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Objective: Rheumatoid arthritis (RA) is a systemic disease that attacks the joints

and causes a heavy economic burden on humans worldwide. T cells regulate RA

progression and are considered crucial targets for therapy. Therefore, we aimed

to integrate multiple datasets to explore the mechanisms of RA. Moreover, we

established a T cell-related diagnostic model to provide a new method for

RA immunotherapy.

Methods: scRNA-seq and bulk-seq datasets for RA were obtained from the Gene

Expression Omnibus (GEO) database. Various methods were used to analyze and

characterize the T cell heterogeneity of RA. Using Mendelian randomization (MR)

and expression quantitative trait loci (eQTL), we screened for potential pathogenic

T cell marker genes in RA. Subsequently, we selected an optimal machine learning

approach by comparing the nine types of machine learning in predicting RA to

identify T cell-related diagnostic features to construct a nomogram model.

Patients with RA were divided into different T cell-related clusters using the

consensus clustering method. Finally, we performed immune cell infiltration

and clinical correlation analyses of T cell-related diagnostic features.

Results: By analyzing the scRNA-seq dataset, we obtained 10,211 cells that were

annotated into 7 different subtypes based on specific marker genes. By

integrating the eQTL from blood and RA GWAS, combined with XGB machine

learning, we identified a total of 8 T cell-related diagnostic features (MIER1,

PPP1CB, ICOS, GADD45A, CD3D, SLFN5, PIP4K2A, and IL6ST). Consensus

clustering analysis showed that RA could be classified into two different T-cell

patterns (Cluster 1 and Cluster 2), with Cluster 2 having a higher T-cell score than

Cluster 1. The two clusters involved different pathways and had different immune

cell infiltration states. There was no difference in age or sex between the two
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different T cell patterns. In addition, ICOS and IL6ST were negatively correlated

with age in RA patients.

Conclusion: Our findings elucidate the heterogeneity of T cells in RA and the

communication role of these cells in an RA immune microenvironment. The

construction of T cell-related diagnostic models provides a resource for guiding

RA immunotherapeutic strategies.
KEYWORDS
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1 Introduction

Rheumatoid arthritis (RA) is a commonly occurring

autoimmune disease that affects 0.5–1% of the world’s population

(1). The mechanism of RA has not yet been elucidated, and an

effective cure is still lacking. It’s reported that chronic and persistent

synovial inflammation is a typical pathological feature of RA. Many

abnormal immune cells continue to invade the affected joints of RA

patients, forming an extremely complex regulatory network.

Abnormal regulation promotes pannus formation and injury to

the bone and cartilage (2). T cells can be recruited through blood

and lymphatic circulation into the synovial membrane of a joint and

interact with dendritic cells, macrophages and B cells, which is one

of the most important factors in triggering RA (3, 4). CD4+ T cells

are the primary inflammatory cells that invade synovial tissue and

participate in the pathogenesis of RA (5). Ectopic germinal centers

in the synovium, which are considered to be a characteristic of RA,

require CD8+ T cells for their development (6). In addition, CD8+

T cell activation is promoted by antigens presented by other cells,

which can exacerbate inflammation in RA (7). However, due to

methodological limitations, the potential mechanisms by which T

cells influence RA and their potential applications for RA diagnosis

and treatment have not been extensively studied.

Expression quantitative trait loci (eQTL) is a region of

chromosomes that explains how genetic variation is correlated with

expression levels of specific genes (8). It’s reported that genetic factors

are crucial in RA. Genome-wide association studies (GWAS) have

successfully identified several sites that are susceptible to RA (9). With

the advent of Mendelian randomization, researchers have been able to

more scientifically identify disease risk genes by integrating eQTL and

GWAS, which can help reveal biological pathways from genetic

determinants to transcriptome signatures and phenotypic outcomes.

Single-cell RNA sequencing (scRNA-seq), which can explore gene

expression profiles at single-cell resolution, is becoming a powerful

tool used in human disease research. This method can reveal the

heterogeneity of cells, the development process, and the relationship

between cells, which is helpful to further understand the pathogenesis

of RA (10). Although bulk RNA-seq has limitations with capturing
02
cell-cell interactions, they complement results obtained from the

scRNA-seq analysis, further clarifying gene expression profiles

associated with RA. Therefore, we aimed to identify T cell-related

diagnostic features and clusters in RA by integrating multiple datasets

(eQTL, GWAS, scRNA-seq, and bulk RNA-seq) combined machine

learning. The resulting T cell-related diagnostic features were used to

construct a valuable RA diagnostic model that supports accurate

diagnoses and personalized treatment strategies for RA (Figure 1).
2 Materials and methods

2.1 Data preparation

EQTL data were collected from the IEU OpenGWAS project

(https://gwas.mrcieu.ac.uk/) which contained 19942 genes

(Supplementary File 1). RA GWAS data from FinnGen R10

(https://www.finngen.fi/fi) included 13,261 RA patients and

262,844 healthy individuals. All data were from European-

ancestry individuals.

