
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Diana Bahia,
Federal University of Minas Gerais, Brazil

REVIEWED BY

Celio Geraldo Freire-de-Lima,
Federal University of Rio de Janeiro, Brazil
Rahul Shivahare,
The Ohio State University, United States
Laila Gutierrez Kobeh,
National Autonomous University of Mexico,
Mexico

*CORRESPONDENCE

Lorenzo Lodi

lorenzo.lodi@unifi.it

†These authors have contributed equally
to this work

RECEIVED 17 March 2024
ACCEPTED 15 August 2024

PUBLISHED 18 September 2024

CITATION

Lodi L, Voarino M, Stocco S, Ricci S,
Azzari C, Galli L and Chiappini E (2024)
Immune response to viscerotropic
Leishmania: a comprehensive review.
Front. Immunol. 15:1402539.
doi: 10.3389/fimmu.2024.1402539

COPYRIGHT

© 2024 Lodi, Voarino, Stocco, Ricci, Azzari,
Galli and Chiappini. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 18 September 2024

DOI 10.3389/fimmu.2024.1402539
Immune response to
viscerotropic Leishmania:
a comprehensive review
Lorenzo Lodi1,2*†, Marta Voarino 1, Silvia Stocco1†,
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L. donovani and L. infantum infections are associated with a broad clinical

spectrum, ranging from asymptomatic cases to visceral leishmaniasis (VL) with

high mortality rates. Clinical manifestations such as post-kala-azar dermal

leishmaniasis (PKDL) and visceral leishmaniasis-associated hemophagocytic

lymphohistiocytosis-mimic (VL-associated HLH-mimic) further contribute to

the diversity of clinical manifestations. These clinical variations are intricately

influenced by the complex interplay between the host’s immune response and

the parasite’s escape mechanisms. This narrative review aims to elucidate the

underlying immunological mechanisms associated with each clinical

manifestation, drawing from published literature within the last 5 years.

Specific attention is directed toward viscerotropic Leishmania sinfection in

patients with inborn errors of immunity and acquired immunodeficiencies. In

VL, parasites exploit various immune evasion mechanisms, including immune

checkpoints, leading to a predominantly anti-inflammatory environment that

favors parasite survival. Conversely, nearly 70% of individuals are capable of

mounting an effective pro-inflammatory immune response, forming granulomas

that contain the parasites. Despite this, some patients may experience

reactivation of the disease upon immunosuppression, challenging current

understandings of parasite eradication. Individuals living with HIV and those

with inborn errors of immunity present a more severe course of infection,

often with higher relapse rates. Therefore, it is crucial to exclude both primary

and acquired immune deficiencies in patients presenting disease relapse and VL-

associated HLH-mimic. The distinction between VL and HLH can be challenging

due to clinical similarities, suggesting that the nosological entity known as VL-

associated HLH may represent a severe presentation of symptomatic VL and it

should be considered more accurate referring to this condition as VL-associated

HLH-mimic. Consequently, excluding VL in patients presenting with HLH is

essential, as appropriate antimicrobial therapy can reverse immune

dysregulation. A comprehensive understanding of the immune-host interaction

underlying Leishmania infection is crucial for formulating effective treatment and

preventive strategies to mitigate the disease burden.
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1 Introduction

Leishmaniasis is a parasitic infection caused by an obligate

intracellular protozoan parasite belonging to the genus Leishmania

of the family Trypanosomatidae. It is considered a tropical disease,

endemic in tropical and subtropical regions globally, including the

Mediterranean basin.

Leishmania behaves mainly as a vector-borne zoonotic parasite,

transmitted between animal reservoirs (i.e. dogs and rodents) and

the human host by the Phlebotomus sandfly. The infected female

sandfly introduces parasites, in the form of promastigotes, into the

host’s bloodstream during blood meals. These promastigotes are

engulfed by macrophages and other mononuclear phagocytic cells

where they transform into amastigotes, the actively replicating form

of the parasite, ultimately leading to systemic dissemination

through the reticuloendothelial system. When an infected host is

bitten by another sandfly, the ingested amastigotes transform back

into promastigotes, facilitating transmission to another mammalian

host during a subsequent blood meal. In addition, Leishmania can

also be transmitted by blood derivatives and by vertical

transmission (1–3).

Leishmania infection manifests in three distinct clinical forms:

cutaneous leishmaniasis, mucocutaneous leishmaniasis and visceral

leishmaniasis (VL), each caused by different Leishmania strains.

Within this review, we will address the host-parasite immune

interaction in VL which is caused by L. donovani and L. infantum

(also known as L. chagasi) strains. Such strains are hereafter referred

to as viscerotropic strains. According to the World Health

Organization (WHO), there are 50,000 to 90,000 new cases

occurring annually worldwide, although this data may be

underestimated due to the potential underdiagnosis and

underreporting in tropical regions (4).

VL is a disease with an extremely broad clinical spectrum ranging

from asymptomatic to clinically significant infections with high

mortality. The clinical manifestations are marked by insidious

onset of persistent fever, coupled with hepatosplenomegaly and

pancytopenia. These symptoms emerge after an extended

incubation period, typically lasting between 2 to 6 months on

average, but occasionally spanning across several years. According

to the WHO, symptomatic VL has a mortality rate of over 95% when

untreated (4).

