT-qPCR

evaluations revealed that PIM1 expression in the Sepsis+shPIMI
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group was reduced to nearly one-third compared with the Sepsis

+shNC group, confirming effective gene silencing within our

framework (refer to Figure 12B). Survival analyses further showed

that rats subjected to PIM1 knockdown presented enhanced

survival rates relative to the Sepsis+shNC cohorts (as indicated in

Figure 12C). Additionally, the levels of pro-inflammatory cytokines,

such as IL-17A, IL-6, and TNF-a, were notably elevated in the

Sepsis+shPIMI group, whereas the anti-inflammatory cytokine IL-

10 was reduced (depicted in Figure 12D). These findings identify

PIM1 as a potential pivotal modulator of immune and

inflammatory responses during sepsis. The section that follows

will provide additional evidence of the critical role played by

PIM1 in sepsis, suggesting its potential involvement in the

immunosuppressive mechanisms of the disease.
Discussion

During sepsis, metabolic changes in the patient’s body not only

contribute to early inflammation and organ damage but also play

significant roles in immune tolerance and immune exhaustion (11).
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FIGURE 11

Immunological features of sepsis patients at low and high risk. (A) The heatmap showing the degree of infiltration of 26 immune cell subtypes in
high- and low-risk groups. (B) Differences in immune cell scores between high- and low-risk groups. (C) Heatmap depicting the differences in
immune-modulators and patients’ survival status between high- and low-risk groups. (D) A comparison of the immuneScore between high- and
low-risk groups. (E) The interaction between riskScore and 26 immune cell subtypes.
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Sepsis is marked by significant metabolic dysregulation across

various pathways, including carbohydrate, amino acid, and fat

metabolism (21). Leukocytes from patients with severe sepsis

exhibited profound defects in cellular energy metabolism, which

were correlated with a diminished capacity to respond to secondary

stimulation (11). In the pathogenesis and progression of sepsis,

further research is needed to elucidate the intricate mechanisms and
Frontiers in Immunology 16
heterogeneity of various immune cells influencing metabolism.

Such research is crucial for establishing a robust theoretical

foundation to advance personalized clinical interventions for sepsis.

In this study, scRNA-seq was utilized to delineate the immune

landscape in both healthy controls and patients with late-stage

sepsis. We identified distinct distributions of immune cells and

metabolic activity profiles between the groups. Remarkably,
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FIGURE 12

Validation of hallmark genes in a rat model of sepsis (A) Relative expression levels of hallmark genes in Control and Sepsis groups (n=5 in each
group). (B)Relative expression levels of PIMI in Control, Sepsis+shNC, and sepsis+shPIMI group (n=8 in each group). (C) Survival status of rats in each
group (n=10 in each group). (D)The level of pro-inflammatory cytokines (IL-17A, TNF-a, and IL-6) and anti-inflammatory cytokines (IL-10) in the
peripheral blood of rats in each group (n=8 in each group). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001.
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immune cells from septic patients exhibited a broadly reduced

metabolic activity compared to those from healthy controls, likely

due to metabolic exhaustion related to the severe inflammatory

response during sepsis. The observed hypometabolic state in sepsis

may serve as a protective mechanism against excessive

inflammation or energy depletion, or it may indicate a

dysfunctional immune response. Among all immune cell types,

neutrophils played a pivotal role in the immune response and

metabolic activity during sepsis. Neutrophils were the most

abundantly expressed and demonstrated the lowest metabolic

pathway activity in the septic group, while also interacting

significantly with other immune cells. During sepsis, neutrophils

exhibited enhanced longevity and reduced migratory capabilities,

leading to their retention within the vascular system. Consequently,

this promotes excessive vascular inflammation through the

secretion of cytokines, reactive oxygen species, and neutrophil

extracellular traps (22). As the first responders of the innate

immune defense against infection, neutrophils utilize traditional

mechanisms such as phagocytosis alongside the release of

inflammatory cytokines and ROS. In addition to these

mechanisms, activated neutrophils release web-like structures

comprising decondensed DNA, histones, myeloperoxidase, and

other granular contents, known as neutrophil extracellular traps

(NETs), which effectively ensnare bacteria within the bloodstream

(23). Although the prevailing response of immune cells in sepsis is

to undergo apoptosis, thus promoting an immunosuppressive

environment, neutrophils uniquely exhibit delayed apoptosis,

further perpetuating the inflammatory response (24).