scRNA-seq and microarray datasets were obtained from the

Gene Expression Omnibus (GEO) database. The scRNA-seq

dataset GSE159117 included data from peripheral blood

mononuclear cells (PBMCs) from a patient with RA. The

microarray datasets included dataset files GSE93272 (platform:

GPL570), GSE89408 (platform: GPL11154) and GSE77298

(platform GPL570), which included data for whole blood from

232 RA patients and 43 healthy individuals, synovial tissues from

152 RA patients and 28 healthy individuals and synovial tissues

from 16 RA patients and 7 healthy individuals respectively.

GSE93272 was used as the training dataset, GSE89408 and

GSE77298 were used as validation datasets.
2.2 Mendelian randomization analysis

In this study, eQTL data were used as the exposure and RA

GWAS data as the outcome to identify genes associated with RA in
frontiersin.org
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R software (version 4.3.2). We selected SNPs significantly correlated

with RA (P <5×10-8). The clumping process (involving an r2<0.01

and a clumping distance of 10,000 kb) was conducted to assess the

linkage disequilibrium (LD) between the included SNPs (11). Beta

coefficients per allele, p-values and standard errors for the each

identified SNP were extracted from the RA GWAS dataset.

Instrumental variables (IVs) significantly associated with the

outcome phenotype were removed (P <5×10-8). We then

harmonized the SNP instruments by calibrating the directions of

the alleles for both Exposure-SNPs and Outcome-SNPs and

removing SNPs with ambiguous palindromic sequences. An F

statistic (F = beta2exposure/SE
2
exposure) greater than ten is used

as a threshold to reduce bias caused by weak IVs (12). The

“TwoSampleMR” package (version 0.5.10) and Inverse-variance

weighted (IVW) method were used for two-sample MR analysis.

Horizontal pleiotropy was examined by whether the MR-Egger

intercept deviated significantly from 0. Cochran’s Q statistic and

corresponding p-values were calculated to determine heterogeneity,

a P >0.05 indicated no significant heterogeneity. Finally, the

reliability of the results and potential impact of SNPs were

evaluated via Leave-one-SNP-out analysis.
2.3 scRNA-seq data processing and
identification of cell types

This study analyzed PBMCs from one patient with RA. The

Seurat package’s CreateSeuratObject function was used to convert

PBMCs into a Seurat object in R software, and then quality control

was performed on each cell according to gene number 200–6000,

UMI count >1000, and mitochondrial gene percentage <10%.

Subsequently, the data was normalized and 2000 highly variable

genes were screened for further analysis. Principal component
Frontiers in Immunology 03
analysis (PCA) was performed to reduce the dimensions, and the

top 30 principal components were selected for further analysis with

the resolution set to 1.0. PBMC clustering was conducted using

“FindNeighbors” and “FindClusters”. Furthermore, data visualization

was using uniformmanifold approximation and projection (UMAP).

Based on a threshold of P < 0.05, log2FC > 0.25, “FindAllMarkers”

was used to identify differentially expressed genes in each cluster.

Based on the unique marker genes in the study, we analyzed the

expression of these marker genes in different clusters and annotated

the cells (10). T cells were extracted for downstream analysis.
2.4 Cell-cell communication analysis

The CellChat package was used to explore the communication

mode between different immune cells in the immune

microenvironment of RA (13). Specific ligand and receptor

interactions and important signaling pathways between T cells

and other immune cells were also identified.
2.5 Analysis of pseudo-time trajectories
gene ontology enrichment

To further study how T cells affect the RA microenvironment,

we analyzed T cell developmental trajectories using the monocle

package (14). The function “reduceDimension” was used

to reduce dimensions. We also used the “plot_cell_trajectory”,

“plot_pseudotime_heatmap “ and “plot_genes_branched_

pseudotime” functions for identifying cell differentiation

trajectories, visualizing differential genes and displaying gene

changes over time. Subsequently, we performed Gene ontology

(GO) enrichment analysis for the differential genes of T cell
FIGURE 1

The workflow of this study.
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populations in different differentiation states by DAVID, and

retained the results belonging to biological processes (BP).
2.6 Identification of T cell-related
diagnostic features