The idea that the same parasitic strain can elicit vastly different

clinical responses in distinct individuals suggests a remarkably

intricate host-related immune reaction to the infection. While

current literature extensively explores the immune response to

VL, dissecting cellular responses in detail (5), the reasons behind

the variability in this response among individuals remain elusive

and comprehensive review addressing the immune response across

the spectrum of clinical manifestations is notably absent.

Through this narrative review, we aimed to shed light on the

underlying immunological mechanisms that contribute to the varying

spectrum of clinical conditions observed in Leishmania infection.

Understanding these mechanisms can have significant implications

for future research, particularly in the development of individually

tailored therapies and preventive strategies. The structure of the article

involves a comprehensive analysis of the immune response, starting
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from distinct clinical manifestations: asymptomatic, symptomatic VL,

hemophagocytic lymphohistiocytosis (HLH), and post-kala-azar

dermal leishmaniasis (PKDL).
2 Methods

In order to perform a narrative review of the available literature,

we searched the PubMed and Embase database from March 2018

through March 2023, using the following keywords: immune,

immunity, Leishmania, donovani, infantum. The search and the

selection process were not systematic. Articles were limited to

English language, full text availability, human species and they

were excluded if they were redundant or not pertinent. References

of all relevant articles were also evaluated, and studies published

previously than 2018 were cited if considered relevant. Results were

critically summarized in the following paragraphs: (1) Immunity

and symptomatic visceral leishmaniasis, (2) Asymptomatic

infection of viscerotropic Leishmania strains and persistence

within the human body, (3) Visceral leishmaniasis-associated

hemophagocytic lymphohistiocytosis-mimic and (4) Immunity

and post-kala-azar dermal leishmaniasis. The main information

from the cited articles has been elaborated and summarized, as

shown in the tables within the supplementary material

(Supplementary Tables S1–S4). This review was conducted in

accordance with the SANRA checklist to ensure comprehensive

and structured coverage of the subject matter.

In literature, there is no univocal consensus regarding the

definition of these clinical manifestations, therefore we propose a

nomenclature that will be used hereafter in the present review. The

terms active disease and chronic disease were intentionally omitted

as they can be misleading.
• Asymptomatic Leishmania infection (ALI): asymptomatic

individual with no history of unexplained fever who tested

positive in at least one assay that confirms the exposure to

the parasite. Parasite exposure can be proved by serological

testing, Leishmanin skin test (LST) and interferon gamma

release assay (IGRA) or the direct detection of the parasite

using Polymerase Chain Reaction (PCR).

• Visceral leishmaniasis (VL): symptomatic infection marked

by persistent fever, hepatosplenomegaly and mono/

multilinear cytopenia in a patient who has tested positive

in at least one assay confirming the exposure to the parasite.

In the existing literature, this clinical condition is

alternatively referred to as kala-azar (derived from the

Hindi term), as well as active VL or chronic VL.

• VL-associated hemophagocytic lymphohistiocytosis-

mimic: clinical course of VL can be complicated by signs

and symptoms that mime HLH disease. HLH is a

potentially life-threatening syndrome characterized by

uncontrolled activation of the immune system, leading to

hyperinflammation and tissue damage caused by a lack of

normal downregulation of activated immune cells.

According to HLH-2004 guidelines (6), the diagnosis of

HLH is performed when at least 5 of the following criteria
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are fulfilled: 1) fever, 2) splenomegaly, 3) cytopenia affecting

at least two of three lineages in the peripheral blood,

4) hypertriglyceridemia and/or hypofibrinogenemia,

5) hemophagocytosis in bone marrow, spleen, or

lymph nodes, 6) low or absent NK-cell activity, 7)

hyperferritinemia and 8) elevated soluble CD25. HLH is

defined as primary when linked to a genetic anomaly or

secondary when triggered by any other cause. VL is

historically noted as one of the possible infections linked

to secondary HLH. However, due to the clinical and

laboratory overlap between VL and HLH and, VL-

associated HLH as a distinct nosological entity may be

called into question and it should be considered more

accurate referring to this condition as VL-associated

HLH-mimic

• Latent Leishmania infection: persistence of viscerotropic

strains within the human body following the primary

Le i shmania in fec t ion which might have been

asymptomatic or resolved through medical treatment. The

latent infection can reactivate even years to decades after the

primary infection in the event of host-immunosuppression

(e.g. HIV infection)

• Pos t -ka l a -azar derma l l e i shmania s i s (PKDL) :

dermatological manifestation appearing within months to

years after successful treatment of VL caused by

L. donovani.
3 Immunity and symptomatic
visceral leishmaniasis

In 2022, 13’000 cases of VL were reported worldwide, among

which almost 50 occurred in Europe (7). These figures are likely

significantly underestimated due to underdiagnosis and

underreporting, especially in tropical areas. With a mortality rate

as high as 95% when untreated, VL stands as one of the most lethal

tropical diseases.

Symptoms usually develop insidiously or subacutely, progressing

slowly over weeks to months, and include malaise, fever, weight loss,

and splenomegaly, sometimes accompanied by hepatomegaly.

