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Selectins are a group of Ca2+-dependent, transmembrane type I glycoproteins

which attract cell adhesion and migration. E-selectin is exclusively expressed in

endothelial cells, and its expression is strongly enhanced upon activation by pro-

inflammatory cytokines. The interaction of E-selectin with its ligands on

circulating leukocytes captures and slows them down, further facilitating

integrin activation, firm adhesion to endothelial cells and transmigration to

tissues. Oxidative stress induces endothelial cell injury, leading to aberrant

expression of E-selectin. In addition, the elevated level of E-selectin is

positively related to high risk of inflammation. Dysregulation of E-selectin has

been found in several pathological conditions including acute kidney injury (AKI),

pulmonary diseases, hepatic pathology, Venous thromboembolism (VTE).

Deletion of the E-selectin gene in mice somewhat ameliorates these

complications. In this review, we describe the mechanisms regulating E-

selectin expression, the interaction of E-selectin with its ligands, the E-selectin

physiological and pathophysiological roles, and the therapeutical potential of

targeting E-selectin.
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1 Introduction

E-selectin (also known as ELAM1 [Endothelial Leukocyte Adhesion Molecule-1],

CD62E, or LECAM-2), was first identified in the 1980s. It primarily regulates the

adhesion and stable arrest of leukocytes to the endothelium in various disorders (1, 2).

E-selectin remains largely inactive in resting endothelial cells, however, it is consistently

expressed in response to inflammatory cytokines such as interleukin-1 (IL-1) bacterial

lipopolysaccharide (LPS), viral infections, or tumor necrosis factor (TNF) (3–6). The

constitutive expression of E-selectin and its regulatory mechanisms, including the
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involvement of key transcription factors, play a crucial role in

controlling the baseline expression of E-selectin under normal

physiological and pathological conditions. E-selectin facilitates the

interaction of circulating leukocytes with vascular endothelium

under inflammatory conditions. Additionally, it is important for

the migration of hematopoietic stem cells, with its continuous

presence on endothelial cells in hematopoietic tissues being

crucial for the initial stage of their migration process. By cleaving

membrane-bound E-selectin on the cell surface, the soluble form of

E-selectin (sE-selectin) is generated (7). The levels of sE-selectin

serve as surrogate markers of endothelial cell activation in response

to inflammatory stimuli (8). However, the specific mechanism

resulting in the cleavage that produces sE-selectin remains

largely unexplored.

E-selectin belongs to the selectin family which is featured by

homologous derived N-terminal determinants and all bind to

similar fucosylated or sialylated glycan ligands (9). E-selectin

interaction with its ligands contributes to acute and chronic

inflammation, offering potential therapeutic avenues for

addressing various diseases (10). The selectins, including P-

selectin and L-selectin, share similar residues in spatial

distributions with different performance in physiological activities.

The E-selectin molecule comprises five unique components,

including a lectin domain located at the amino terminus, which

enables interaction with ligands, an epidermal growth factor (EGF)-

l ike domain, complement regulatory-l ike domains , a

transmembrane domain, and a cytoplasmic tail at the C-terminus.

Each of these components influence the overall structure and

function of E-selectin (Figure 1A) (11).

In this review, we will provide insights into molecular

mechanism contributing to E-selectin expression, E-selectin and

its cognate receptors, the expression of E-selectin under

physiological and pathophysiological states and discuss the

potential therapeutic targets towards E-selectin.
2 Physiological role of E-selectin

2.1 The function of E-selectin

E-selectin is upregulated in response to inflammatory cytokines

stimulation (12). Upon white blood cell migration to inflammatory

areas, the function of E-selectin extends beyond leukocyte

chemotaxis and adhesion to include the regulation of

inflammatory mediators and activation of inflammatory cells. On

one hand, E-selectin binding to ligand molecules on the white blood

cell surface activates downstream signaling pathways such as

tyrosine kinase phosphorylation and protein kinase C. Activation

of these pathways induces various cellular responses, including

cytoskeletal rearrangement, changes in cell morphology, and

regulation of cell functions, all crucial for leukocyte adhesion,

migration, and inflammatory response development (13).