We intersected RA-related genes obtained by MR with T cell

marker genes. We randomly used 70% of the samples of GSE93272

dataset as the training group to build the classification model, and

the remaining 30% of the samples were used as the validation group

to validate the model. Various algorithms were used for model

construction, including the Least absolute shrinkage and selection

operator (LASSO), Extreme gradient boosting (XGB), Gradient

boosting machine (GBM), Generalized linear model (GLM),

Neural network (NNET), Support vector machine (SVM), K-

nearest neighbors (KNN), Random forest (RF) and Decision tree

(DT) were implemented in R (version 3.6.1) using the “caret”,

“DALEX”, “ggplot2”, “randomForest”, “kernlab” and “xgboost”

packages in the training group. The models were used to analyze

the importance of intersection genes and output the top 10 key

diagnostic genes based on the importance score obtained from each

algorithm. The receiver operating characteristic (ROC) curve was

generated using the “pROC” package. Based on the residuals box

plot, using the residuals reverse cumulative distribution and ROC

curve, we selected the optimal model validated by the ROC of

validation datasets (GSE89408 and GSE77298) and T cell-related

features. Subsequently, Wilcoxon tests were used to screen for T

cell-related diagnostic features with P < 0.05 between RA and

healthy individuals in GSE93272.
2.7 Construction and verification of a
nomogram model

Based on T cell-related diagnostic features, the “rms” package

was used to construct a nomogram model for predicting RA risk.

“Calibration curve”, “decision curve analysis (DCA)” and “clinical

impact curve” were used to evaluate and verify the accuracy and

efficiency of this model. The external datasets, GSE89408 and

GSE77298, were used for validation.
2.8 Consensus clustering analysis and PCA

Considering the differences in the expression of T cell-related

diagnostic features, we used the “ConsensusClusterPlus” package to

conduct consensus cluster analysis (15) on RA patients in the GSE93272

dataset to identify distinct T cell patterns. Additionally, RA patients

from the GSE89408 and GSE77298 datasets served as validation for the

clustering results. The consensus clustering parameters were set as

follows: reps = 50, pItem = 0.8, pFeature = 1, clusterAlg = “km” and

distance = “euclidean”. We evaluated the cumulative distribution

function (CDF) curve for 9 subtypes to determine the optimal cluster

number. To assess the reliability of the clustering, PCA scatter plots

were generated using the clustering result data.
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2.9 Gene set variation analysis
(GSVA) analysis

GSVA is used to assess changes in the activity of pathways and

functions in which gene sets are located. We conducted GSVA

analysis of different T cell clusters in RA to identify differentially

expressed pathways through GSVA package, where. The

“c2.cp.kegg.symbols” file was obtained from the MSigDB P < 0.05

suggested that the pathways were significantly different.
2.10 Analysis of immune cell infiltration

Single-sample gene set enrichment analysis (ssGSEA) was

performed using the GSEABase and GSVA software packages

based on markers for 22 immune cells. This analysis involved

ranking gene expression levels within the samples and summing

these levels to quantify the abundance of immune cells in each

sample, thereby generating a file of immune cell infiltration results.

Subsequently, the clustering result and immune cell infiltration result

files were analyzed using the “limma”, “reshape2” and “ggpub”

packages to construct boxplots. Additionally, the correlation

between the expression of T cell-related diagnostic features and

immune cells was determined using correlation test. The T cell scores

of different T cell clusters were calculated using the PCA algorithm to

evaluate the relationship between the two clusters.
2.11 Clinical correlation analysis

To further explore the clinical correlation of the eight T cell-

related diagnostic features, the age and sex characteristics of all

samples in GSE93272 were extracted. Wilcoxon test was used to

determine the sex and age distribution of T cell clusters in RA. Age-

related correlations between T cell-related diagnostic features and

RA were analyzed using Spearman.
2.12 Statistical analysis

All parametric analyses were performed using two-tailed tests.

The Wilcoxon test was used to compare the differences between the

two independent groups of samples, linear regression analyses were

used to explore correlations between T cell-related diagnostic

features and immune cells. Calculation and visualization of the

area under the curve (AUC) using the pROC package. P < 0.05 is the

threshold for significance.
3 Results

3.1 Identification of cell types in RA

The RA dataset contained 10,211 cells divided into 18 clusters

(Figure 2A), which annotated as follows: T cells characterized by high

expression of CD3D and CD3E (clusters 0,1,2,3,9,10,11 and12);
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monocytes with high expression of STXBP2 and FCN1 (cluster 4 and

7), NK cells with GNLY and NKG7 as marker genes (clusters

5and15); B cells marked by MS4A1 and CD79B (clusters

6,8and13); plasmablasts characterized by high expression of IGJ

and CD27 (cluster 14); dendritic cells (DCs) (cluster 16) and pDCs

(cluster 17) marked by CD1C, ENHO and PTPRA, MAP1A,

respectively (Figure 2B). Figure 2C shows that T cells were

significantly more abundant in the RA immune microenvironment

compared to other immune cell types. Therefore, we therefore

investigated the role of T cells in RA. Figure 2D displays the

significant marker genes for each cell type in the PBMCs.
3.2 Analysis of cell-cell communication in
the RA microenvironment

The relationship between T cells and other immune cells in

the RA microenvironment was analyzed using the cellchat

package, revealing that T cells communicated with monocytes,

NK cells, B cells, plasmablasts, DCs, and pDCs (Figures 3A, B).