Lymphadenopathy is more common in East African VL (8).

High parasite loads accumulate in the spleen, liver, and bone

marrow, leading to severe anemia from bone marrow suppression,

hemolysis, and splenic sequestration. Late-stage disease can involve

hepatic dysfunction, jaundice, ascites and spontaneous bleeding

from various sites due to thrombocytopenia and hepatic

impairment (8). Chronic diarrhea and malabsorption are rare but

possible due to intestinal parasitic invasion (9).

The risk of developing symptomatic VL is influenced by a

complex interplay of various factors, encompassing poor socio-

economic conditions, parasite-related factors, and host-related

factors, first and foremost the immune system (4).

The immune response against viscerotropic Leishmania strands

starts upon the inoculation of the promastigotes into the host’s skin.

The initial defense is carried out by the complement system, which
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has the ability to lyse nearly 90% of the introduced parasites (10).

However, parasites are able to exploit both their own surface

metalloproteases and host’s complement regulatory proteins to

shield themselves from complement attack (11, 12), This

way, Leishmania avoids complement mediated lysis and

simultaneously takes advantage of the complement coating

exploiting it as a bait to facilitate uptake by macrophages, the

parasite’s ultimate target (13).

Moreover, the parasites’ inoculum triggers the recruitment of

phagocytic cells, primarily neutrophils which typically reach the site

of infection within a couple of hours. The pathogen-associated

molecular patterns (PAMPs) expressed by Leishmania spp are

recognized by various toll like receptors (TLRs) expressed mainly

by antigen-presenting cells. Previous studies have focused

specifically on TLR2 (14) and TLR9 role (15). This recognition

triggers a pro-inflammatory cascade, leading to the recruitment and

activation of neutrophils, which in turn respond by phagocytosing

the parasite. Within neutrophils, Leishmania faces two possible

fates: oxidative-burst-dependent death or evasion of neutrophil

cytotoxic mechanisms. The latter mainly occurs by inhibition of

lysosome fusion, thus allowing the parasite to reach and hide within

the non-lytic intracellular compartment of neutrophils (16).

Interestingly, a study conducted by Sharma et al. revealed that

surviving Leishmania parasites significantly influence the

transcriptional profile of neutrophils, inducing the expression of

interleukin-10 (IL-10) and Arginase-1—proteins associated with

Leishmania persistence, as elaborated later (17). After two days, the

infected neutrophils undergo apoptosis and are phagocytosed by

macrophages, bringing with them viable and replicating parasites.

This invasion strategy, known as the Trojan Horse, allows

Leishmania strains to enter and proliferate almost unnoticed

within macrophages: indeed, the lack of direct contact between

the parasites and macrophagic receptors prevents activation toward

a pro-inflammatory phenotype (18).

Once macrophages phagocytose the parasite, whether directly

or via the Trojan horse mechanism, Leishmania promastigotes,

having reached their ultimate cellular target, turn into actively

replicating amastigotes. At this stage, the parasite employs various

strategies to evade lysis induced by parasiticidal agents within the

phagolysosome (19) and alter pro-inflammatory cytokines

production (20) as brilliantly reviewed by Carneiro et al (21).

These infection-induced alterations not only hinder macrophages’

own independent killing capacity but also affect antigen presentation

and T cell activation, deeply influencing the connections between

innate and adaptive immunity (22). The containment of infection is

compromised by the shift in the inflammatory environment toward an

anti-inflammatory (macrophage M2/T helper 2) milieu, more

permissive for parasite survival. This fact has been extensively

demonstrated since the 1980s when numerous experiments

conducted on murine models revealed susceptibility to severe

disseminated L. major infections in mice with T helper 2 (Th2)

prevalence (23).

Moreover, infected-macrophages express anti-inflammatory

cytokines (such as IL-10) and surface programmed cell death-

ligand 1 (PDL-1), an immune checkpoint downregulating T cells

response, contributing to T cells exhaustion (24). This exhaustion,
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demonstrated by an experiment conducted by Habiba et al., is

characterized by a shift to a profile of diminished cytokine secretion

21 days after the infection following the initial pro-inflammatory T

cell response (CD4+ and T helper 17 (Th17) T cells secreting

interferon-g (IFN-g), Tumor Necrosis Factor-a (TNF-a) and

IL-17), as shown in Figure 1. Epidemiological studies in VL

patients supported these findings, indicating reduced CD4+ and

CD8+ T cells’ expression of pro-inflammatory cytokines even after

mitogen stimulation, with restoration of a normal secretion upon

antimicrobial therapy (25).

Interestingly, the plasma of VL patients exhibited high levels of

IFN-g and IL-10. Considering that INF-g could not be secreted by

exhausted T cells, the authors postulated that it originated from natural

killer (NK) cells, a hypothesis later supported by Prajeeth et al. (26),

who elucidated the ability of NK cells to induce INF-g-associated
cytotoxicity. The reason why macrophages and CD4+ T cells do not

respond adequately to a pro-inflammatory stimulus like INF-g remains

unknown. Eventually, this phenomenon could be dependent on the

high levels of IL-10 (27) secreted by B cells (28) and causing

macrophagic cytokines deactivation thus blunting INF-g activity.