E-selectin’s physiological function is further exemplified by its

facilitation of the adhesion of various cells, including neutrophils,

monocytes, eosinophils, lymphocytes, and endothelial progenitor

cells, primarily through integrin-mediated interactions (14–17). For
Frontiers in Immunology 02
instance, the endothelium facilitates the inflammatory process by

regulating the transmigration of leukocytes through the

involvement of E-selectin (18). Under normal physiological

conditions, the egress of leukocytes from the bloodstream

promotes pathogen elimination and tissue repair with assistance

of E-selectin (19, 20). However, excessive leukocyte recruitment is

deleterious, promoting acute and chronic inflammatory diseases

(21). E-selectin serves as a key mediator of cellular interactions

within the bone marrow endothelium. It plays a crucial role in the

homing of hematopoietic stem cells and their progenitors to the

bone marrow niche. On the bone marrow endothelium, E-selectin

interacts with specific carbohydrate ligands present on the surface

of these circulating cells, facilitating their rolling and tethering

under physiological shear stress conditions. This interaction is a

critical step in the multistep process of extravasation, ultimately

leading to the selective recruitment and retention of hematopoietic

cells within the bone marrow microenvironment (22).

In the field of diseases, soluble E-selectin (sE-selectin) has been

implicated in rheumatoid arthritis, psoriasis, atherosclerosis, and

cancer, regulating adhesive interactions between these cells and the

endothelium (23–26). Elevated levels of sE-selectin have been

observed in patients with inflammatory diseases and are

indicative of a high-risk state (27–29). In ischemic mouse models,

elevated plasma sE-selectin levels have been identified, with effects

on intercellular cell adhesion molecule-1 (ICAM-1) expression and

promotion of endothelial progenitor cell migration to ischemic

tissues. This highlights the therapeutic potential of sE-selectin in

enhancing neovascularization in ischemic organs (16).

Furthermore, sE-selectin is associated with cancer metastasis,

with advanced stages of breast cancer showing increased serum E-

selectin levels (30). It also negatively correlates with colorectal

carcinoma survival rate and functions as a biomarker of

colorectal carcinoma (31). E-selectin deficient mice are viable,

fertile and of normal size (32). Upon stimulation by TNFa, there
is a very small difference of leukocyte trafficking between E-selectin

knockout mice and wild type mice. However, the velocity of the

leukocyte recruitment process is significantly decreased in E-

selectin deficient mice (32). Thus, E-selectin deficiency does not

affect inflammatory responses in mice, but decelerates leukocyte

rolling (33).
2.2 Transcriptional regulation of the
E-selectin gene

The E-selectin gene transcription is increased upon the

stimulation by inflammatory cytokines in endothelial cells.

Sequence analysis showed that there are 3 NF-kB regulatory

elements within the E-selectin promoter which regulates cytokine-

induced expression located around the -170 site of E-selectin

promoter (34). Activating transcription factor 2 (ATF2)

transactivate E-selectin gene promoter activity through −166

binding site (35). High mobility group family of protein HMG I(Y)

facilitates transcription factor ATF-2 binding to the E-selectin gene

promoter. Meanwhile, HMG I(Y) promotes NF-kB regulatory

elements binding to the promoter (36). Angiostatine K1–3 induced
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upregulation of E-selectin mRNA level, and K1–3 activated the

promoter activity through AP1 (−195 site) and Ets-1(−90 site) (37).

Runt-related transcription factor 1 (RUNX1) initiates the luciferase

activity of at -320 site on E-selectin promoter and promotes gene

transcription in endothelial cells (38). ERG, a member of the ETS (E

twenty-six) family, plays a crucial role in regulating a variety of

cellular processes such as cell proliferation (39), differentiation (40),

development (41), and apoptosis (42). Its highly conserved DNA-

binding domain, known as the ETS domain, allows it to interact with

specific DNA sequences, termed ETS binding sites (43), thereby

influencing the transcription of target genes. This interaction can

either activate or repress gene transcription, significantly impacting

the phenotype and behavior of cells. Notably, ERG suppresses

E-selectin expression in HUVECs (Human Umbilical Vein

Endothelial Cells) and elevation level of E-selectin expression was

observed in embryos from Erg−/− mice. In contrast, a higher level of

E-selectin expression is observed in embryos from Erg−/− mice,

indicating a direct role of ERG in modulating E-selectin levels.

Furthermore, ERG directly interacts with the E-selectin gene

promoter, which may hinder its bioactivity. Interestingly, oxidative

stress induction in endothelial cells leads to an increase in E-selectin

expression and a simultaneous decrease in ERG expression,

suggesting a complex interplay between these two factors in cellular

regulation (44).