The MIF signaling pathway known to regulate immune

responses and inflammation, plays a significant role in the RA

microenvironment potentially impacting immune regulation

and disease progression. Figures 3C–E illustrate that T cells,

acting as signal transmitters, mainly interact with other immune

cells through the MIF signaling pathway and its associated
Frontiers in Immunology 05
ligand-receptor pairs (MIF-CD74 + CXCR4 and MIF-CD74 +

CD44). Notably, the CD74-CXCR4 pair contributes the most to

this pathway, suggesting it may be crucial for promoting the

crosstalk between T cells and other immune cells in the RA

microenvironment. Furthermore, the MIF-induced ligand CD74

was highly expressed across these immune cell populations

(Figure 3F) and is likely closely linked to the developmental

differentiation of T cells, meriting further investigation.

Collectively, these findings underscore that T cells influence

other immune cells in the RA microenvironment through a

cytokine-mediated paracrine mechanism (16–19).
3.3 Trajectory of T cells

Based on the marker genes of T cell subtypes (20), we divided T

cells into the following clusters: CD8_Naive (LEF1, CCR7, SELL,

TGF7), CD8_TE (GZMH, PRF1, GNLY, NKG7,CD8A),

CD4_Naive (LEF1, CCR7, SELL, TGF7), CD8_CM (GZMK,

CCR7, TCF7,SEEL), CD8_EM (GZMK, NKG7), CD4_TE

(GZMH, PRF1, GNLY, NKG7), and MAIT (SLC4A10, ZBTB16)

(Figure 4A). Different T cell subtypes express different marker genes

(Figure 4B). We divided the seven T cell subtypes into three

differentiated states by pseudo-time trajectory analysis. The

number of T cell subtypes varied in different states. CD8_Naive

and CD4_Naive cells were mainly enriched in the early
A B

D

C

FIGURE 2

Annotation of clusters and subpopulations of cells in the RA scRNA-Seq data. (A) UMAP of 18 cell clusters. (B) 10,211 cells were labeled by cell type
in the UMAP analysis. (C) The proportions of different cell types. (D) Marker genes for T cells, B cells, monocytes, pDCs, NK cells, DCs, and
plasmablasts are presented in UMAP results.
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developmental stage of T cells and mainly differentiated into the

first cell state; CD8_EM, MAIT, and CD8_TE cells were in the

second cell state; and CD8_CM and CD4_TE cells were in the third

cell state (Figure 4C). Gene changes as T cells developed were

divided into three groups associated with cytoplasmic translation,

immune response, and positive regulation of T cell-mediated

cytotoxicity, respectively (Figure 4E). Figure 4D shows that the

distribution of the MIF-induced ligand CD74 gradually increased

with changes over the differentiation period, which indicates that in

the RA immune microenvironment, the role of T cells on other

immune cells gradually increases as T cells develop.
3.4 Identification of risk genes associated
with RA

We downloaded eQTL data for 19,942 genes from blood

samples to identify RA-related eQTLs. After harmonizing the

SNPs from each eQTLs with the RA GWAS datasets, we

identified 24,736 genome-wide SNPs. These SNPs had an F

statistic that exceeded 10, indicating a low risk of weak-

instrument bias. Following clumping, 5428 genes remained for

the MR analysis. Using the IVW method, we identified 309

genetically significant genes associated with RA. Specifically, the

increased expression of 153 genes was significantly associated with

an increased risk of RA, whereas the increased expression of 156

genes was significantly associated with a decreased risk of RA.

(Figure 5A, Supplementary File 2).
Frontiers in Immunology 06
3.5 Screening of T cell-related diagnostic
features and construction of
nomogram model

Based on the single-cell transcriptome analysis of RA, 1639 T

cell marker genes were selected for intersection with 309 genes

causally associated with RA (Figure 5B). We obtained a total of 26

genes, which were used to construct nine machine-learning models.

The XGB machine learning model displayed the highest AUC

(Figure 5C) and exhibited relatively low residuals (Supplementary

Figures S1A, B). Based on root mean square error (RMSE), we

obtained the top 10 significant genes for each machine learning

model, and ranked them by importance (Supplementary Figure

S1D). We selected the top ten genes (MIER1, PPP1CB, SLFN5,

PRRT3, ICOS, ANXA2R, GADD45A, PIP4K2A, IL6ST, and CD3D)

from the XGB for further analysis. The expression of these 10 genes

was analyzed in whole blood samples from healthy individuals and

RA patients using the Wilcoxon test in the GSE93272. Compared to

healthy individuals, the expression of MIER1, PPP1CB, ICOS,

GADD45A, and CD3D was up-regulated in RA, while the

expression of SLFN5, PIP4K2A, and IL6ST was down-regulated

(Figure 5D, Supplementary Figure S1C). These genes were defined

as T cell-related diagnostic features.

