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Methylation, a key epigenetic modification, is essential for regulating gene

expression and protein function without altering the DNA sequence,

contributing to various biological processes, including gene transcription,

embryonic development, and cellular functions. Methylation encompasses

DNA methylation, RNA methylation and histone modification. Recent research

indicates that DNA methylation is vital for establishing and maintaining normal

brain functions by modulating the high-order structure of DNA. Alterations in the

patterns of DNA methylation can exert significant impacts on both gene

expression and cellular function, playing a role in the development of

numerous diseases, such as neurological disorders, cardiovascular diseases as

well as cancer. Our current understanding of the etiology of neurological

diseases emphasizes a multifaceted process that includes neurodegenerative,

neuroinflammatory, and neurovascular events. Epigenetic modifications,

especially DNA methylation, are fundamental in the control of gene expression

and are critical in the onset and progression of neurological disorders.

Furthermore, we comprehensively overview the role and mechanism of DNA

methylation in in various biological processes and gene regulation in

neurological diseases. Understanding the mechanisms and dynamics of DNA

methylation in neural development can provide valuable insights into human

biology and potentially lead to novel therapies for various neurological diseases.
KEYWORDS

epigenetic regulation, DNA methylation, neurological diseases, ICF syndrome, multiple
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1 Introduction

Neurological diseases are multifactorial disorders caused by

intrinsic and extrinsic factors, such as genetics, epigenetics, age

and environmental factors, which result in cognitive dysfunction

and behavioral disorders (1, 2). With advancing research,

neurological diseases are increasingly recognized as complex,

multifactorial conditions involving the interplay between

neurodegeneration, neuroinflammation, and neurovascular events

(3, 4). The neurovascular system (NVS), composed of neurons, glial

cells, and vascular cells, is crucial for maintaining brain function by

regulating blood-brain barrier (BBB) permeability and cerebral

blood flow (CBF) (5, 6). Damage to the BBB can trigger

neuroinflammation, while the neurovascular unit (NVU),

comprising the BBB and activated microglia, is crucial in the

development of neuroinflammation (6). Despite the close

functional interdependence of the nervous and vascular systems,

the exact mechanisms by which neurovascular dysfunction leads to

neurodegeneration remain to be fully elucidated (6). However, it is

a l so essent ia l to cons ider the ro les of genet ic and

neurodevelopmental factors in these conditions. Genetic factors

encompass mutations or variations in specific genes that can

contribute to an individual’s susceptibility to certain diseases (7).

On the other hand, neurodevelopmental disorders are characterized

by abnormalities in brain development processes, which can

profoundly a ffec t bra in st ructure and funct ion (8) .

Neurodegenerative diseases entail the gradual decline of nerve

cells and their functionalities, such as Alzheimer’s disease (AD),

Huntington’s disease (HD), and Parkinson’s disease (PD) (9).

When there is a disruption or blockage in the blood vessels

supplying the brain, it can lead to various vascular disorders like

stroke and vascular dementia (10). Inflammatory diseases,

including multiple sclerosis (MS) and meningitis, are

characterized by inflammation and damage to the nervous system

(11). Functional disorders, such as epilepsy and migraine, involve

abnormal electrical activity in the brain or dysfunction of specific

neural circuits (12). Neurological diseases impose a significant

burden on affected individuals as well as healthcare systems

worldwide (13, 14). Since 1990, there has been a significant

increase in mortality attributed to neurological diseases, with a

rise of approximately 37% from 6.87 million to 9.40 million.

According to the Global Burden of Disease Study, the total

disability-adjusted life years (DALYs) worldwide have increased

by about 7% from 233.4 million to 250.7 million. Neurological

diseases had become the leading cause of DALYs, second only to

cardiovascular diseases, and a major global determinant of

mortality (15).

Epigenetic mechanisms, such as DNA methylation, non-coding

RNA regulation, and histone modifications, are involved in these

processes (16, 17). Among them, DNAmethylation is indispensable

for gene expression regulation, genomic integrity, genomic

imprinting, and X chromosome inactivation (18). However,

environmental factors, aging and diseases could affect DNA

methylation (19). During and after DNA replication, DNA

methylation is a crucial process in the dynamic environment of

chromatin reorganization (20). Alterations in DNA methylation
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patterns can influence gene expression and cellular processes within

the cardiovascular and neurological systems, contributing to the

pathogenesis and progression of these diseases (21, 22).

In the context of neural development, DNA methylation has

emerged as a crucial mechanism in regulation of neural stem cell

proliferation, synaptic plasticity, and neuronal repair (23, 24). In

many neurological diseases, comprising both neurodegenerative

and neurodevelopmental disorders, alterations in DNA

methylation occur at specific genomic regions, including gene

promoters, enhancers and CpG islands (25). These changes can

lead to dysregulation of gene expression and disruption of normal

cellular processes. For example, DNA hypermethylation in the

promoters of genes associated with memory formation and

synaptic plasticity has been observed in AD (26). This altered

methylation pattern may contribute to the cognitive decline and

neurodegeneration in AD. In PD and HD, changes in DNA

methylation have also been reported (27, 28). These alterations

can have profound effects on gene expression associated with

dopaminergic signal ing, mitochondrial function, and

neuroinflammation, which are key processes implicated in

complex mechanisms of these diseases (29). Understanding the

specific DNA methylation changes and their functional

consequences in different neurological disorders can provide

insights into disease mechanisms and potential therapeutic targets.
2 DNA methylation

DNA methylation is catalyzed by DNA methyltransferases

(DNMTs) with the transferring a methyl group to the cytosine ring

within both CpG and non-CpG dinucleotides (20, 30). CpG

dinucleotides are regions in DNA where a cytosine is followed by a

guanine, often found in clusters called CpG islands (31). Non-CpG

dinucleotides refer to any other dinucleotide sequence without a

cytosine followed by a guanine (32). Although CpG methylation is

well-studied, it has been discovered that non-CpG methylation,

particularly at CpH dinucleotides (H = A, T, or C), can also occur

in specific cell types or stages of development (33). Non-CpG

methylation has been observed to be more abundant in pluripotent

stem cells, neurons, and certain cancers, suggesting its involvement in

cell fate determination and disease development (34).

There are three main DNMTs involved in DNA methylation:

DNMT1, DNMT3A, and DNMT3B (35). DNMT1 maintains

established DNA methylation patterns, while DNMT3A/3B are

involved in de novo DNA methylation (36). DNA demethylation

encompasses the removal of a methyl group (-CH3) from DNA and

proceeds through two fundamental mechanisms: active

demethylation, which implicates the TET enzyme family

catalyzing the oxidation of the methyl group on cytosine, and

passive demethylation, where DNA demethylase enzymes directly

excise the methyl group from cytosine (Figure 1) (37–39). The TET

protein family functions as a dioxygenase dependent on a-
ketoglutarate (a-KG) and Fe2+, with its catalytic center composed

of a Cys-rich domain near the C-terminus and a double-strand a-
helix (DSBH) domain (40). In mammals, the TET family consists of

TET1, TET2, and TET3 (40). Both TET1 and TET3 feature a CXXC
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zinc finger domain at their N-terminus, which facilitates their

binding to chromatin and recognition of DNA methylation

regions (40). TET1 specifically binds to target DNA through its

CXXC domain, which uniquely interacts with unmethylated CpG

dinucleotides, typically occurring at gene promoters or enhancer

regions crucial for gene expression regulation (41, 42).

Once TET1 is bound to DNA, it utilizes its oxidase activity to

oxidize 5-methylcytosine (5mC) through a multi-step process (43).

Initially, 5mC is converted to 5-hydroxymethylcytosine (5hmC),

representing the first stage of demethylation (43). TET1 then

further oxidizes 5hmC to 5-formylcytosine (5fC), and subsequently,

which is subsequently oxidized to 5-carboxylcytosine (5caC) (43).