Indeed, even NK cells and CD4+ T cells will become important IL-

10 producers in the later stages of the infection as a consequence of

persistent and extensive activation (29). After pharmacological

treatment it is possible to observe a drop in both IL-10 and INF-g
expression, concomitant to the containment of the infection (28).

Regarding the B cells compartment, VL induces a strong B cell

activation characterized by hypergammaglobulinemia. These

polyclonal low-affinity antibodies are non-protective as they do

not contribute to the containment of the infection while they

mediate pathology through downregulation of defensive pro-
Frontiers in Immunology 04
inflammatory mechanisms and induction of autoimmune

manifestations (30) and immune complexes. A study conducted

by Silva-Barrios et al. revealed that the absence of hypermutated and

class-switched antibodies was associated with disease resistance,

correlated to a stronger Th1 response and reduced IL-10

production (28).
3.1 Visceral leishmaniasis in the
immunocompromised host

Immunocompromised individuals, whether due to inborn

errors of immunity (IEI) or acquired immunodeficiencies, exhibit

heightened susceptibility to symptomatic and potentially life-

threatening Leishmania infections.

It is not surprising that Human Immunodeficiency Virus (HIV)

co-infection and Acquired Immunodeficiency Syndrome (AIDS) is

a major susceptibility factor to leishmaniasis, being both HIV and

Leishmania endemic in many tropical and subtropical areas (31).

Worldwide, Ethiopia has the highest rate of VL-HIV co-infections,

with 30% of VL cases presenting HIV (32). Although most VL-HIV

coinfected patients present typical VL symptoms, there is a notable

tendency to involve organs not typically parasitized, such as the

lungs, skin and gastrointestinal tract (33–35). This can lead to

misdiagnose it as another opportunistic infection, delaying VL

diagnosis and contributing to a poor outcome. Indeed, a

retrospective cohort study conducted in Brazil found that

coinfected individuals had a double relapse rate compared to

those without coinfection and the fatality rate among coinfected

cases was three times higher than non-coinfected cases (36).
FIGURE 1

Depiction of cellular immune interplay in effective (A), ineffective (B) and frustrated (C) response. (A) The parasites induce a pro-inflammatory
response, where INF-g is predominant. The response is mediated by CD4+ T cells, T helper 17 and NK cells secreting pro-inflammatory cytokines
(INF- g, TNF-a and IL-17). B cells play a minor role producing non-protective antibodies and secreting anti-inflammatory mediators such as IL-10.
(B) The response is characterized by an anti-inflammatory environment dominated by a Th2 response, where IL-10 becomes predominant. Infected
macrophages express PDL-1 and secrete IL-10, contributing to the exhaustion of cytotoxic CD8+ T cells. NK cells and CD4+ T cells produce IL-10,
while B cells play a more central role causing a marked hypergammaglobulinemia associated with the production of polyclonal non-protective
antibodies, downregulating defensive pro-inflammatory mechanisms. (C) The exhaustion of T lymphocytes and persistent immune stimulation result
in unchecked proliferation and phagocytic activity of macrophages. This cycle is further fueled by INF-g released by NK cells, culminating in a
cytokine storm. The clock image represents the timeliness of the immune response. The inappropriate timing of inflammatory cytokine production is
graphically represented by the clock with the turtle. IL, interleukin; INF-g, interferon-g; NK, natural killer; PDL-1, programmed cell death-ligand 1;
Th2, T helper 2; TNF-a, tumor necrosis factor-a.
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Several authors reported a higher mortality rate in coinfected

patients and the cause of death is attributed to additional conditions

linked to AIDS, including opportunistic diseases and treatment-

related complications (35, 37, 38). Nevertheless, the parasite itself

plays a pivotal role in this process, due to the chronic

immunostimulation amplifying HIV replication, leading to the

advancement of HIV infection toward AIDS (39, 40). Indeed, as

shown in a cross-sectional study, in the infected cells Leishmania

induces an increased expression of C-C chemokine receptor type 5

(CCR5), a co-receptor for HIV entry into CD4+ and CD8+ T

lymphocytes, facilitating the increase in HIV viral load and the

progression of immunosuppression (41). Also, HIV co-infected

patients may present an altered equilibrium between the

regulatory T cells (Treg) and immune-activation environment,

with an up-regulated expression of Cytotoxic T-Lymphocyte

Antigen 4 (CTLA-4) on the autologous Treg, increasing their

suppressive function and leading to parasite persistence and

higher relapse rate, despite successful HIV and leishmaniasis

treatment (41).

As in co-infected patient, also non-HIV immunosuppressive

conditions resulting from iatrogenic factors including immune-

ablative chemotherapy or immunosuppressive drugs can hinder

the immunological control of VL, leading to reactivation from

latent infection or inability to control new infection (42). These

conditions are frequently seen among transplant, rheumatologic or

oncologic patients, as they can affect multiple layers of the immune

system, primarily impacting T-cell lymphocytes through

mechanisms such as depletion, interference with maturation, cell

cycling, co-stimulation, and induction of tolerance (43). Evidence is

still lacking for VL screening in immunosuppressive therapy or

organ transplantation candidates in endemic areas, and

recommendations for secondary prophylaxis in non-HIV

immunosuppressed VL patients remain unclear, despite some

studies indicating reduced relapses (43, 44).