Oxidative stress enhances endothelial cell adhesiveness by

increasing E-selectin expression and decreasing the transcription

factor ERG, contributing to a prothrombotic state. ERG directly

interacted with the -127 site of the E-selectin gene promoter, leading

to a decrease in E-selectin gene activity in endothelial cells. Capture

high-throughput chromosome conformation capture (CHi-C)

indicated that no chromatin binding was caught on the E-selectin

gene promoter (44). Krüppel-like factors 2 (KLF2) is a zinc finger
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transcription factor. KLF2 plays a pivotal role in mediating the anti-

inflammatory function in endothelial cells. KLF2 overexpression

significantly inhibited the mRNA and protein levels of E-selectin in

human aortic endothelial cells (HAECs) (45). Transcription factor

E2F-1 suppresses E-selectin expression in HAECs, and inhibits

monocyte U937 cells adhesion to HAECs (46).
2.3 E-selectin ligands-regulated
signaling pathways

Leukocytes in circulation interact with vascular endothelial cells

via connections between endothelial E-selectin and glycan counter-

receptors, known as E-selectin ligands, present on leukocytes. This

initial binding leads to tethering, initiating the gradual rolling of

leukocytes adhesion to the endothelium, a process characterized by

velocities slower than the blood flow. The crucial slow rolling

mediated by E-selectin enables close contact between monocytes

and the inflamed endothelium (47).

The adhesion of selectins relies on lectin domain with ligands

that carry glycans, specifically recognized the sialyl-Lewisx (sLex)

and its isomer, sialyl-Lewisa (sLea) tetrasaccharide (48). E-selectin

displays binding interactions with a diverse array of ligands. The

most important E-selectin ligands are P-selectin glycoprotein

ligand-1 (PSGL-1), CD44, and E-selectin ligand-1 (ESL-1). These

interactions are pivotal for the recruitment of leukocytes to

inflammatory sites, which is a critical aspect of the body’s defense

against infection and injury (Figure 1B).

2.3.1 PSGL-1
PSGL-1 is a ligand that interacts with selectin family members

on leukocytes (49). L-selectin and P-selectin both bind to PSGL-1 at
BA

FIGURE 1

E-selectin’s basic molecular structure and its ligands. (A) E-selectin is composed of five distinct domains. The lectin-like domain, an epidermal
growth factor (EGF)-like domain, and a short consensus repeat (SCR) domain. The lectin-like domain is located at the N-terminal region and is
responsible for recognizing and binding specific carbohydrate ligands. The EGF-like domain, positioned in the middle, contributes to the overall
structure and stability of E-selectin. The C-terminal SCR domain consists of multiple repeat units that facilitate protein-protein interactions and
functions in cell adhesion processes. (B) E-selectin anchored on endothelial cells displays binding interactions with a diverse array of ligands on
leucocytes, including PSGL-1, ESL-1, CD44, CD43, b2-integrins, and L-selectin. The combination of PSGL-1 on E-selectin activates Rap1, thereby
inducing the activation of b2 integrin.
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either the identical or closely adjacent sites near the N-terminus,

while E-selectin seems to engage at least one additional site (50, 51).

Apart from its involvement in facilitating leukocyte tethering and

rolling, PSGL-1 also serves as a conduit for transmitting signals into

both rolling leukocytes and those coated with platelets (52).

Neutrophils in the process of rolling on P-selectin experience

partial activation of integrin aLb2, or lymphocyte-associated

antigen-1 (LFA-1), resulting in a decrease in rolling velocities due

to increased transient binding of LFA-1 to ICAM-1. Binding to

E- or P-selectin promotes Syk-dependent elongation of LFA-1

(53, 54).

2.3.2 CD44
CD44, a type I transmembrane glycoprotein found on a range of

vertebrate cells, governs a multitude of cellular functions such as

growth, survival, differentiation, and motility. Even though the

cytoplasmic tail of CD44 does not possess inherent catalytic

activity, it engages with Src family kinases (SFKs), Rho GTPase,

Rho kinase, and protein kinase C (55). Neutrophils lacking CD44

demonstrate diminished adhesion to inflamed endothelium, leading

to heightened rolling flux and velocities. CD44 exhibits binding to

sE-selectin in vitro and works in collaborating with PSGL-1 to

modulate rolling velocities and facilitate firm arrest in vivo (56–58).