To estimate the risk of RA in 232 patients, we constructed a

nomogrammodel by eight T cell-related diagnostic features (MIER1,

PPP1CB, ICOS, GADD45A, CD3D, SLFN5, PIP4K2A, and IL6ST)

(Figure 5E). The calibration curve showed that the nomogrammodel

accurately predicted RA (Supplementary Figure S1E). DCA results
A B

D E
F

C

FIGURE 3

Analysis of cell-cell communication in the RA immune microenvironment. (A, B) The number and strength of interactions in cellular communication
networks. (C) Bubble plots of ligand-receptor pairs mediating T cell interactions with other cells. (D) Ranking of the importance of each ligand-
receptor contribution to the MIF signaling pathway. (E) The communication pattern of MIF signaling pathway in different cell clusters. (F) Expression
levels of receptor-ligand pairs in the MIF signaling pathway.
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showed that the nomogram model had clinical application

significance (Supplementary Figure S1F). Meanwhile, the

predictive power of the model was confirmed by the clinical

impact curves (Supplementary Figure S1G). We validated

nomogram model with external data and obtained AUCs of 0.958

and 0.875 for GSE89408 and GSE77298, respectively (Figure 5F),

which further demonstrated that our diagnostic model was effective

in distinguishing between RA and healthy individuals.
3.6 Identification of T cell patterning and
analysis of immune cell infiltration

To investigate the different patterns associated with T cells in

RA, we conducted a consensus cluster analysis of patients with RA

based on eight T cell-related diagnostic features. We divided RA

into two distinct T cell clusters (Cluster 1 and Cluster 2) (Figure 6A,
Frontiers in Immunology 07
Supplementary Figure S2A). PCA results showed a clear distinction

between the two T cell patterns (Figure 6B). As the result shown,

Cluster 2 had higher T cell scores than Cluster 1 (Figure 6C).

Additionally, we used external datasets GSE89408 and GSE77298

for validation, confirming that the clustering and T cell pattern

score results coincided with those training set (Supplementary

Figures S2B, C). Subsequently, we analyzed the differential

expression of eight T cell-related diagnostic features in the two T

cell patterns. Compared with Cluster 1, the expression of MIER1,

PPP1CB, SLFN5, ICOS, IL6ST, and CD3D was up-regulated in

Cluster 2, whereas that of GADD45A and PIP4K2A were

downregulated (Figure 6D, Supplementary Figure S2D). The

results of immune cell infiltration showed that activated DCs,

eosinophils, MDSC, neutrophils, mast cells, immature dendritic

cells, macrophages, monocytes, natural killer T cells, natural killer

cells, pDCs, and T follicular helper cells were increased in Cluster 1.

In Cluster 2, gamma delta T cells, activated CD4+ T cells, activated
A B D

E

C

FIGURE 4

Pseudo-time analysis of T cells in RA PBMCs. (A)UMAP of seven T cell subtypes. (B) Bubble plots show the expression of marker genes in the 7 T
cells subtypes. (C) Trajectory plots showing the development of T cells. (D) Dynamic expression of ligand CD74 in T cells along pseudo time.
(E) Heat map showing the expression of dynamic genes in pseudo time and BP enrichment analysis of different states.
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CD8+ T cells, activated B cells, immature B cells, and type 2 T

helper cells were relatively greater in Cluster 1 (Figure 6E).

Supplementary Figure S2E revealed that Cluster 2 showed high

expression in both activated CD4+ T cells and CD8+ T cells,

indicating the significant role of T cells in RA as indicated in

previous analyses. The correlation between 8 T cell-related

diagnostic features and immune cells was determined, suggesting

that T cell-induced immune dysfunction in RA may be mainly

related to CD3D, ICOS, and PPP1CB (Figure 6F). The GSVA

results showed that Cluster 2 was mainly related to cancers such

as non-small cell lung cancer, pathways in cancer, and pancreatic

cancer. While Cluster 1 was enriched in signaling pathways such as

those for ribosome, RNA degradation, and basal transcription

factor (Figure 6G).
3.7 Clinical correlation analysis

RA can develop at any age, with the peak incidence occurring

between 30 and 60 years. The disease predominantly affects females

more than males. We conducted clinical correlation analyses to

determine if there were age and gender differences among RA

patients with different T cell patterns and to assess if there were any

significant correlations between T cell-related diagnostic features

and the patients’ ages. The results indicated no significant

differences in age distribution between the two different T-cell

patterns, nor in the gender proportions (Supplementary Figures

S3A-C). ICOS and IL6ST were found to be negatively correlated

with the age of RA patients, while other T cell-related diagnostic

features showed no significant age correlations (Figure 7).