When HIV co-infection or other causes of acquired

immunodeficiency are excluded and a VL patient presents with

atypical symptoms, it is mandatory to rule out any kind of IEI.

Altered T-cell function, impaired phagocytosis, and deficiencies in

cytokine production may contribute to prolonged parasite survival

and dissemination in the host. There are few reports in literature of

IEI associated with leishmaniasis and in most cases the infection

itself was the trigger revealing the primary immunodeficiency.

Finocchi et al. were the first to document a case of VL infection

in a 3-year-old child with chronic granulomatous disease (CGD)

and a poor response to amphotericin B (45). Moreover, Al Ayed

et al. reported a case of a 6-month-old infant with disseminated L.

donovani and CGD. Due to the atypical cutaneous diffusion of the

parasite, an immune work out was performed and CGD was

confirmed (46). Carvalho et al. described two cases of VL in two

different immunocompromised patients, one with GATA2

deficiency and the other one with Griscelli Syndrome, both with

relapses after VL treatment, requiring secondary prophylaxis (47).

Late detection of immunodeficiency in atypical VL cases

results in delayed diagnosis, prolonged infection, and increased

severity. Unraveling genetic susceptibility or other acquired

immunodeficiency is crucial for targeted interventions and
Frontiers in Immunology 05
advancing understanding of host-parasite interactions. As

regards the management of immunocompromised patients,

currently WHO guidelines are available only for the treatment

of VL in HIV co-infected patients. According to a randomized

trial conducted in Ethiopia, combination therapy with Liposomal

Amphotericin B plus miltefosine is recommended, in place of

monotherapy (48). Furthermore, a secondary prophylaxis with

pentamidine should be considered after the first episode of VL in

patients with CD4+ < 200 cells/mL, as few reports showed a lower

relapse-free survival rate compared to patients out of prophylaxis

(49, 50).

WHAT WE ALREADY KNEW: The containment of infection

is compromised by the shift in the inflammatory environment

toward an anti-inflammatory (M2/Th2) milieu, more permissive

for parasite survival. Immunocompromised individuals are more

susceptible to Leishmania infection, which can have an atypical and

worse course than in the immunocompetent people. HIV co-

infection is very common, due to the similar epidemic area of

both virus and Leishmania.

WHAT WE NOW KNOW: Leishmania parasites hijack the

pro-inflammatory cascades exploiting various mechanisms

including immune checkpoints. The susceptibility to the infection

is strongly dependent upon the finely tuned balance between IL-10

and INF-g expression. HIV-VL coinfected patients have higher

relapse and mortality rate than the one with VL only. Primary

prophylaxis is not recommended, but secondary prophylaxis should

be started in HIV-VL coinfected patients with CD4 cells count

below than 200 cells/mL. VL patients should be screened for primary

immunodeficiency, particularly in cases of VL relapse.

WHATWE STILL DONOT KNOW: The factors, both host and

parasite-related, polarizing the immune response toward an M2/Th2

profile in individuals who develop a symptomatic infection are still

not known. The indications for secondary prophylaxis remain to be

defined in non-HIV-related immunocompromised patients.
4 Asymptomatic infection of
viscerotropic Leishmania strains and
persistence within the human body

Quantifying the exact prevalence of asymptomatic Leishmania

infection is extremely challenging as it would imply the screening of

healthy subjects in endemic tropical areas. Adding to the

complexity, the lack of a clear consensus on the definition of

asymptomatic patients leads to substantial variability in the

diagnostic tests used across studies, such as LST, serological

analysis, or PCR.

A systematic review and meta-analysis estimated that the

prevalence of L. infantum and L. donovani infections in otherwise

healthy individuals in endemic areas were 13.4% and 6.9%

respectively. Consequently, a striking 68% of all viscerotropic

Leishmania infections were asymptomatic (51). In a Northen

region of Italy, according to a study conducted by Ortalli et al.

the estimated prevalence of L. infantum infection among

asymptomatic blood donors was reported to be 12.5% (52).
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It would follow that most individuals who encounter

viscerotropic strains of Leishmania are able to mount an immune

response able to contain and eradicate the infection, without even

exhibiting the related symptoms. The idea that a parasite, which can

potentially be lethal, is in fact largely harmless to its host in the

majority of cases, casts doubt on its inherent pathogenicity and

suggests that susceptibility to this infection may be due to one’s

immunological profile. However, it is important to underline that

among the population of asymptomatic carriers, there might be a

subgroup of individuals who will later develop symptoms. This

subgroup could include patients categorized as asymptomatic

because they were tested during their lengthy incubation period.

A prospective cohort study by Chakravarty et al. found that 8 out of

476 seropositive patients developed VL during a 3-year follow-up

(53). Numerous studies have proposed various biomarkers,

including cytokine profiles, antibody titers, and antibody avidity,

as potential indicators to differentiate and even predict the

progression of the infection to symptomatic disease (53–56).