2.3.3 ESL-1
ESL-1 significantly reduces but not completely eliminating

leukocytes rolling on E-selectin both in vitro and in vivo when

PSGL-1 and CD44 are deleted (59, 60). Through knockdown

experiments utilizing a short hairpin RNA approach, it has been

observed that the interaction with a recombinant sE-selectin

experiences a slight reduction in the absence of ESL-1, but is

entirely abolished when both PSGL-1 and ESL-1 are knocked

out (61).

2.3.4 Other ligands interact with E-selectin
The intricate relationship between E-selectin and other

molecules becomes more evident when considering versican, an

aggregating proteoglycan in the extracellular matrix (ECM).

Versican contributes to tissue integrity and cell signaling, with its

carboxy terminus sharing sequence similarities with E-selectin’s

EGF-like repeat (62, 63). These structural parallels may enable

versican to directly engage with E-selectin, influencing leukocyte

adhesion and migration, particularly during inflammation.

Moreover, versican may affect the biding of E-selectin to PSGL-1

and CD44 (62, 64), potentially altering the dynamics of

inflammatory responses.
3 Pathophysiological role of E-selectin
in diseases

E-selectin modulates the inflammatory response present in

many diseases. Oxidative stress is considered to be a direct

product of inflammation. Below are the oxidative stress induced

diseases with pathological implications of E-selectin expression.
Frontiers in Immunology 04
3.1 Acute kidney injury

Oxidative stress contributes to the pathogenesis of acute kidney

injury (AKI) by promoting cellular damage and inflammation (65).

Kidney lesions induced by oxidative stress are accompanied by an

elevated level of E-selectin. Indoxyl sulfate (IS) is one of the uremic

toxins responsible for causing chronic kidney disease (CKD). IS,

through the excessive generation of oxidative stress, damages

vascular endothelium. Another study further confirmed that IS

increases IL-1b-induced E-selectin expression in HUVECs. The

molecular mechanism responsible for the interleukin-1b (IL-1b)-
induced increase in E-selectin expression in IS-induced HUVECs

involves phosphorylated MAPK signaling and the activation of

NADPH oxidase/ROS (Reactive Oxygen Species) (66).

In addition, E-selectin is facilitated in the recruitment of

neutrophil recruitment in AKI, which triggers inflammatory

responding to ischemia-reperfusion. E-selectin on endothelial cells

engages neutrophil ligands, initiating a cascade that activates

integrins, enabling firm adhesion and tissue migration. Herter

et al.’s research underscores the role of Phosphatidylinositol 3,4,5-

trisphosphate-dependent Rac exchanger (P-Rex) in this process,

showing its necessity for LFA-1 activation and neutrophil crawling

(67). In AKI models, P-Rex1 deficiency lessens neutrophil

infiltration and kidney damage, positioning E-selectin and P-Rex1

as potential therapeutic targets for mitigating AKI severity (67).
3.2 Pulmonary pathological processes

Oxidative stress promotes various pulmonary pathological

progression (68–70). Asthma, identified as a persistent

inflammatory condition, has been proposed as a potential risk

element for endothelial dysfunction. An evident rise in E-selectin

levels was also noted with increasing severity of asthma (71). In

patients with Pulmonary Arterial Hypertension, soluble E-selectin

was upregulated which might participate in local pulmonary

recruitment of progenitor cell, causing endothelial activation (72).

COVID-19 individuals showed high levels of sE-selectin in patients’

serum and plasma (73). All these facts raise the possibility that

plasma E-selectin increased rapidly upon oxidative stress and

leukocyte sequestration at sites of inflammation.
3.3 Hepatic pathologies

The liver, a pivotal metabolic organ, is the main organ in

preserving immune and endocrine homeostasis. Oxidative stress

significantly influences the advancement of hepatopathy (74–79).

Hepatic failure resulting from ischemia/reperfusion (I/R) injury

primarily stems from oxidative stress and inflammatory responses.