The final step involves the removal of 5caC from the DNA, which is

carried out by DNA repair mechanisms (44). Specifically, the base

excision repair (BER) pathway employs enzymes like thymine DNA

glycosylase (TDG) to recognize and excise 5caC, creating a basic site

(44). The DNA repair system then inserts a normal cytosine to

complete the repair process (44). Through these actions, TET1 lowers

DNA methylation levels and regulates gene expression, impacting

various cellular processes (45).

3 Recent advances in omics
approaches for DNA methylation
studies in neurological diseases

Omics approaches have provided unprecedented insights and

new perspectives in the study of DNA methylation in neurological

diseases. By employing these omics approaches, researchers can

systematically analyze and quantify DNA methylation changes in

neurological diseases, offering new insights and strategies for

disease diagnosis, treatment, and prevention. Here are some key

omics methods and their recent advancements in this field.
3.1 Whole-genome bisulfite sequencing

WGBS is a preeminent technique for interrogating DNA

methylation across the genome (46). It entails denaturing DNA

into single strands and subjecting them to bisulfite treatment, which

discriminates between methylated and unmethylated cytosines.

Acknowledged as the gold standard for DNA methylation

analysis, WGBS has been instrumental in elucidating DNA

methylation alterations associated with neurodegenerative

disorders such as AD and PD, offering crucial insights into their

underlying mechanisms (46).

WGBS has demonstrated its significant value in various studies.

For instance, in evaluating the epigenetic regulatory effects of xenon

(Xe) in a rat model of stroke, WGBS revealed that Xe modulates the

methylation status of several genes associated with neurocognitive

recovery, including Gadd45b, DNMT3a, and HDAC9, which are

linked to memory and aging, as well as growth factor-related genes

like NTrK2 and NGF. Furthermore, Xe was shown to influence the

methylation of endogenous b-secretase (BACE1) and low-density

lipoprotein receptor-related protein 1 (LRP1), both of which are

closely related to amyloid-b (Ab) production (47).
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In another study, WGBS was employed to analyze postmortem

brain tissue and blood samples from AD patients and control

groups (48). The findings highlighted significant differences in

DNA methylation between AD patients and controls, particularly

within a candidate imprinting control region (ICR) on chromosome

17, associated with the NLRP1 inflammasome gene. Additionally, a

single nucleotide polymorphism (SNP) found in the blood samples

further suggested that imprinting abnormalities may be linked to

the risk of developing AD, supporting the hypothesis that early-life

environmental exposures could increase the risk of AD in later

life (48).

In a PD mouse model exposed to fenvalerate (Fen), WGBS was

used to assess DNA methylation in the midbrain, revealing

differential methylation of the Ambra1 gene, which is associated

with PD (49). This differential methylation, characterized by

hypermethylation and reduced expression of Ambra1, suggests

that Ambra1 plays a pivotal role in PD pathogenesis through its

regulation of the mitophagy pathway, a process influenced by DNA

methylation (49).

In the context of MS, WGBS was combined with an optimized

MHC capture approach to investigate the methylation status of the

MHC region in blood samples from 147 MS patients and 129

healthy controls (50). The study identified 132 differentially

methylated regions (DMRs) associated with MS, overlapping with

known MS risk loci, and found that these methylation changes were

linked to specific human leukocyte antigen (HLA) genotypes.

Through DNA methylation quantitative trait loci (mQTL)

mapping and causal inference testing (CIT), several DMR-SNP

pairs were identified, potentially mediating MS risk, underscoring

the importance of WGBS in elucidating epigenetic alterations

associated with MS (50).

In studies of immune deficiency, centromere instability, and facial

anomalies (ICF) syndrome, WGBS revealed a substantial reduction in

overall methylation levels, notably in inactive heterochromatin regions,

satellite repeats, and transposons (51). Despite these changes,

methylation levels remained high in transcriptionally active sites and

ribosomal RNA repeats (51). The research also identified a mutation in

DNMT3B leading to themislocalization of H3K4me1 activity, resulting

in hypermethylation of active promoters—a finding closely related to

the immunodeficiency phenotype of ICF syndrome, particularly in

genes involved in B-cell receptor-mediated maturation pathways (51).

WGBS, despite its analytical strengths, faces limitations with

low-input samples such as circulating cell-free DNA and single-cell

sequencing (46). The conversion of unmethylated cytosines to

thymine reduces sequence complexity, impacting sequencing

quality, mapping rates, and genome coverage, and increasing

costs (46). However, WGBS remains the most comprehensive

method for high-resolution mapping of cell type-specific

methylation patterns, though its high cost limits wider use.
3.2 Reduced representation
bisulfite sequencing

RRBS is a cost-effective and sensitive method widely used in

neurodevelopmental disorder research, including autism spectrum
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1401962
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1401962
disorders (52). It efficiently targets CpG-rich regions like promoters

and enhancers, providing precise methylation data with reduced

sequencing depth (52). Although it covers only 6-12% of genome-

wide CpG sites, RRBS is effective for detecting DNA methylation

patterns and is well-suited for formalin-fixed samples, making it a

promising option for large-scale clinical studies (52).

RRBS has been employed in several studies to analyze DNA

methylation changes in AD and related models (53). In one study,

researchers used RRBS to investigate genome-wide DNA

methylation changes in AD brains, discovering that the

CASPASE-4 (CASP4) gene exhibited reduced DNA methylation

in AD brains, which was correlated with increased CASP4

expression (54).

In another study, RRBS was utilized to analyze DNA

methylation changes in the TG4510 transgenic mouse model,

which overexpresses the P301L mutant human tau protein—a

common tauopathy model in AD research (55). RRBS results

revealed significant DNA methylation differences in brain regions

and blood of TG4510 mice, closely associated with transcriptomic

features related to tau pathology, providing valuable insights into

potential biomarkers for AD (55).

Furthermore, RRBS has been applied to explore the epigenetic

landscape of AD. In a study involving 471 brain samples, RRBS was

used to measure DNA methylation levels in the temporal cortex

(TCX) and cerebellum (CER) (56). This research identified specific

CpG sites associated with AD-related neuropathological measures

(such as Braak stage, Thal phase, and cerebral amyloid angiopathy

scores) and AD-related proteins (e.g., Ab40, Ab42, tau, and p-tau)
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and uncovered region-specific CpG associations between TCX and

CER. The findings suggest that while neuropathological and

biochemical markers reflect the core pathology of AD, distinct

DNA methylation changes are uniquely associated with these

markers, revealing diverse epigenetic processes at play (56).
3.3 Methylation arrays (e.g., Infinium
450K/850K)

Methylation arrays are high-throughput tools for analyzing DNA

methylation across the genome, including CpG islands, promoters,

and enhancers (57, 58). Despite their effectiveness, they face

limitations such as high costs, complex data interpretation,

sensitivity and specificity issues, limited spatial resolution, and

restricted coverage to known CpG sites, offering limited insights

into the underlying mechanisms of methylation (57).

In AD research, researchers employed methylation arrays

alongside PCR-based methylation-sensitive high-resolution melting

(MS-HRM) analysis to examine blood DNA from 56 patients with

late-onset Alzheimer’s disease (LOAD) and 55 healthy controls (59).

The results from both techniques revealed no significant differences

in the methylation levels of key DNA repair genes between LOAD

patients and controls. This indicates that the hypothesized increase in

promoter methylation of these genes in the blood DNA of AD

patients is not supported by the current data (59).