Polymorphonuclear neutrophils possess limited mitochondria and

predominantly rely on the comparatively inefficient process of

glycolysis for their energy metabolism, which is responsible for

generating the bulk of ATP needed for neutrophil functionality (25,

26). During phagocytosis, there is an elevated consumption rate of

ATP, and in the context of sepsis, systemic ATP levels can impede

neutrophil activation and chemotaxis by disrupting intrinsic

purinergic signaling pathways (27). Nevertheless, the specific

metabolic traits and immunomodulatory routes of neutrophils

during sepsis remain inadequately explored.

This research revealed that intercellular communication

demonstrates a complex interaction network between neutrophils

and other cell types, potentially underlying the septic process.

Ligand-receptor analyses indicated active crosstalk between

neutrophils and other cell types during sepsis, highlighting

elevated levels of specific proinflammatory mediators in the septic

milieu. Moreover, the exploration of developmental trajectories

suggested neutrophil plasticity in sepsis, with distinct phenotypes

correlating to varying sepsis severity. This plasticity likely

represented an adaptive response to the multifaceted stimuli

encountered during sepsis . Moreover , 29 neutrophi l

differentiation-related genes during sepsis were obtained by

intersecting feature genes from WGCNA and trajectory analysis.

Then we acquired 3 hallmark genes (IGSF6, HIST1H1C, and PIM1)

by machine learning approaches, and the neutrophils-related

riskScore model consisting of 3 genes was constructed. The

immunoglobulin superfamily member IGSF6 was involved in
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immune regulation and has been linked to the immunological

landscape of tumors (28). IGSF6 expression was associated with

the infiltration of CD8+ T cells and CD4+ T cells in tumors,

indicating an active immune response within the tumor

microenvironment (29). Some studies reported the involvement

of IGSF6 in the immunoregulation of atherosclerosis and

inflammatory bowel disease (30, 31). A recent study identified

that IGSF6 regulates ER stress and the inflammatory response in

intestinal macrophages. IGSF6 expression is sustained by

microbiota and significantly upregulated upon bacterial infection

(32). HIST1H1 proteins bind to nucleosomes and facilitate

chromatin compaction 1, although their biological functions are

poorly understood. According to a recent authoritative study,

HIST1H1 was identified as a bona fide tumor suppressor and

show that mutations in H1 drive malignant transformation

primarily through three-dimensional genome reorganization,

which leads to epigenetic reprogramming and derepression of

developmentally silenced genes (33). Moloney murine leukemia

virus-1 (PIM1) functions as a kinase influenced by cytokine

signaling, and its role is particularly pivotal in the context of IFN-

g signaling pathways during infections (34). It appears to act as a

sensor detecting a wide array of pathogens that disrupt IFN-g
signaling. PIM1 has a short lifespan within infected cells. PIM1

appears to play a regulatory role in the immune response by

controlling the parasiticidal function of GBP1. The regulation of

GBP1’s antimicrobial function by PIM1 suggests that this

interaction is a part of an IFNg-induced pathway which provides

post-translational control of innate immune defense (35).

Addi t iona l ly , PIM1 also promotes the surv iva l and

immunosuppressive function of neutrophils during chronic viral

infection, influencing CD8 T cell function and viral control (36).

The neutrophil-related riskScore system reflects vital prognostic

information and predicts patient outcomes informatively in sepsis.

This aligns with studies advocating for personalized medicine

approaches based on immune profiling. Based on the risk scoring,

patients were stratified into high-risk and low-risk groups. GSVA

and GSEA highlighted marked functional disparities between high-

and low-risk sepsis patients. The high-risk group was associated

with enrichment of metabolic pathways and stress responses,

potentially indicative of the metabolic demands of a sustained

inflammatory response. In contrast, the low-risk group

demonstrated enrichment in immune functions, suggesting less

compromised immune responses. Assessment of immune cell

infiltration and immune-modulators unveiled a robust immune

phenotype in low-risk patients, likely contributing to the effective

response against infection. In contrast, high-risk patients exhibited

a subdued immunological profile, which may predispose them to

adverse outcomes. In all, in this study, we identify the high-risk

group as “immune suppression phenotype”, while the low-risk

group is “Immunoactive type”.