Therefore, we speculate that age and gender may not be

considered when distinguishing RA patients by T cell patterns,
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though the variations in ICOS and IL6ST expression warrant

further investigation.
4 Discussion

T cells are one of the important participants in the regulatory

network of the immune microenvironment of RA. A variety of

cytokines released by different T cell subsets are involved in the

inflammatory microenvironment of RA (21).For example, Th17

cells can promote macrophages, synoviocytes and other cells to

secrete a large number of inflammatory factors such as IL-1b and

IL-6 by producing IL-17 and also contribute to the production of

CXCL1, CXCL2, CXCL8 and other chemokines (4, 22).

Overactivation of T cells is a factor that triggers maintains RA

(1). Therefore, understanding the molecular mechanisms associated

with T cells from multiple aspects will help to discover more

immunotherapy methods for RA. In recent years, GWAS of RA

have shown multiple genomic regions significantly associated with

the disease (23, 24). However, the molecular mechanisms

underlying risk associated with most sites remain to be explored.

At the same time, the basic characteristics of immune cells in RA

patients have been fully studied by means of scRNA-seq analysis,

and the classification of T cell subsets in RA patients and the

regulatory network of interactions between immune cells and T

cells have gradually become clear (25). In this study,

we systematically elucidated the influence of T cells on

the RA microenvironment by constructing a T cell-associated

diagnostic model.

This study analyzed the cellular heterogeneity of PBMCs in RA

patients and identified seven immune cell types. The results of our

cell-cell communication analyses showed that T cells
A B

D E

F

C

FIGURE 5

Identification of T cell-related diagnostic features and construction and verification of nomogram models. (A) Heatmap showing Beta and IVW-P
values of five MR methods for 309 genes. (B) Venn diagram of T cell-related genes and RA causal genes. (C) ROC curves for nine machine learning
models. (D) Box plot of differential expression of T cell-related genes in healthy individuals and patients with RA.(E) A nomogram model describing T
cell-related diagnostic features.(F) Validation of the diagnostic model based on eight T cell-related diagnostic features.*P < 0.05, **P < 0.01,
***P < 0.001.
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communicated directly with immune cells in the RA

microenvironment via paracrine signaling. T cells communicate

with other cells primarily through the MIF signaling pathway.

Ligand receptors for CD74-CXCR4 play a major role in cell-cell

communication networks. MIF, a multi-acting inflammatory

cytokine, is closely related to the pathological mechanism of RA

and can induce the secretion of inflammatory cytokines and

molecules in degraded tissues (26, 27). MIF can affect the

microenvironment in autoimmune diseases through autocrine

and paracrine pathways through receptors such as CD74 and

CXCR4 (28, 29). Studies have shown that the shedding of CD74

extracellular domain may lead to a marked increase in serum CD74

levels in RA patients (29).Therefore, we hypothesized that the

activation of MIF signaling pathway (MIF-CD74 + CXCR4) in
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the microenvironment of RA patients affects the communication

between T cells and other immune cells, and that the high

expression of CD74 in the cell population warrants further

investigation as a key mediator of cell signaling. This intercellular

communication has the potential to influence the immune

landscape of RA. By interacting with other immune cells, T cells

become more fully involved in immune system activation and

disease progression.

We divided the T cells into seven subtypes: CD8_Naive,

CD8_TE, CD8_CM, CD8_EM, CD4_Naive, CD4_TE, and MAIT.

In the analysis of pseudo-time trajectories of T cells, dynamic

expression of the MIF-induced ligand CD74 was positively

correlated with differentiation state, suggesting that as T cells

differentiate, their influence on immune cells in the RA
A B

D E

F G

C

FIGURE 6

Identification, immune cell infiltration analysis, and GSVA of T cell patterns. (A) Consensus clustering matrix of eight T cell-related diagnostic
features. (B) PCA showed a valid distinction between the two T cell patterns. (C) Differences in T cell scores between Cluster 1 and Cluster 2.
(D) Differential expression of eight T cell-related diagnostic features according to T cell pattern. (E) The box plot shows two T cell patterns of
immune cell infiltration. (F) Correlation heat map of immune cells with eight T cell-related diagnostic features. (G) Differential pathways in 2 T cell
clusters *P < 0.05, **P < 0.01, ***P < 0.001.
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microenvironment is progressively increased through a paracrine

mechanism. Given the critical role of T cells in inducing the RA

immune response, they are recruited to the synovial tissue of the

joint via the blood stream and interact with antigen-presenting cells.

By analyzing the communication between T cells and other immune

cells in peripheral blood, we explored T cells’ potential role in

disrupting the immune microenvironment through the MIF

pathway and paracrine mechanisms. Subsequently, pseudo-time

trajectories analysis showed the differentiation process of T cells

and the functional enrichment changes at different developmental

stages, further highlighting the importance of T cells in the

pathogenesis of RA. Understanding these complex interactions

provides new insights for developing targeted immunotherapeutic

strategies. Additionally, this analysis also provides robust data

support for constructing RA-related diagnostic and prognostic

models based on T cells in this study.