Furthermore, in screening for FXS, methylation arrays

demonstrated exceptional sensitivity and specificity. The study
FIGURE 1

The mechanism of DNA methylation. The methyl groups are transferred from the S-adenosine-L-methionine (SAM) molecule to the position of
cytosine C5 under the action of methyltransferase, especially DNMT3a/3b. 5-methycytosine is obtained after transferring. These methylated methyl
groups can regulate gene expression by altering or modifying gene expression. DNA demethylation is the process by which a methyl group (-CH3) is
removed from a DNA molecule. There are two primary mechanisms of DNA demethylation: active demethylation and passive demethylation. The
first pathway involves the ten-eleven translocation (TET) family of enzymes, which can oxidize the methyl group on the cytosine base of DNA. These
oxidized forms of cytosine can then be further modified and removed from the DNA molecule through the base excision repair (BER) pathway. The
second pathway involves DNA demethylase enzymes which can directly remove the methyl group from the cytosine base. These enzymes can
recognize and bind to methylated cytosine residues, and then catalyze the removal of the methyl group through a series of enzymatic reactions.
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assessed genome-wide and FMR1-specific DNA methylation in 32

male individuals diagnosed with FXS, including 9 males with

mosaic mutations, 5 females with full mutations, and 11 male and

11 female premutation carriers (60). When compared with 300

normal control DNA samples, the methylation array achieved 100%

sensitivity and specificity in detecting FXS in male patients,

effectively distinguishing those with mosaic methylation defects

(60). This finding supports the utility of methylation arrays as a

cost-effective and sensitive screening tool for FXS, capable of

simultaneously excluding other common differential diagnoses

such as Prader-Willi syndrome and Sotos syndrome (60).
3.4 Methylation-specific PCR

MSP is a sensitive, cost-effective, and efficient method for

detecting DNA methylation, making it suitable for small-scale

analyses (61, 62). However, it is limited by its qualitative or semi-

quantitative nature, relatively low specificity, the need for precise

primer design, and challenges arising from uneven 5mC

distribution (62).

In studies of longevity-associated genes, MSP has been

employed to analyze the methylation status of SIRT3, SMARCA5,

HTERT, and CDH1 promoters in peripheral blood (63). Results

indicate that the methylation frequencies of SIRT3, SMARCA5, and

CDH1 do not differ significantly among young individuals, elderly

individuals, and AD patients, suggesting that methylation of these

genes is not related to aging or AD (63). Conversely, the

methylation frequency of HTERT is associated with the aging

process and is significantly higher in AD patients compared to

elderly controls, potentially reflecting AD-related telomeric and

immune dysfunctions (63).

Furthermore, MSP has been applied to investigate epigenetic

modifications related to PD. In a study of early-onset Parkinson’s

disease (EOPD) patients, MSP assessed the methylation status of

the SNCA and PARK2 gene promoter regions in 91 EOPD patients

and 52 healthy controls (64). The findings reveal that the

methylation levels of the SNCA and PARK2 promoters are

significantly lower in EOPD patients compared to controls, with

SNCA methylation status potentially linked to a positive family

history of PD (64). These observations suggest a role for epigenetic

modifications in PD.
3.5 Methylated DNA
immunoprecipitation sequencing

MeDIP-seq is effective for genome-wide identification of highly

methylated regions, offering broad coverage and high CpG-level

resolution at reduced costs (65, 66). However, it requires highly

specific antibodies, still involves relatively high sequencing costs,

and is less effective at distinguishing specific methylation regions

compared to other methods (66).In a multicenter study conducted

in Italy, MeDIP-seq was used to analyze 26 affected and 26

unaffected relatives from 8 MS families (67). The study combined

association and aggregation statistics across families to identify 162
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differentially methylated regions (DMRs) (67). Through technical

validation and biological replication, two hypomethylated regions

(linked to the NTM and BAI3 genes) and two hypermethylated

regions (located in the PIK3R1 and CAPN13 genes) were confirmed

(67). These findings highlight the value of MeDIP-seq in

uncovering the epigenetic mechanisms underlying complex

diseases.
3.6 Pyrosequencing

Pyrosequencing is a highly precise, real-time sequencing-by-

synthesis technology used for high-resolution DNA methylation

analysis, mutation detection, and genomic research. It detects light

signals produced by the release of pyrophosphate during nucleotide

incorporation (68, 69). In one study, pyrosequencing was employed

to measure DNAmethylation levels in blood, analyzing 46 cytosine-

guanine sites across 21 genes (including NXN, ABCA7, and

HOXA3) to evaluate its diagnostic accuracy for non-invasive

detection of late-onset AD (70). Despite its advantages,

pyrosequencing has limitations, including a short read length

(around 150 base pairs), susceptibility to signal deviations, and a

dependency on sample quality and library preparation, which can

introduce errors (68). Additionally, sequencing depth can affect

data quality, either by missing important mutations or introducing

errors (69). While rapid and efficient, these limitations should be

considered when selecting the most appropriate sequencing method

for specific research needs.
4 DNA methylation in
neurological diseases

DNA methylation patterns are dynamically reprogrammed

with global DNA demethylation followed by de novo methylation

during early embryonic development (71). In somatic cells, DNA

methylation patterns are generally stable due to the action of

maintenance DNA methyltransferase (72). Erroneous DNA

methylation usually leads to gene silencing by inhibiting the

binding of transcription factors or other DNA-binding proteins

(73). The factors influencing DNA methylation in neurological

diseases are multifactorial and include both genetic and

environmental factors (74). Genetic variations in genes encoding

DNA methyltransferases (DNMTs) and other proteins involved in

DNA methylation machinery can affect the stability and fidelity of

DNA methylation patterns (75). Environmental factors, such as

prenatal exposure to toxins or stressful events, can also impact DNA

methylation patterns in the developing brain and increase the risk

of neurological diseases (76).

Aberrant DNA methylation patterns have been observed in

various neurological disorders, contributing to changes in gene

expression and cellular function (77). Here, we summarize the

mechanisms and dynamics of DNA methylation alterations in

neurological diseases, such as immunodeficiency, centromeric

instability, and facial anomalies (ICF) syndrome, Rett syndrome

(RTT), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS),
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Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s

disease (HD), fragile X syndrome (FXS), and epilepsy.
4.1 Immunodeficiency, centromere
instability, and facial abnormality syndrome

ICF syndrome is a rare autosomal recessive genetic disorder

characterized by fatigue, facial abnormalities, and cognitive deficits

(78). The majority of cases are attributed to mutations in one of five

genes: DNMT3b, zinc finger and BTB domain containing gene 24

(ZBTB24), cell division cycle related gene 7 (CDCA7),

lymphospecific helicase (HELLS), and ubiquitin like PHD and

RING finger domain 1 (UHRF1) (79, 80) (Figure 2). However, in

some instances, the causative gene remains unknown (81). ZBTB24

acts as a transcription factor targeting CDCA7, and CDCA7

together with HELLS protein forms a chromatin remodeling

complex (79). The pathogenic variants in ZBTB24, CDCA7, and

HELLS disrupt DNA methylation maintenance unrelated to

replication, leading to low methylation in specific regions that

rely on CDCA7/HELLS complexes for chromatin remodeling

(79). CDCA7 and HELLS, through their chromatin remodeling

activity, may promote the localization of Ku80 to double strand

break (DSB) sites, thereby supporting non homologous terminal

junction (NHEJ) repair (82, 83). This mechanism is associated with

significant features of ICF syndrome, namely reduced DNA

methylation of satellite repeat sequences near the centromere,

leading to chromosomal instability and abnormal condensation of

heterochromatin in lymphocytes (36, 84).

Recent studies have shown that the structure of DNMT3b’s

methyltransferase domain is more susceptible to mutations

associated with ICF syndrome compared to its complex with
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DNMT3L (85). Efforts to correct DNA methylation abnormalities

by targeting DNMT3b have achieved limited success, highlighting

the complexity of the disease’s molecular mechanisms (85). In the

cellular context, the protein HELLS, a member of the SNF2 ATPase

family, is important for new DNA methylation through its

interaction with DNMT3b (86). It works alongside CDCA7 in

remodeling nucleosomes, which in turn affects DNA methylation

(83). Mutations in both HELLS and CDCA7 have been found to

disrupt normal DNA methylation patterns, which cause the

progression of ICF syndrome (87). Recent findings suggest that

ZBTB24 and CDCA7 can indirectly affect DNA methylation via

DNMT3b (88). ZBTB24 does not directly bring DNMT3b to

specific areas of the genome but seems to work mainly through

CDCA7 (89). This highlights the central role of CDCA7 in

maintaining normal DNA methylation.