The deterioration of the liver, coupled with abnormalities in pulmonary

circulation, is attributed to oxidative stress and the release of

inflammatory mediators during reperfusion (80). Emerging evidence

suggests that E-selectin plays a critical role in the pathogenesis of

hepatic disorders. Elevated levels of E-selectin have been detected in

patients with non-alcoholic fatty liver disease (NAFLD) and alcohol-
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related liver disease (ARLD), making it a promising biomarker for

disease monitoring and prognosis. Furthermore, experimental studies

have shown that targeting E-selectin with specific antagonists can

attenuate liver fibrosis in animal models, opening avenues for novel

therapeutic strategies in chronic liver diseases (81, 82).
3.4 Venous thromboembolism

E-selectin serves as a critical regulator of thrombus formation and

fibrin levels in a mouse model of venous thrombosis (83). Mice lacking

E-selectin expression demonstrated decreased thrombus fibrin

content, and mitigated vascular inflammation and fibrosis (84). In

paroxysmal, persistent, and permanent atrial fibrillation, sE-selectin

levels have been shown to be abnormal, indicating its underlying

function in the prothrombotic state associated with the disease (85).

Similarly, analogous to pulmonary diseases, soluble E-selectin is

linked to the pathological progression of hepatitis, liver cirrhosis, and

hepatocellular carcinoma. Compared to healthy individuals, patients

with chronic hepatitis and Child’s class A liver cirrhosis exhibit higher

serum levels of sE-selectin. However, sE-selectin levels gradually

decrease accompanied with the deterioration of liver cirrhosis.

Furthermore, serum sE-selectin in hepatocellular carcinoma

undergoes alterations corresponding to various indicators of cancer

development (86). Notably, in leptospirosis, increased levels of sE-

selectin have been observed, potentially interfering with immune cell

recruitment and activation, underscoring the significance of

endothelial activation in the disease process (87).
4 Therapeutic approaches
targeting E-selectin

E-selectin plays a critical role in the adhesion of leukocytes to the

endothelium during inflammation, a process facilitated by its

interaction with specific carbohydrate ligands on the surface of

these cells. This E-selectin/E-selectin ligand axis is a prime target

for therapeutic intervention, aiming to disrupt the inflammatory

cascade at its inception (10). The interaction mediated by E-selectin

offers potential therapeutic avenues for addressing various diseases.

Various exogenous inhibitors, such as carbohydrate molecules,

carbohydrate mimics, small and large molecular mass non-

carbohydrate compounds, peptides, antibodies targeting selectins,

or nanoparticles, have been explored in this pursuit (88–91). Here

we summarizes notable advancements and approaches in the

development of pharmaceutical agents targeting E-selectin.
4.1 MicroRNAs

Numerous studies have focused on optimizing the therapeutic

characteristics of miRNAs to repress E-selectin expression, thereby

impeding the inflammatory process through the inhibition of JNK

and NF-kB pathways. Small nucleotide miRNAs miR-31 and miR-

146a (92) as well as si-E-selectin (93) successfully decreased the level

of E-selectin. Nevertheless, the role of these microRNAs, known for
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metastatic context regarding their impact on the E-selectin-mediated

extravasation of cancer cells. Besides, nucleotides may directly

suppress the expression of E-selectin. Antisense oligonucleotides

C-raf kinase apparently attenuate E-selectin regulated human

colorectal carcinoma (CX-1 cells) adhesion. In addition,

pretreatment nude mice with C-raf in nude mice inhibit E-selectin

expression in nude mice prevent CX-1 cells hepatic metastasis (94).
4.2 Monoclonal antibodies

Accumulating evidence suggests that the infiltration of

neutrophils into injured tissues can be effectively impeded by

MAbs targeting E-selectin. Following intratracheal LPS injection

in mice, the administration of anti-E-selectin monoclonal

antibodies via the vein significantly inhibits neutrophil

penetration into the bronchoalveolar space, achieving a reduction

of 50–70% (95). The migration of leukocytes to ischemic cerebral

tissue, coupled with an elevation in E-selectin expression, is

particularly prominent in reperfused stroke. Mice subjected to

treatment with anti–E-selectin exhibited a tendency to alleviate

the side effects of ischemic injury, mitigating neurological deficits.

This approach proves to be an appealing strategy for the prompt

and effective treatment of cerebral ischemia (96).
4.3 Drugs directly targeting E-selectin

Sialyl Lewis X antigen is the physiological ligand of E-selectin

(97). SLeX expressed on leukocytes or cancer cell surfaces interact

with E-selectin, playing an anti-inflammatory function (98) and

inhibiting cancer metastasis (99). SLeX serves as therapeutic agent

as a potent E-selectin antagonist. However, the binding capacity of

selectin–sLex is weak, hence, the primary ligand pattern was not an

efficient drug delivery model. The synthesis of carbohydrate-based

molecules is complicated and at a high cost (48, 100, 101). Analogues

or mimetics of sLeX demonstrated higher binding affinity with E-

selectin compared to natural sLeX in endothelial cells (48). Selectin

mimetics are structurally based on sLex, the antagonism disrupt E-

selectin-ligands interaction process, which provides therapeutic

pathway towards inflammation (102). Non-toxic enzymatic like

Fucosyltransferases decreased the production of E-selectin ligands

sLex could inhibit inflammatory processes (103).