To further improve the understanding of the effect of T cells on

the diagnosis and prognosis of RA, we obtained eight T cell-related

diagnostic features by combining machine learning and MR (ICOS,

IL6ST and PPP1CB were risk factors for RA, while GADD45A,

CD3D, SLFN5, PIP4K2A and MIER1were protective factors for

RA), which were constructed a T cell-related diagnostic model. The

external datasets verified the efficiency of the diagnostic model,

which was effective in distinguishing RA patients between healthy

individual. Inducible T cell co-stimulator (ICOS) is mainly present

on the surface of activated T cells and can enhance the

differentiation and function of inflammatory T cells (30, 31).

Studies have found high levels of ICOS+ T cells and ICOS ligand

(ICOSL) in synovial fluid of RA patients joints (32). Vincent et al.

(33) found that ICOS is a key co-stimulatory pathway controlling

the induction and maintenance of colliology-induced arthritis

(CIA), and there is a potential overlapping relationship between
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ICOS signal transduction, T cell glycolysis, and joint inflammation.

We speculate that ICOS at these overlapping points could serve as a

therapeutic target for RA. Growth arrest and DNA damage protein

45A (GADD45A) could promote the activation of naïve T

lymphocytes into Th1 cells in adaptive immune responses by

inducing the activation of p38 MAPK in DCs (34). Li et al. (35)

studied polymorphisms in the GADD45A promoter region in RA

patients and found that the severity of RA could be explained in part

by the polymorphic expression of GADD45A.CD3D is involved in

the formation of T cell receptor/CD3 complex, as well as T cell

development and signal transduction. And the loss of CD3D is

associated with T-cell development and signal transduction (36).

Additionally, CD3D has been confirmed to be involved in abnormal

activation of immune-related pathways in T lymphocytes in

epigenetic and genomic analyses (37). These studies suggest that

CD3D may be associated with overactivation of T cells in the RA

microenvironment. Schlafen family member 5 (SLFN5) was found

to have high basal expression levels in resting T cells and was

downregulated after T cell activation, suggesting that SLFN5 may be

involved in the maintenance of T cell quiescence (38). At the same

time, our bulk data showed low expression of SLFN5 in patients

with RA, suggesting that SLFN5 may be involved in RA progression

by regulating T cell activation. Alessandro et al. (39) proposed that

phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks)

specifically control the growth and activity of regulatory T cells

(Tregs) isolated from human blood. Inhibition of PIP4K (PIP4K2B

and PIP4K2C) could reduce signaling of inflammatory pathways

such as PI3K and MAPK in Tregs, thereby reprogramming the

identity of human Tregs while increasing conventional T-cell

signaling and helper T-cell differentiation, potentially enhancing

overall immune activity. Our results indicate that PIP4K2A is

expressed at low levels in the PBMCs of patients with RA.
FIGURE 7

Correlation analysis of eight T cell-related diagnostic features with age of patients with RA.
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Whether PIP4K2A also affects the microenvironment of RA by

participating in the immune function of Tregs needs to be further

explored. The interleukin 6 cytokine family signal transducer

(IL6ST) is a signal transduction of activating inflammation-

related signaling pathways such as JAK/STAT and MAPK/PI3K/

ERK, and plays a key role in immune function (40). At present,

IL6ST has been confirmed to be associated with the risk of

autoantibody positive RA, and is a risk allele for RA (41).

Mesoderm induction early response 1 (MIER1) is a transcription

regulator activated by fibroblast growth factors (42). Mier1-a, a
novel estrogen receptor-binding protein, has been studied mainly in

invasive breast cancer (43) and has also been identified as a key

regulator of liver regeneration (44). PP1-beta-catalytic subunit

(PPP1CB), as one of the three catalytic subunits of protein

phosphatase 1 (PP1), has been reported to be responsible for

transient Ca2+ elevation and enhanced cell shortening in

cardiomyocytes. It can also regulate adipocyte differentiation by

targeting the transcription factor C/EBPd (45, 46). However,

MIER1 and PPP1CB, as the T cell-related diagnostic genes

screened in this study, have not been reported to be related to RA

so far, which needs to be further explored. In summary, MIER1,

PPP1CB, ICOS, GADD45A, CD3D, SLFN5, PIP4K2A, and IL6ST

are noteworthy T cell diagnostic model indicators of RA.