Moreover, it is now widely recognized that viscerotropic

Leishmania strains have the ability to persist within the human

body even after medical treatment or self-healing, possibly leading

to a subsequent reactivation of the disease, even in cases in which

the primary infection has progressed asymptomatically. The notion

of the persistence of Leishmania parasites in asymptomatic patients’

questions whether the human body is able to eradicate the infection

at all. At present, the confirmation of parasite persistence is

primarily established upon disease relapse, in the form of PKDL

or VL reactivation during periods of immunosuppression (i.e. in

cases of HIV infection). Currently, there is no evidence on the

possibility of reactivation in immunocompetent patients. A study

conducted in Ethiopia revealed that after a 3-years follow-up, 78.1%

of VL-HIV coinfected patients experienced relapses as opposed to

the cohort of immunocompetent VL patients who did not

experience any relapse (57).

A combination of host related factors such as nutritional status,

socio-economic conditions, and genetic factors play a crucial role in

the manifestation of asymptomatic infections. Regarding age-specific

factors, it’s interesting to note that both children and elderly people

may present with asymptomatic infections. Indeed, according to the

systemic review and meta-analysis conducted by Mannan et al. the

prevalence of asymptomatic leishmaniasis in children residing in

endemic areas is 10.9% (51). Genome wide association studies have

shed light on specific genetic traits, such as HLA-DRB1*15 and HLA-

DRB1*16, which are associated with a lower susceptibility to VL (58,

59). Furthermore, despite HIV-infected patients being more

susceptible to severe forms of VL, some individuals within this

cohort may still develop asymptomatic infections [up to 9% in an

endemic area of India (60)], underlining the complexity and

variability of the immune response to Leishmania in different

individuals. The asymptomatic HIV-infected patients were younger,

more often on antiretroviral therapy and with a higher CD4+ count

compared to the symptomatic group (61).

Giorgio et al. have postulated that the discriminating factor

between an effective immune response and an ineffective one is

one’s ability to form granulomas able to contain the parasite (62).

This theory is based on histological findings discovered during an
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early study highlighting the presence of granulomas on liver

biopsies in asymptomatic infected patients (63). Indeed,

asymptomatic patients exhibit a pro-inflammatory macrophage

(M1) and T helper cells polarization (Th1) response, mainly

mediated by CD4+ T cells, CD8+ T cells, and invariant NKT cells

(61, 64, 65). This pro-inflammatory milieu is prompted by

neutrophils which will prime and shape the following

macrophage leishmanicidal response (5, 66). Macrophages,

despite being the primary target for the parasites, play a crucial

role in the containment of the infection by both mediating the

killing of parasites and inducing an effective T cell response.

Likewise, NK cells contribute to a pro-inflammatory state by

stimulating the production of IFN-g (26, 67).
In theory, the more the immune response is skewed toward a pro-

inflammatory M1/Th1 response, the higher the likelihood of effectively

containing the parasite. Furthermore, this theory is corroborated by the

presence of Th17, highly pro-inflammatory helper T cells, in

asymptomatic and healing VL patients, whereas their expression is

downregulated in VL symptomatic patients (68). Nevertheless, when

analyzing the distribution of CD4+ T cell subsets in asymptomatic

hosts, a notable shift toward both Th1 and T regulatory subsets can be

observed (64). This observation underscores the intricate balance

between creating a pro-inflammatory environment that is essential

for containing the parasites and concurrently preventing immune-

mediated tissue damage.

In order to establish a latent infection, that parasites can

withstand the attempts of the immune system to clear them,

leading to the establishment of a persistent infection through two

main mechanisms:
1. by enduring the pro-inflammatory (M1) environment;

Leishmania parasites can persist within macrophages,

dendritic cells, reticular fibroblasts and long-term

hematopoietic stem cells (69), displaying resilience to

the toxic activity of phagocytic cells’ oxidative stress.

Mandel l and Bever ley (70) demonstrated that

Leishmania parasites can both survive and actively

replicate within these cells. In their in vitro and murine

models, the overall number of persistent parasites

remained relatively constant over time, suggesting that

ongoing destruction of some parasites must also be

occurring at the same time, thus underlying the finely

tuned equilibrium between the parasite and the host

immune system, ultimately peacefully coexisting. In

theory, the active proliferation of the parasite provides

the continuous antigenic stimulus preventing a second

Leishmania infection: this concept is known as

concomitant immunity. However, in their experiment,

the persistence of L. major did not impede super-

infection with a second L. major line even though it

conferred an advantage in resulting in less severe

clinical pathology (71). This result has a very important

implication in the context of vaccine development.

Indeed, future vaccines aiming at inducing the

persistence of live-attenuated parasites could not

prevent supra-infections with other Leishmania parasites.
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2. by finding refuge within niches where the anti-inflammatory

(M2) environment prevails. Interestingly, the mutual

influence between macrophages and viscerotropic

Leishmania strains alters the inflammatory milieu found

within granulomas. Indeed, some authors hypothesized the

presence of niches within the granulomas characterized by a

Th2/M2 environment permissive to amastigote persistence

and active proliferation inside the macrophages. These niches

could serve as a parasitic reservoir resistant to medical

treatment, potentially leading to reactivation of the infection

during immunocompromised status (62, 72). Notably, this

finding seems to be more creditable for spleen granulomas

while liver granulomas can contain the parasite more

effectively by showing a more inflammatory environment.