In summary, mutations in DNMT3b, ZBTB24, CDCA7, and

HELLS disturb the normal process of DNA methylation, which is

critical to the pathogenesis of ICF syndrome (90). In the clinical

management of ICF syndrome, current protocols largely rely on

immunoglobulin replacement therapy coupled with prophylactic

antibiotic interventions (91, 92).
4.2 Rett syndrome

RTT is a multifaceted neurodevelopmental disorder

characterized by cognitive delays, developmental impairments,

respiratory complications, motor dysfunctions, epilepsy, and an

elevated risk of sudden death (93, 94). Numerous studies have

identified mutations in the methyl-CpG binding protein 2 (MECP2)

gene as the primary etiology of most RTT cases. Oxidative stress has

been identified as a critical factor in RTT pathogenesis (95). The loss
FIGURE 2

The pathogenesis of ICF syndrome. DNMT3b mutations impair de novo DNA methylation. ZBTB24, CDCA7, and HELLS mutations lead to impaired
replication-uncoupled maintenance of DNA methylation, resulting in pericentromeric hypomethylation. This subsequently leads to DNA damage,
which eventually evolves into ICF syndrome.
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or dysfunction of MECP2 results in elevated levels of reactive

oxygen species (ROS), leading to DNA damage, protein

oxidation, and lipid peroxidation (96, 97). As a severe X-linked

neurodevelopmental disorder, RTT predominantly affects females,

with the majority of cases resulting from MECP2 mutations both

within and outside the methyl-CpG binding domain (MBD) (98).

Approximately 70% of RTT cases are attributed to eight specific

missense and nonsense mutations, including R106W, R133C,

R168X, R255X, R270X, R294X, R306C and T158M) (99), while

about 15% result from large deletions within the MECP2 gene.

These mutations lead to the loss or dysfunction of MECP2,

disrupting DNA methylation patterns and subsequent gene

expression, ultimately affecting normal brain development and

function (100–102).

The MECP2 protein comprises several functional domains,

including the N-terminal domain (NTD), MBD, interdomain

(ID), transcriptional repression domain (TRD), and C-terminal

domain (CTD) (103, 104). TRD and NID domains are essential

for recruiting gene repressors, such as the deacetylase HDAC3,

while the ID domain stabilizes the structure and binding ability of

the MBD (105). MECP2 also contains three AT-hook motifs in the

TRD, CTD, and ID, which enhance its ability to bind AT-rich DNA

sequences. Mutations in the MBD of MECP2, affecting its DNA-

binding affinity, can be classified into three categories: those causing

significant reduction (e.g., L110V, S134C, P152R, D156E),

moderate increase (e.g., A140V, R111G), and minimal or slight

effects (e.g., F155S, R106Q, R106W, R133C, R133H) on MECP2’s

DNA-binding affinity (34, 106, 107). These structural domains and

motifs enable MECP2 to interact with specific DNA sequences,

functioning as both a transcriptional activator and repressor

depending on the methylation patterns and cellular context (108).

MECP2 selectively repress the expression of long genes in neurons

by binding to CA methylation sites, contributing to the cellular

anomalies observed in RTT (109). MECP2 also acts as an activator

by interacting with CREB (cAMP response element-binding

protein), playing a role in neuronal maturation. The delayed

onset of RTT symptoms is believed to be associated with the

postnatal accumulation of methylated CpA dinucleotides (mCpA)

and MECP2 binding to these sites, contributing to progressive

neurodevelopmental abnormalities (110).

Using murine models, researchers have highlighted the key role

of MECP2 in brain function and development. Constitutive MECP2

knockout (KO) mice, designed to study MECP2 loss, exhibit severe

neurological symptoms such as uncoordinated gait, hindlimb

clasping, and irregular breathing after an initial period of normal

development (111, 112). These mice exhibit decreased brain volume

and smaller, more densely packed neurons in the hippocampus,

cortex, and cerebellum (113, 114). Further investigations using a

conditional knockout approach with the Nestin-Cre transgene to

ablate MECP2 expression specifically in the brain during embryonic

development revealed phenotypes similar to those of constitutive

KO mice, indicating that the observed abnormalities stem from

neuronal dysfunction (115). Moreover, transgenic mice

overexpressing MECP2 recapitulate numerous behavioral

phenotypes observed in R MECP2 KO mice, highlighting the

necessity of precise MECP2 level regulation for proper central
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nervous system function. Both the absence and overexpression of

MECP2 lead to neurofunctional deficits akin to those observed in

RTT patients, emphasizing the need for careful control of MECP2

expression (116, 117).

However, the relationship between MECP2 and RTT still poses

many unresolved questions and challenges. For example, selecting

an efficient delivery vector, ensuring it reaches a sufficient number

of cells, preventing the newly implanted gene from becoming

inactive, and managing any adverse effects from the added

MECP2. Current research explores various viral vectors, such as

lentiviruses, retroviruses, and adeno-associated viruses (AAVs), for

gene delivery (118). Initial experiments utilizing AAVs to deliver

MECP2 into mice lacking this protein have shown promising

results. Recent studies demonstrated that the miRNA-Responsive

Autoregulatory Element (miRARE) effectively reduced toxicity in

self-complementary AAV9 miniMECP2 gene therapy in mice

(119). TSHA-102, the human-ready version, showed significant

improvements in respiration, weight, survival, and motor function

in Mecp2−/y knockout mice, supporting its advancement to clinical

trials for RTT (NCT05606614). These studies demonstrated that the

reintroduction of MECP2 led to alleviated motor impairments and

improved spontaneous movement in these mice (120).

Ongoing research on MECP2 delivery methods and therapeutic

approaches, including gene therapy and novel pharmacological

agents, emphasizes MECP2’s pivotal role in DNA methylation

and its therapeutic potential for RTT. Understanding the intricate

relationship between MECP2, DNA methylation, and cellular

processes is crucial for unraveling the molecular mechanisms

underlying RTT (121). Further research is needed to fully

elucidate how mutations in MECP2 disrupt its function and

contribute to the development of RTT. Additionally, further

exploration is needed to understand the correlation between DNA

methylation patterns and the clinical manifestations of

these conditions.
4.3 Multiple sclerosis

Multiple sclerosis (MS), an autoimmune-mediated

neurodegenerative disease, which is characterized by progressive

neurological dysfunction with a notably higher incidence among

young adults (122, 123). Within the broader context of

neurodegenerative disorders, MS is unique for its distinctive

alterations in DNA methylation landscapes (124). DNA

methylation changes in genes associated with immune response,

inflammation, and myelination have been observed in MS (125,

126). Oxidative stress is a critical factor in the pathogenesis of MS.

This oxidative damage exacerbates the demyelination process and

contributes to neuronal injury (127). Additionally, the etiology of

MS involves complex interactions between genetic, non-genetic,

and random factors, making research into causative treatments still

in its early stages (127). Genome-Wide Association Studies

(GWAS) have proven to be critical tools in unraveling the

etiology of MS (127). By comparing disease cases with controls,

GWAS has identified over 200 genetic loci associated with MS

(127). Advances in methodology, increased sample sizes, and
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improvements in statistical techniques have greatly enhanced our

understanding of MS genetic structure (128).