GMI-1271, a compact antagonist molecule that mimics the

bioactive conformation of the sialyl-Lex/a carbohydrate ligand, acts

as an inhibitor of E-selectin. This characteristic positions it as a

promising candidate for potential therapeutic interventions and

preventive measures against venous thrombosis (104). Additionally,

GMI-1271 demonstrates promise as a therapeutic approach to

reduce cancer mortality and impede cancer metastasis (105).

Treatment human primary breast cancer cell line (CF1_T) with

the fucosylation inhibitor 2-FF resulted in a significant reduction in

E-selectin ligand expression, particularly sLeX/A. This led to a

complete loss of CF1_T cell migration (106). Nonetheless,

carbohydrate compounds face several drawbacks as drug
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candidates due to their susceptibility to enzymatic hydrolysis,

diminished potency, and unfavorable pharmacokinetic properties.

Moreover, certain drugs have demonstrated direct effects on

E-selectin expression, thereby influencing cancer progression. For

example, cimetidine and amiloride have shown anti-cancer effect

through directly block E-selectin expression in hepatocellular

carcinoma (HCC). Indeed, the interaction of endothelial and

HCC cells are interrupted (107). Cenicriviroc is CCR2 and CCR5

antagonist used in anti-HIV infection treatment. Cenicriviroc

effectively inhibits monocyte trans-endothelial migration by

disrupting monocyte-endothelial tethering through reduced

E-selectin expression. Consequently, it serves as a therapeutic

intervention to mitigate harmful monocyte trafficking (108).

Recently, significant progress has been made in generation of

antagonists that exhibit a high affinity for targeting E-selectin. These

advancements adhere to several key principles: 1) the incorporation of

pharmacophoric groups into carbohydrate mimics; 2) the derivation

of antagonist conformations from sLex; 3) the utilization of database

screening employing the 3D pharmacophore of sLex, coupled with

high throughput screening, resulting in the discovery of additional

leads; and 4) achieving high bioavailability and binding affinity. The

utilization of novel technology employing targeted bispecific

molecules against E-selectin aids in assessing the anti-inflammatory

therapeutic efficacy in a piglet model of enteritis (109). Additionally, a

simplified nano-platform of dual prodrug mediated by the unique

affinity between PSA (Prostate-Specific Antigen) and E-selectin binds

nitric oxide and promotes vascular normalization (110).
5 Summary and conclusions

Endothelial cells uniquely express E-selectin, which initiates

adhesion and recruitment of leukocytes, myeloid cells, and

T-lymphocytes, thereby facilitating their extravasation into the

surrounding tissues. E-selectin expression is induced by

inflammatory stimulation and oxidative stresses, and the

expression levels are associated with endothelial cell injury.

Inhibition of E-selectin reduces thrombosis, vascular leakage and

cancer metastasis, providing a potential avenue for new therapeutic

interventions. Dysregulation of E-selectin has been found in several

pathological conditions including AKI, pulmonary injury, hepatic

failure and VTE. Deletion of the E-selectin gene in mice has been

shown to mitigate complications associated with venous

thrombosis, including decreased thrombus fibrin content and

reduced vascular inflammation and fibrosis.

The prospect of sE-selectin as a biomarker is further supported

by its measurable elevation in plasma, providing a non-invasive

method of assessing endothelial status. However, the specificity and
Frontiers in Immunology 06
sensitivity of sE-selectin as a diagnostic or prognostic indicator may

vary across different diseases, promoting further research to

establ ish standardized thresholds and understand its

pathophysiological role fully. Future researches should focus on

clarifying the mechanisms regulating sE-selectin shedding and its

interaction with other biomarkers to enhance our predictive

capabilities. The development of targeted therapies that modulate

sE-selectin levels may also present a novel avenue for therapeutic

intervention in diseases characterized by endothelial dysfunction.

Collectively, these developments reinforce the potential of

E-selectin as a promising therapeutic target against vascular

diseases and other inflammatory conditions.
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