This theory is corroborated by the fact that murine and

hamster models infected with L. donovani were found to

express in the spleen higher levels of Arginase 1, an enzyme

associated with Th2 environment and persistence of

Leishmania (73–75).
Moreover, persistent antigenic stimulus may lead to T cells

exhaustion, as previously illustrated.

The notion of Leishmania persistence within the human body

leads to several implications in a clinical setting. The most

important one being the necessity of clinically monitoring all

immunosuppressed patients who encountered viscerotropic

strains of Leishmania during their lifetime, given our current

difficulties in discerning those who successfully eradicated the

disease from those still harboring actively replicating parasites.

Takele et al. proposed the utilization of RNA sequencing to

measure L. donovani mRNA in blood as a valuable tool to

monitor parasitic load over time (57). Another crucial

consideration is the need to establish guidelines for secondary

prophylaxis. Currently, according to the Infectious Disease Society

of America (IDSA) guidelines, chronic maintenance therapy

(secondary prophylaxis) is only indicated in case of HIV-

coinfection and low CD4+ counts. In all other instances,

treatment is limited to patients with evidence of clinical and

parasitological relapse (76).

WHATWE ALREADY KNEW: most individuals encountering

viscerotropic Leishmania strains are able to mount an effective

immune response ultimately leading to an asymptomatic course of

the infection. VL strains can persist within the human body after

spontaneous or iatrogenic recovery and reactivate in the form of

PKDL or VL reactivation during periods of immunosuppression

(e.g. during HIV infection). The persistence of the parasite can

induce concomitant immunity thus impeding a second clinically

severe VL, even though it most probably cannot prevent a

secondary Leishmania infection.

WHATWE NOWKNOW: approximately 68% of viscerotropic

Leishmania infections will have an asymptomatic course. The

effective infection-containing immune response is mainly based

on pro-inflammatory Th1/M1 response leading to the formation of

granulomas. VL strains can both resist the immunity attack and

persist in various niches within the body. The persistence of the

parasite does not prevent colonization by Leishmania strains even
tiers in Immunology 07
though it diminishes clinical pathology, provided that the immune

system is still competent.

WHATWE STILL DO NOT KNOW: we are still lacking a clear

and universally accepted definition of asymptomatic Leishmania

infection along with suitable diagnostic tools, also due the

difficulties tied to the extended incubation period associated with

this condition. The prevalence of persistent viscerotropic

Leishmania infection in humans, its duration and its transmission

risk are still not known.
5 Visceral leishmaniasis-associated
hemophagocytic
lymphohistiocytosis-mimic

Leishmaniasis was historically recognized as one of the primary

protozoan infections capable of triggering secondary HLH, a life-

threatening syndrome characterized by a maladaptive immune

response involving T cells and innate immunity (77, 78). HLH

was traditionally defined as secondary when a precise genetic

predisposition could not be identified and a patent environmental

trigger (infectious, iatrogenic, malignant, etc.) was present.

However, with the increasing understanding of the genetic

complexity underlying HLH the dichotomy between primary

(genetically defined) and secondary (environmentally triggered)

appears to be oversimplifying and misleading (79). In this regard,

the status of VL-associated HLH (VL-HLH) as a distinct

nosological entity can be subject to questioning, due to the

extensive overlap in clinical features between VL and HLH (80).

Indeed, it is plausible that individuals previously diagnosed with

VL-HLH actually exhibited just a severe form of symptomatic VL.

According to the HLH-2004 trial, HLH diagnosis is

established if at least five of the subsequent criteria are met:

fever, splenomegaly, bilinear cytopenia, hypertriglyceridemia

and/or hypofibrinogenemia , t i ssue hemophagocytos is

phenomena, reduced NK-cell activity, hyperferritinemia, and

elevated sCD25 (sIL-2R) levels (6). Since the most common

clinical manifestations of VL include fever, hepatosplenomegaly

and mono/multilinear cytopenia, it is evident that Leishmania

infection itself can emulate the hemophagocytic syndrome,

making their differentiation exceedingly challenging. Rajagopala

et al. in their review of patients with VL and HLH reported the

following findings: patients presented with fever (100%),

splenomegaly (98%), hepatomegaly (80%), pancytopenia (88.9%)

and lymphadenopathy (11%) (81). These signs and symptoms are

non-specific to a single entity and may manifest in either VL,

HLH, or both conditions simultaneously (4, 6).

Regarding laboratory findings, hyperferritinemia is another

characteristic feature of VL, associated with systemic

inflammation, along with elevated levels of IL-2 indicating T-cell

activation (82). Furthermore Chandra et al., in their clinical study

examining morphological features through bone marrow aspirate

cytology, demonstrated mild to moderate hemophagocytosis in

70.3% of cases, indicating that this finding may occur in VL as a

component of dyserythropoiesis (83).
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In addition to consolidated HLH biomarkers encoded by the

2004 diagnostic criteria, some authors have identified an expansion

of CD38high/HLA-DR+CD8+ T cells in HLH (84, 85), that relates to

an increase of sIL-2R as an expression of T cell activation (86) which

has also been described in forms classified as VL-HLH

(87). However, this lymphocyte population seems to show

different degrees of expansion in all forms of VL which would

make it unsuitable for discriminating between VL and HLH

(unpublished data).