Research has established that sepsis-induced immunosuppression

stems from dysfunctions in both innate and adaptive immunity. This

condition is marked by elevated levels of anti-inflammatory

cytokines, the apoptosis of immune cells, T-cell dysfunction, and a

heightened presence of immuno-regulatory cells such as regulatory T
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cells and myeloid-derived suppressor cells (37, 38). Immunological

suppression associated with inflammation is a critical determinant in

the onset of secondary infections and multiple organ dysfunction

syndrome (MODS), which are chief contributors to the adverse

prognoses observed in septic patients (39). The results are

consistent with the conclusions drawn in this study. It was

demonstrated that within the neutrophil-based risk model, patients

classified in the high-risk group exhibited significant

immunosuppression and metabolic dysregulation. This finding

indicates the potential utility of using neutrophil-based metrics as

immunological prognostic markers to aid in risk assessment and to

identify potential therapeutic targets.

The three genes constituting the risk score were further validated,

revealing that their expression levels were significantly higher in the

peripheral blood of sepsis-induced rats compared to the control group.

Additional experimental validation was subsequently performed on

PIM1, the gene with the highest risk coefficient. The inhibition of PIM1

resulted in a significant increase in the inflammatory levels in the

peripheral blood of the septic rats. Moreover, the survival rate of

the septic rats in the PIM1 knockdown group was higher than that

of the septic rats in the control group. These experimental findings

were consistent with the conclusions of our previous bioinformatics

analysis, confirming that PIM1 may be one of the critical genes

involved in the immune suppression observed following the onset of

sepsis. These findings highlight the heterogeneity in immune responses

among sepsis patients and suggest that a personalized medicine

approach, informed by detailed immunophenotyping, could lead to

more tailored and effective treatment strategies. Understanding the role

of specific immune cells and their metabolic pathways in sepsis may

open avenues for the development of immunomodulatory therapies

aimed at restoring immune balance rather than just controlling

the infection.

Throughout the duration of the research, a series of challenges

were encountered, and unexpected discoveries were made: (1)

Inter-individual Variability: considerable variability in immune

responses and metabolic profiles among sepsis patients was

observed. This variability underscores the complexity of sepsis as

a syndrome and indicates the potential necessity for personalized

therapeutic approaches. (2) Unanticipated dynamic changes in

neutrophil subpopulations were revealed by pseudotime analysis.

Certain neutrophil states demonstrated unexpected gene expression

patterns, suggesting novel roles in the immune response to sepsis.

(3) Unexpected interactions between different metabolic pathways,

typically studied in isolation, were identified. This cross-talk implies

more intricate metabolic reprogramming in immune cells during

sepsis than previously recognized.

Several limitations need to be acknowledged in the present

study. First, the sample size of sepsis patients included in the

scRNA-seq was relatively small, potentially impacting the

generalizability of our findings. Future research with larger

cohorts is essential to validate the robustness of the identified

biomarkers and the risk score model across diverse populations.

Second, the current analysis primarily focuses on neutrophils,

which, although critical, represent only a fraction of the complex
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immune response in sepsis. Expanding the scope to include a

broader range of immune cells and their interactions will provide

a more comprehensive understanding of sepsis immunopathology.
Conclusion

A comprehensive analysis has provided insights into the

complex immune cell interactions and functional pathways

associated with metabolic dysregulation in sepsis, with a

particular emphasis on neutrophils. Distinct neutrophil

subpopulations and their dynamic differentiation patterns have

been discovered, contributing to the understanding of immune

response variability in sepsis. Key diagnostic biomarkers, including

PIM1, HIST1H1C, and IGSF6, have been identified and

incorporated into an accurate riskScore model for the prognosis

of sepsis. This model stratifies patients into risk categories and

provides insights into immune dysfunction associated with poor

outcomes. Furthermore, PIM1 has been experimentally validated as

a negative regulator of immune-inflammatory response, indicating

its therapeutic potential. These findings collectively enhance the

understanding of sepsis immunopathology and offer promising

directions for prognosis and treatment interventions.
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