We divided the patients with RA into two groups of T cell

patterns, Cluster 1 and Cluster 2, based on eight T cell-related

diagnostic features. Immune infiltration analysis showed that the

proportion of activated CD4+/CD8+T cells and T cell score in

Cluster2 were higher than those in Cluster1. T cells are one of the

key target cells for tumor immunotherapy. The composition and

status of T cells can be affected by the microenvironment of

different types of tumors (47). GSVA results showed that Cluster

2 was mainly related to cancers such as non-small cell lung cancer,

pathways in cancer, and pancreatic cancer, indicating that the

pathogenesis of Cluster 2 patients may be related to abnormal

signaling of T cells in the tumor microenvironment. Clinical

correlation analysis revealed no significant correlation between

age and sex distribution in the two T cell models. However, ICOS

and IL6ST are negatively correlated with the age of RA patients,

suggesting that these two genes may be involved in the regulation of

the pathological process of age-related RA.

Zhang et al. (48) constructed a single-cell atlas of RA synovial

tissue comprising over 314,000 cells, providing new insights into

RA pathology and heterogeneity. In contrast, we performed cell-cell

communication and pseudo-time trajectories analyses on T cells in

peripheral blood monocytes of RA patients for the first time,

offering a unique perspective on the molecular characteristics of

immune cells in RA via peripheral blood, a critical component of

the RA immune system. Additionally, by unprecedentedly

integrating multiple datasets, we identified convincing RA

diagnostic genes and further constructed a diagnostic model of

RA T cells building on previous exploration of RA diagnostic

models. Although the T cell-related diagnostic model developed

in this study is helpful for identifying RA patients and predicting

prognosis, it still has some limitations. Firstly, the diagnostic model

was built based on the publicly available dataset, and the sample

types of RA patients were not rich enough, so more samples of
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different types are needed to verify the expression levels of T cell

diagnostic genes. Secondly, a large number of clinical trials are

needed to verify the accuracy of the prediction model. In addition,

there is a lack of molecular biology experiments to verify the

mechanism of T cell diagnostic genes in RA. In addition, the

GWAS and eQTL data in this study were obtained from

populations of European origin, and the applicability to

populations of other ethnicities needs to be further investigated.

And the results were not validated at the protein level.

In summary, this study integrated eQTL, GWAS, scRNA-seq,

and bulk RNA-seq multiple datasets to explore the T cell profile and

microenvironment in RA and identify T cell-related diagnostic

features. In this study, the abnormal characteristics of T cells in

RA patients were analyzed in terms of intercellular communication,

cell developmental trajectories, and functional enrichment. In

addition, our T cell-related diagnostic model showed good

diagnostic performance. Our findings deepen our understanding

of the regulatory network of immune cells in the RA immune

microenvironment and explore the potential role of T cells in the

disease progression. We hope that this comprehensive evaluation of

models will help advance the development of precision

immunotherapies for RA.
Data availability statement

The datasets presented in this study can be found in online

repository. The names of the repository and accession numbers can

be found in the article/Supplementary Material.
Author contributions

QD: Writing – original draft. QX: Writing – original draft. YH:

Writing – original draft. HZ: Writing – original draft. XH:

Writing – original draft. CN: Writing – original draft.

ZT: Writing – original draft. HL: Writing – original draft. PZ:

Funding acquisition, Writing – review & editing. JL: Data curation,

Formal analysis, Funding acquisition, Visualization, Writing –

review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the National Natural Science Foundation of

China (82160913 to PZ and 82305272 to JL), Middle-aged and

Young Teachers’ Basic Ability Promotion Project of Guangxi

(2022KY0282 to JL).
Acknowledgments

The authors would like to thank the investigators who provided

the raw data on open scRNA-seq.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1399856
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ding et al. 10.3389/fimmu.2024.1399856
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1399856/

full#supplementary-material
Frontiers in Immunology 12
SUPPLEMENTARY FIGURE 1

Construction and verification of nomogram model. (A) Reverse cumulative
distribution of residuals of ninemachine learningmodels. (B) Residual boxplot
of nine machine learning models for diagnostic gene selection. (C) T cell-

related diagnostic features and expression heat maps in healthy individuals
and patients with RA. (D) Features important for nine machine learning

models. (E) The calibration curve of the nomogram model. (F) DCA curves.
(G) Evaluation of the clinical impact of nomogram modelling using clinical

impact curves. *P < 0.05, **P < 0.01, ***P < 0.001.
SUPPLEMENTARY FIGURE 2

Classification of T cells and analysis of immune cell infi ltration.

(A) Representative cumulative distribution function curve. (B) Consensus
clustering matrix for the external validation dataset. (C) Differences in T cell

scores between Cluster 1 and Cluster 2. (D) Differential expression heatmaps

of eight T-cell related diagnostic features according to T-cell patterns.
(E) Boxplots of immune infiltration analysis for the two T cell patterns. *P <

0.05, **P < 0.01, ***P < 0.001.
SUPPLEMENTARY FIGURE 3

Correlation analysis of two T cell patterns and eight T cell-related diagnostic

features with age and sex. (A) Differences in age distribution between the two
T cell clusters. (B, C) Differences in sex distribution between the two T

cell clusters.
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