Current research has expanded beyond the previously

emphasized Human Leukocyte Antigen DR 1 (HLA-DRB1) to

uncover several new key genetic risk factors, including TET2 (10-

11 Translocation 2), Foxp3 (Forkhead Box P3), ATXN1 (Ataxin-1),

RP11-326C3.13, TNFSF14, Dysferlin (DYSF), and Zinc Finger

Protein 638 (ZNF638) (129–133). These discoveries offer new

insights into the genetic background and etiology of MS

(Table 1). Compared to healthy controls, MS patients show

significantly downregulated expression of TET2 in peripheral

blood mononuclear cells (PBMCs), correlating with abnormal

methylation patterns in the promoter regions of TET2 and

DNMT1 (134). These abnormal methylation patterns contribute

to the epigenetic dysregulation observed in MS pathology (81).

Additionally, hypermethylation of the Foxp3 gene promoter in T

cells results in reduced Foxp3 expression, impairing Treg cell

function and disrupting immune homeostasis, thereby

exacerbating MS progression (83, 85). GWAS have identified

RP11-326C3.13 and TNFSF14 as consistently associated with

multiple omics layers (132). Furthermore, a mutation associated

with rapid disease progression in MS has been identified between

the previously unlinked genes Dysferlin (DYSF) and Zinc Finger

Protein 638 (ZNF638) (133). DYSF is involved in cell damage

repair, while ZNF638 helps control viral infections, suggesting that

this mutation may be directly related to disease progression.

The complexity of MS pathology is highlighted by the dynamic

interactions between various cellular components, including the

immune system, glial cells, and neurons (135). Studies using animal

models such as experimental autoimmune encephalomyelitis (EAE)

in mice and marmosets, as well as analyses of human cerebrospinal

fluid (CSF) and peripheral blood samples, have provided insights into

these interactions (136, 137). For instance, B cells from MS patients

exhibit hypomethylation and have a higher number of differential

methylation sites (DMPs) compared to T cells. In B cells,

hypomethylation of the ATXN1 gene correlates with MS risk

variants and leads to elevated levels of ATXN1 mRNA, potentially

contributing to MS pathogenesis (124). These findings suggest that

DNA methylation changes in specific genes, such as ATXN1, in B

cells may play a role in MS development (124). Additionally, cell

type-specific differentially methylated positions (csDMPs) research

indicates that over 60% of csDMPs are predominantly

hypermethylated in B cells, while csDMPs in monocytes are more

evenly distributed (124). Significant differential methylation effects in

the HLA regions highlight notable variations between cell types, with

strong signals originating primarily from monocytes and B cells, and

to a lesser extent, from T lymphocytes (124). These findings

underscore the complex interplay among various cell types and

their contributions to MS pathology (137).

Recent epigenetic research in MS has indeed identified several

promising therapeutic targets. DNAMethylation inhibitors, such as

5-azacytidine and decitabine, can modulate the immune response

and suppress the abnormal activation of immune cells by regulating

aberrant methylation patterns in MS (73). However, 5-azacytidine

is not without limitations. Despite its potential, 5-azacytidine has

demonstrated significant toxicity in multiple mouse and cell
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term use in clinical settings (138, 139). TET2 is crucial for

maintaining proper DNA methylation patterns, and its

downregulation is associated with MS pathology. Compounds

targeting TET2, such as 5-aza-2’-deoxycytidine (Decitabine), aim

to restore normal methylation processes and potentially ameliorate

disease symptoms (140, 141). Similarly, Foxp3 is essential for

regulatory T cell (Treg) function, and its hypermethylation

impairs immune regulation in MS. Compounds targeting Foxp3,

such as Trichostatin A, G9a inhibitors, and Resveratrol, aim to

correct these epigenetic disruptions and restore Treg cell function,

which could be pivotal in managing MS. Immunotherapies

targeting T regulatory (Treg) cells and HLA-DRB1 have shown

early promise, but require rigorous evaluation in randomized

clinical trials to definitively establish their safety and efficacy (142).

Understanding DNA methylation’s role and its interaction with

risk factors in different cell types involved in MS is crucial for

unraveling the mechanisms of this complex neurological disorder

and identifying potential therapeutic targets. Further research is

required to decode the intricate relationships between DNA

methylation, gene expression, and cellular components in

MS pathogenesis.
4.4 Amyotrophic lateral sclerosis

ALS, also known as Charcot’s disease, is a lethal and uncommon

neurodegenerative disorder of the central nervous system (143).

Early-stage symptoms are often misdiagnosed due to their similarity

to other conditions, resulting in delayed diagnosis (143). ALS

manifests through muscle atrophy, spasticity, dysphagia,

respiratory insufficiency, and cognitive symptoms including

irritability, compulsive behaviors, and depression (143). Despite

extensive research, the exact pathophysiological mechanisms

underlying ALS remain incompletely understood.

Over thirty genes and loci have been implicated in ALS,

including C9orf72, TARDBP, FUS, VCP, PFN1, TBK1 (144).

These genetic mutations contribute to the multifaceted nature of

ALS, causing disruptions in protein homeostasis, RNA metabolism,

DNA repair, excitotoxicity, endosomal/vesicular transport, and

neuroinflammation (144). Extensive evidence has demonstrated

abnormal DNA methylation patterns in ALS patients, irrespective

of age at onset (144).

DNA methylation patterns in ALS patients reveal significant

deviations involving multiple genes and biological pathways (145,

146). Early studies identified notable hypermethylation in genes

related to calcium dynamics, oxidative stress, and synaptic

function, predominantly in non-promoter regions such as introns

and cryptic areas. Subsequent research highlighted that DNA repair

genes, such as Ogg1, Apex1, Pnkp, and Aptx, exhibit reduced

methylation in sporadic ALS, suggesting that alterations in DNA

damage accumulation and repair mechanisms are linked to disease

progression (147). Whole-genome DNA methylation analyses of

monozygotic and triplet twins have identified significant differential

methylation in genes like RAD9B and C8orf46, with RAD9B’s altered

methylation confirmed in ALS (148). Hypermethylation of C9orf72 is
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linked to transcriptional repression in ALS/frontotemporal dementia

(FTD) patients, potentially serving as a neuroprotective mechanism

that mitigates molecular distortions related to hexanucleotide repeat

expansions (149). In postmortem central nervous system tissues from

ALS patients, particularly in lower motor neurons, reduced levels of

5mC and 5hmC have been observed, correlating with the presence of

TDP-43 proteinopathies (150). Compared to controls, ALS patient

lower motor neurons exhibit significantly lower levels of these

epigenetic markers, suggesting an association between TDP-43 and

DNA methylation, while changes in glial cell methylation are

minimal and primarily affect lower motor neurons (151).

Recent meta-analyses have identified 45 differential methylation

positions (DMPs) across large sample sets, involving 42 genes

enriched in pathways related to metabolism, cholesterol

biosynthesis, and immunity (152). Additionally, whole-blood

methylation studies have uncovered 34 significant DMPs

involving 13 genes, including 5 hypermethylated and 29

hypomethylated sites, and 12 differential methylation regions

(DMRs) linked to 12 genes (153). Notably, the methylation levels

of certain genes are significantly correlated with age of onset and

disease duration.

Collectively, these studies underscore the aberrant DNA

methylation patterns in ALS patients, encompassing diverse

biological functions and disease mechanisms, including DNA

repair, immune response, and cholesterol biosynthesis. These

findings underscore the pivotal role of DNA methylation in ALS

pathogenesis and may offer novel diagnostic and therapeutic avenues.
4.5 Alzheimer’s disease

AD is a progressive neurodegenerative condition that severely

impairs cognitive and memory functions (154). This decline is due
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to neuronal loss, formation of neurofibrillary tangles (NFTs) and

amyloid plaques, ultimately resulting in neuronal death and tissue

atrophy (155). In AD, DNA hypermethylation has been reported in

the promoters of genes involved in synaptic plasticity, memory

formation, and neuroinflammation, potentially contributing to the

cognitive decline and neurodegeneration (156, 157).

DNA methylation significantly influences the formation of

neurofibrillary tangles (NFTs) and amyloid plaques in AD (158).

Specifically, abnormal DNA methylation patterns contribute to

amyloid-beta (Ab) and phosphorylated tau protein aggregation,

thereby fostering plaques and tangles formation (159). Methylation

alterations in genes such as sirtuin1 (SIRT1), Ankyrin 1 (ANK1),

Ribosomal protein L13 (RPL13), Rhomboids family member 2 gene

(RHBDF2), and Cadherin 23 (CDH23) have also been implicated in

AD pathogenesis, influencing Ab and tau pathways (Table 2).

Aberrant DNA methylation patterns may contribute to the onset

and progression of AD (160). Furthermore, research has

demonstrated that reduced levels of 5mC and its oxidized form

5hmC, are inversely correlated with the accumulation of amyloid-

beta (Ab) and phosphorylated tau proteins in AD (161). The

amyloid precursor protein (APP) gene encodes the precursor

protein that is cleaved to produce Ab peptides, which accumulate

in the brains of AD patients (162). Hypomethylation of the APP

gene may lead to increased expression of APP and enhanced

production of Ab peptides, contributing to the development of

AD pathology (163). Age-related memory loss is tied to changes in

DNA methylation patterns, which are modulated post-learning

(164, 165). Modulating Dnmt3a or Tet2 expression has shown

potential in reversing age-related memory impairments (166).Tau

proteins, essential in AD DNA methylation, are instrumental in

regulating genes linked to Ab and tau pathways (167). Target genes

involved in AD includes ATP6V1G2 and VCP, hinting at their role

in disease progression (168). Moreover, emerging studies highlight

sex-specific epigenetic mechanisms in AD, revealing gender-specific

correlations with the disease for CpG sites in genes like TMEM39A

and TNXB (169).

Reactive oxygen species (ROS) and DNA methylation are

crucial in AD pathogenesis. ROS, produced during normal

metabolism, increase under oxidative stress, causing damage to

lipids, proteins, and DNA (170). This damage accelerates the

accumulation of amyloid beta (Ab) plaques and NFTs, advancing

neuronal damage and disease progression. Hydroxyl radicals

(•OH), a highly reactive form of ROS, are especially damaging to

neuronal DNA, contributing to neurodegeneration in AD (171).

Under oxidative stress, DNA methyltransferases DNMT1 and

DNMT3B, along with sirtuin SIRT1, relocate to CpG islands

(CGIs) and form complexes with PRC2 subunits like EZH2 and

EED, leading to localized DNA methylation (172). This primarily

affects low-expression regions with high CpG density (HCP), while

high-expression CGI promoters resist methylation, though the

reasons for this are unclear (172). Additionally, pro-inflammatory

cytokines like IL-1b, released by activated microglia, promote Ab
production (173). Nicolia et al. found that IL-1b gene promoter

hypomethylation occurs early in AD, with no significant change in

late-stage AD compared to controls (173). However, IL6

methylation decreases in the frontal cortex as AD progresses,
TABLE 1 DNA methylation and multiple sclerosis.

Gene/
protein

Function Mechanism Reference

TET 2 Contributing to
the epigenetic
dysregulation in
MS pathology

Regulating the promoter
regions of TET2

(134)

HLA-
DBR1*15:01

A genetic risk
factor for MS

Key for antigen
presentation to CD4+
T cells

(235)

HLA-
DRB1*07:01

Increasing
MS risk

Affecting CD4+ T
cell activation

(236)

HLA-
DRB1 *11

Affecting
MS susceptibility

Influencing antigen
presentation to CD4+ T
cells and
immune response

(236)

Foxp3 Exacerbating
MS progression

Hypermethylation of the
Foxp3 gene promoter in
T cells, impairing Treg
cell function

(237)

ATXN1 Contributing to
MS pathogenesis

Hypomethylation of the
ATXN1 gene in B cells

(124)
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explaining the observed changes in IL-1b and IL6 protein

levels (174).

The finding from the comprehensive AD epigenome-wide

association study (EWAS) described 5246 CpG sites and 832

differentially methylated regions in 296 brain samples highlights

the widespread changes in DNA methylation associated with AD

(175). The study identified significant associations between the CpG

site cg08806558 at the IGF1 promoter and AD features, such as

Braak stages and amyloid plaques, suggesting IGF-1’s role in b-
amyloid clearance (175). It confirmed known AD-related CpG sites

and discovered new associations, including GPR56 (175). The

findings highlight a subnetwork involved in insulin-like growth

factor transport regulation, revealing its potential role in AD (175).

Furthermore, the effective discrimination of AD and non-demented

controls based on multiple CpG sites and RNA expression

underscores the potential of DNA methylation patterns as

biomarkers for AD diagnosis and prognosis (175). DNA

methylation in blood and brain samples is emerging as a vital

biomarker for AD. The hypermethylated APP gene, in particular,

stands out for AD prognosis (53). Pioneering studies indicate that

targeting DNMTs could mitigate amyloid pathology (176).

Compounds like epigallocatechin gallate and etanercept show

potential in AD treatment (176). Essential methylation

compounds, including vitamin B, folic acid, and SAMe, are

currently under clinical scrutiny for their therapeutic potential in

neurodegenerative diseases (177–179).

These findings underscore the critical role of DNA methylation

and hydroxymethylation in regulating the expression of genes

involved in AD pathogenesis. Nonetheless, targeted DNA

methylation holds potential as a therapeutic approach for
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reducing Ab levels in AD, which may have implications for the

potential therapeutic targets to mitigate AD pathology.
4.6 Parkinson’s disease

PD manifests as a constellation of symptoms, encompassing

motor retardation, postural instability, tremor, and cognitive

impairment, predominantly affecting the aged (180–182). High

levels of dopamine metabolism, iron, and calcium, coupled with

mitochondrial dysfunction and neuroinflammation, contribute to

the excessive production of ROS in the brains of PD patients (183).

This increased oxidative stress damages dopaminergic neurons and

exacerbates neurodegeneration. Reports indicate that DNA

methylation changes in genes related to dopaminergic signaling,

mitochondrial function, and neuroinflammation are present in PD

patients (183). For example, cytoplasmic a-synuclein (SNCA)

methylation leads to a-synuclein accumulation and ROS

production, while PARK7 (DJ-1) hypomethylation impairs

antioxidant function (184). These alterations may contribute to

the loss of dopaminergic neurons and motor symptoms

characteristic of PD (185–187).

Recent epigenomic assessments have unearthed specific DNA

methylation aberrations in genes pivotal to PD, such as SNCA

(188), Transmembrane and coiled-coil domain family 2 (TMCC2)

(189), Solve Carrier Family 17 Member 11 (SLC7A11) (190), HOX

transcript antisense RNA (HOTAIR) (191), SLC17A6 (VGLUT2),

PARK7 (DJ-1), PTPRN2 (IA-2b), and NR4A2 (NURR1) (192)

(Table 3). For instance, SNCA intron 1 methylation modulates its

transcription and has been directly implicated in PD pathology

(188, 193). The methylome status of TMCC2 has been linked with

Braak Lewy body staging in dementia and PD (189). Emerging

evidence also implicates elevated SLC7A11 methylation, which

perturbs glutathione levels, in PD pathogenesis (194). Epigenetic

dysregulation in PD is further illustrated by the hypermethylation

of the PGC1-a promoter, a master regulator of mitochondrial

biogenesis (27, 195, 196). Additional studies indicate that

HOTAIR overexpression in PD facilitates SSTR1 gene

methylation, worsening motor function and dopaminergic neuron

survival (191). Gene-specific hypomethylation in PARK7 (DJ-1)

and NR4A2 (NURR1) suggests their involvement in both idiopathic

and familial forms of PD (197–200).

Indeed, compounds such as 5-aza-cytidine and RG108, which

are designed to target DNA methylation, are currently being

investigated for their potential efficacy in neurodegenerative

diseases, such as PD (201). These compounds work by inhibiting

DNA methyltransferases and promoting DNA demethylation,

potentially reversing abnormal DNA methylation patterns

associated with PD (202–204). However, these compounds also

have limitations. 5-aza-cytidine can cause side effects such as

nausea, vomiting, appetite loss, and bone marrow suppression,

and its complex metabolic process may affect its efficacy (205).

RG108’s effectiveness is still under investigation, with issues related

to its stability and bioavailability potentially impacting its

effectiveness (205). A comprehensive understanding of the

epigenetic foundations of PD could enable clinicians to tailor
TABLE 2 DNA methylation and Alzheimer’s disease.

Gene/
protein

Function Mechanism Reference

Tau Protecting
from AD

Regulating microtubules and
neuronal structure, promoting
NFTs formation.

(159)

VCP Impacting
AD
progression

Methylation at specific CpG
sites, impacting cellular
maintenance and functions,
including autophagy,
chromatin remodeling and
DNA repair

(168)

LST1 Enhancing
inflammation
in AD

Negative regulatory function in
leukocyte signaling

(168)

APOE*e4 Genetic risk
factor related
to AD risk

Promoting Ab accumulation (238)

TMEM39A Genetic
markers
related to
AD risk

Affecting sex-
specific susceptibility

(169)

TNXB Genetic
markers
related to
AD risk

Affecting sex-
specific susceptibility

(169)
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treatment regimens to individual methylation profiles, advancing

the field of precision medicine (205). By targeting specific DNA

methylation changes, personalized therapeutic approaches for PD

may become a reality (206).
4.7 Huntington’s disease

HD, an autosomal dominant neurodegenerative disorder, is

characterized by choreiform movements, mental health

disturbances, and cognitive decline (207). The pathology

predominantly manifests in the striatal region, affecting various

brain areas and causing multifaceted neural impairments in motor

control, cognitive abilities, and emotional balance (208). Oxidative

stress and mitochondrial dysfunction are intricately linked and

work in tandem within the pathology of HD, playing crucial roles in

the disease’s mechanisms and progression (209).

The etiology of HD is primarily attributed to the huntingtin

protein (HTT) gene contains an abnormal number of CAG repeats,

leading to the amplification of trinucleotide repeat sequences

(TNR), specifically the CAG codon, resulting in the synthesis of

an abnormal protein with an expanded polyglutamine (polyQ) tract

(210, 211). In investigating DNA methylation changes in cells

expressing mutated HTT, the researchers utilized a technique

called Reduced Representation Bisulfite Sequencing (RRBS) to
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map DNA methylation sites in cells with either wild-type or

mutant HTT (212). RRBS, which enriches CpG-rich regions of

the genome, provides high-resolution methylation data for these

areas. The method involves digesting genomic DNA with a

restriction enzyme targeting CpG sites, followed by bisulfite

treatment to convert unmethylated cytosines to uracils, and

subsequent sequencing of the treated DNA (212). The study

revealed that, in the presence of mutant HTT, a significant

portion of genes with altered expression exhibited pronounced

changes in DNA methylation, particularly in regions with low

CpG content known to undergo methylation changes due to

neuronal activity. Further analysis identified AP-1 and SOX2 as

key transcriptional regulators associated with these DNA

methylation changes, a finding validated through genome-wide

chromatin immunoprecipitation sequencing (ChIP-seq) (212).

Notably, alterations in the binding of AP-1 family members, such

as FRA-2 and JUND, were closely linked to increased DNA

methylation, suggesting that mutant HTT may disrupt normal

transcriptional regulation (212). These insights elucidate how

mutant HTT affects neurogenesis by altering DNA methylation

patterns and highlight new research avenues and therapeutic

strategies for early intervention in HD.

Additionally, an investigation observed a significant reduction

in 5-hydroxymethylcytosine (5-hmC) signals in the brain tissue of

transgenic mice carrying an artificial chromosome with 128 CAG

repeat sequences (YAC128 mice), indicating impaired 5-hmC

reconstruction in the brains of HD mice after birth (213). The

study also identified disease-specific hydroxymethylation regions

(DhMRs) associated with positive epigenetic regulatory factors

influencing gene expression, such as axonal guidance signaling,

GABA receptor signaling, and Wnt/b-catenin/Sox, affecting

neuronal development and function in HD pathogenesis (213). A

large-scale DNA methylation study further confirmed the link

between HD and an increase in epigenetic age in human blood

DNA, with the accelerated epigenetic aging positively associated

with the progression of motor symptoms (214).

Advances in technologies and research approaches, such as high-

throughput sequencing, single-cell analysis, and genome editing, are

providing new opportunities to study DNA methylation and its role

in HDmore comprehensively. This deeper understanding could pave

the way for novel therapeutic strategies aimed at modulating DNA

methylation patterns to mitigate HD pathogenesis.
4.8 Fragile X syndrome

FXS is the most prevalent inherited intellectual disability,

emerging early in life with a range of impairments including

deficits in communication skills, cognitive abilities, physical

features, as well as epilepsy, anxiety, and heightened sensitivity to

stimuli (215). Associated with the Fragile X Mental Retardation 1

(FMR1) gene, FXS is the second most prevalent cause of comorbid

autism spectrum disorders (216). The primary etiology of FXS

involves the expansion of CGG trinucleotide repeats in the 5′
untranslated region of the FMR1 gene, typically ranging from 55
TABLE 3 DNA methylation and Parkinson’s disease (PD).

Gene/
protein

Function Mechanism Reference

SNCA Contributing to
PD pathology

Increasing accumulation
of a-synuclein and ROS
production, affecting
dopaminergic
neuron function

(193)

TMCC2 Contributing to
PD pathology

Forming complexes with
APOE and APP,
regulating to Braak Lewy
body staging

(189)

SLC7A11 A biological target
in PD

Transporting cystine and
glutamate, disrupting
glutathione levels and
increasing oxidative stress

(190)

HOTAIR Promoting
neurodegeneration
in PD

Influencing ERK1/
2 signaling

(191)

PARK7 Protecting cells
from oxidative
stress in PD

Impairing antioxidant
function and resulting in
dopaminergic neuron loss

(192)

SLC17A6 Transporting
glutamate in PD

Altering neurotransmitter
release and
vesicular transport

(192)

PTPRN2 Protecting
from PD

Impacting the function of
insulin signaling-
related proteins

(192)

NR4A2 Protecting
from PD

Affecting the development
and function of
dopaminergic neurons

(192)
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to 200 repeats in premutation carriers and exceeding 200 repeats in

full mutation alleles (216). This expansion leads to FMR1 promoter

silencing via an epigenetic mechanism involving DNA methylation

of the CGG repeat region and adjacent regulatory areas (216).

The core pathology of FXS revolves around the expansion of

CGG repeats within the FMR1 gene, which triggers DNA

methylation and subsequent gene silencing (216). Specifically,

when the CGG repeat count exceeds 200, DNA methylation at

the FMR1 promoter increases. This methylation inhibits

transcription factor binding and converts chromatin into a more

condensed, transcriptionally inactive state, leading to FMRP

deficiency and the manifestation of FXS symptoms (216). Further

research indicates that with more than 400 CGG repeats, DNA

methylation and gene silencing become significantly more stable,

demonstrating a more persistent methylation state (216).

The expanded CGG repeats can form stable secondary

structures, such as hairpins, which disrupt normal transcriptional

processes (217). These structures, coupled with DNA methylation

and histone modifications, make reactivation of the FMR1 gene

challenging (217).

In response to these epigenetic changes, several therapeutic

strategies have been explored. 5-azacytidine and 5-azadeoxycytidine

have been used to remove DNA methylation and restore FMR1

gene transcriptional activity (218). These drugs have shown partial

recovery of FMRP expression in FXS cell lines, but their effects are

transient, and issues such as cytotoxicity and lack of cell specificity

persist (218). Histone deacetylase inhibitors, like 4-phenylbutyrate

and sodium butyrate, can induce histone acetylation but show

limited effects when used alone (218). They exhibit synergistic

effects when combined with demethylating agents, offering more

effective restoration of FMR1 gene activity (218).

CRISPR/Cas9 gene-editing technology offers a promising

approach for FXS treatment by excising CGG repeat expansions

or specifically editing DNA methylation. This technology has

demonstrated the potential to restore FMR1 gene function and

improve electrophysiological abnormalities in neurons (219, 220).

These findings suggest that targeting DNA methylation and histone

modifications could partially restore FMR1 gene function and

provide potential therapeutic pathways for FXS (219, 220).

However, further research is required to address the limitations of

current therapies and develop more effective, specific treatments.

Additionally, research into pharmacological interventions has

aimed at correcting synaptic defects and restoring FMR1 gene

activity. Investigations into epigenetic interventions, particularly

DNA demethylation, have included the use of 5-azacytidine and 5-

azadeoxycytidine (221). These treatments have achieved partial

restoration of FMR1 activity in vitro, though the effects are

temporary and constrained to the FMR1 promoter region (222).

The toxicity of 5-azadC limits its clinical application, but combining

it with histone deacetylase inhibitors like sodium butyrate has shown

synergistic effects in FXS lymphoblastoid cell lines, leading to more

effective restoration of FMR1 gene activity. These studies highlight

the potential of targeting DNA methylation and histone

modifications to restore FMR1 function, though further research is

necessary to developmore effective and less toxic treatment strategies.
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4.9 Epilepsy

Epilepsy is a complex neurological disorder, primarily classified

into focal epilepsies (such as mesial temporal lobe epilepsy, MTLE),

generalized epilepsies, and secondary epilepsies (223). Characterized by

recurrent seizures, epilepsy significantly impacts cognitive,

psychological, and social functioning (223). The pathophysiological

mechanisms of epilepsy vary across different types, but epigenetic

studies have highlighted the pivotal role of DNA methylation in

multiple forms of the disorder.

In temporal lobe epilepsy (TLE), reelin gene hypermethylation

disrupts the dispersion of granule cells and the expression of reelin (224,

225). Key epigenetic factors such as NEUROD2 and MECP2 play

significant roles in epilepsy; the former is involved in DNA

demethylation, while the latter regulates neurodevelopment and

synaptic function (226). Methylation changes in the BDNF gene

promoter are associated with drug-resistant epilepsy, whereas DNA

methylation alterations in the SCN1A and SCN2A promoters are

linked to Dravet syndrome (227, 228).

Mesial temporal lobe epilepsy (MTLE), often accompanied by

hippocampal sclerosis (HS), is characterized by severe neuronal loss

and glial proliferation in the hippocampus (229, 230). In MTLE,

DNA methylation levels exhibit a significant negative correlation

with gene expression. Notably, the variability of DNA methylation

in the hippocampus is higher than in the cortical regions, which

may be closely related to the severe neuronal damage in the

hippocampus (229, 230). The changes in DNA methylation

primarily involve pro-inflammatory mechanisms, such as MHC

class II antigen presentation, suggesting a pivotal role of

neuroinflammation in the progression of MTLE (231). Alterations

in DNA methylation of microglia may affect their inflammatory

responses, thereby influencing the course of epilepsy.

In the study of drug-resistant temporal lobe epilepsy (DR-TLE),

DNA methylation patterns exhibit significant changes across different

brain regions and peripheral blood. Analysis using the Illumina Infinium

Methylation EPIC BeadChip array on 19 DR-TLE patients and 10 non-

epileptic controls revealed 32, 59, and 3,210 differentially methylated

probes (DMPs) in the hippocampus, amygdala, and epileptogenic zone

surrounding cortex (SCEZ), respectively (232). These DMPs are

associated with genes involved in neurotrophic factors, calcium

signaling, voltage-gated channels, and inflammatory processes.

Particularly noteworthy is the analysis of cell-free DNA (cfDNA)

methylation, which provides a non-invasive means to reflect disease

mechanisms. In DR-TLE, cfDNA methylation patterns show

significant overlap with those observed in the hippocampus,

suggesting that cfDNA could serve as a potential peripheral

biomarker for the disease (233). The Illumina Infinium Methylation

EPIC BeadChip analysis revealed substantial differences in genome-

wide DNA methylation patterns between MTLE patients and healthy

controls, including genes involved in anion binding, redox activity, and

cell growth regulation, such as SLC34A2, CLCN6, and CYP3A4 (234).

Notably, the DMP (cg26834418, CHORDC1) in the

hippocampus demonstrates a strong blood-brain correlation,

indicating its potential as a peripheral biomarker for DR-TLE

(232). Additionally, the methylation status of several DMPs in the

SCEZ (such as SHANK3, SBF1, and MCF2L) was validated through
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1401962
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1401962
methylation-specific qPCR (232). The differentially methylated

CpGs were categorized into differentially methylated regions

(DMRs): 2 in the hippocampus, 12 in the amygdala, and 531 in

the SCEZ. Furthermore, new genes previously unassociated with

DR-TLE, such as TBX5, EXOC7, andWRHN, were identified (232).

These findings offer novel insights into the epigenetic modifications

associated with DR-TLE and suggest that DMPs in the SCEZ may

be related to voltage-gated channel in the amygdala.

In summary, these studies reveal the crucial role of DNA

methylation in the onset and progression of epilepsy, particularly

through the modulation of inflammatory responses. The integration

of cfDNA methylation analysis adds a non-invasive dimension to

understanding and monitoring the disease. These findings offer new

perspectives on the pathological mechanisms of epilepsy and lay a

foundation for the development of personalized treatment

strategies. Future research should focus on further elucidating the

mechanisms of DNA methylation, developing novel diagnostic

tools, and advancing personalized therapeutic approaches.
5 Conclusion

Significant studies have been made in understanding how DNA

methylation modulates gene expression in neurological disorders, yet

translating these insights into clinical therapies remains a significant

challenge. A challenge exists in the analysis of DNA methylation and

its application in disease diagnosis. DNA methylation patterns can

vary across different tissues and cell types, making it necessary to

obtain samples from the disease-affected tissue for accurate analysis.

To overcome these limitations, researchers are exploring alternative

approaches, such as analyzing DNA methylation patterns in specific

cell types or using tissue-specific markers to enrich for disease-

affected cells. Additionally, advancements in technologies, such as

single-cell DNA methylation sequencing, may provide more precise

and informative insights into tissue-specific DNA methylation

patterns. Studies have highlighted notable commonalities in DNA

methylation abnormalities across various neurological disorders,

underscoring the pivotal role of DNA methylation in disease

mechanisms by modulating gene expression and participating in

disease mechanisms. Common mechanisms, such as disrupted gene

regulation and abnormal inflammatory responses, provide critical

insights into disease pathogenesis and may aid in developing a

mechanistic model based on DNA methylation. Targeting DNA

methylation holds promise for therapeutic interventions. DNA

methylation abnormalities are increasingly recognized as diagnostic

and prognostic markers, particularly in pathways related to oxidative

stress and neuroinflammation. Furthermore, advancements in

technologies such as WGBS, RRBS, MSP, methylation arrays,

MeDIP-seq, and pyrosequencing have deepened our understanding

of the complex DNA methylation landscapes associated with these

disorders. However, translating these insights into clinical practice

remains challenging due to the complexity of methylation patterns

and the need for disease-specific sample analysis.

Despite advances, significant knowledge gaps and clinical

challenges remain. Future research should focus on elucidating DNA

methylation mechanisms across different diseases, developing reliable
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diagnostic tools, and formulating effective therapeutic strategies.

Specifically, targeting DNA methylation in neurodegenerative

contexts requires careful consideration of potential risks, such as side

effects and long-term safety concerns. Continued exploration of DNA

methylation’s role in neurological disorders could refine diagnostic and

prognostic methods and open new avenues for innovative

therapeutic interventions.
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