To further cast doubt on the existence of VL-HLH as a distinct

entity is the response to different treatments, as VL-HLH

consistently responds to VL antimicrobial therapy (88, 89)

whereas in full-blown HLH triggered by infections such as EBV,

mere infection control without immunomodulatory therapy can be

insufficient for HLH control (90).

In Europe and the United States, liposomal amphotericin B (L-

AmB) is recommended as first-line treatment for VL. Moreover, its

efficacy in VL-HLH patients was extensively demonstrated (88)

(89). Further immunosuppressive therapy as dictated by the HLH-

94/04 protocol or novel immunomodulatory approaches as JAK-

inhibithors or emapalumab could be unnecessary or even

dangerous in VL-HLH as treatment with anti-parasitic drugs

alone is sufficient for complete recovery (81) (91–93). Moreover,

there were no differences in terms of outcome and relapses between

two cohorts of patients diagnosed with VL and HLH, the first one

treated with L-AmB monotherapy and the other one with L-AmB

and additional immunomodulatory therapy with corticosteroids

(94). Indeed, in their Recommendations for the Management of

HLH in Adults, La Rosée et al. advise against immunosuppressive

therapy (95). Nevertheless, several authors proposed that in more

severe or refractory cases, corticosteroids treatment could be

beneficial to cease the cytokine storm (78, 96).

With these premises, however, considering the historical

significance in literature of the relationship between VL and

HLH, the topic will be further addressed in this paragraph

referring to this entity as VL-associated HLH-mimic.

A retrospective cohort study conducted by Daher et al. revealed

that 27.6% of Brazilian children with VL developed HLH during the

disease’s progression (97). This percentage rose to as high as 41.7%

in a multicentric case series conducted in Spain (98).

While the pathophysiology of HLH has been extensively

studied, the precise mechanisms potentially triggering HLH in the

context of VL remain incompletely understood. Indeed, the chronic

and persistent nature of the infection can lead to a sustained

immune activation and dysregulation, impairing the ability of NK

cells and cytotoxic T lymphocytes to limit activated phagocytic cells

(99–102). The unchecked activation of macrophages will ultimately

lead to the phagocytosis of the host’s cells (103).

One of the main mechanisms underlying the pathogenesis of

this condition is the significantly skewed production of cytokines

toward a pro-inflammatory state, the so-called cytokine storm. As

shown in a retrospective study in Beijing, Th1 cytokines such as

IFN-g were found to be higher in VL-HLH patients compared to

those with VL alone where the Th2 profile seems to prevail (104).

The cytokine storm reinforces the vicious cycle of NK cells and

macrophages’ activation ultimately resulting in hemophagocytosis,
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tissue damage, organ failure and other inflammatory manifestations

(105). It could be speculated that this could happen as a result of an

initial ineffective immune response that leads to parasite

persistence, prolonged immune stimulation and overly late skew

toward a Th1 profile, which ultimately results ineffective for parasite

control in that phase and initiates the HLH-mimic cycle, as

illustrated in Figure 1.

Although VL-associated HLH-mimic is considered a rare

complication in immunocompetent adults, it is frequently seen in

immunocompromised adults and children, especially under 5 years

of age (106–108). Specifically, in a retrospective study conducted in

Spain, it was noted that within the pediatric population, children

under two years of age were more susceptible to this complication.

Therefore, Lopez et al. hypothesized that the immaturity of the

developing immune system puts younger children at an elevated

risk of developing HLH (94). Furthermore, in patients with

impaired function of phagocytic cells, associated with IEI such as

CGD, the risk of HLH triggered by Leishmania infection seems to

be increased (109). The very fact that patients more susceptible to

severe course of the infection are more prone to develop VL-HLH

corroborates the thesis that these two clinical manifestations may be

a continuum of the same spectrum.

Likewise, due to the strong association between these two

clinical entities, a patient presenting with HLH in an endemic

region should always be investigated for VL and VL-associated

HLH-mimics cases investigated for underlying IEI. Indeed, two

significant studies conducted in Spain and in Southern Iran

demonstrated that VL was responsible for 20% and 33.3% of the

analyzed HLH cases, respectively (78, 88). These percentages

exceeded what has been reported in the existing literature,

suggesting that this association might have been previously

underestimated or that the prior diagnosis of HLH may have

been incorrect.

Furthermore, as indicated by a retrospective study conducted in

Germany involving a pediatric cohort of HLH and VL patients, the

global migratory patterns and the impact of climate change are

modifying the distribution of VL, extending it beyond tropical

regions (89). As a result, applying a systematic evaluation for

potential Leishmania infection should be a part of the routine

diagnostic work-up in patients with HLH, even in regions that are

not traditionally endemic for Leishmania. This proactive approach

helps to prevent unnecessary and potentially detrimental high-dose

immunosuppression, which would not address the underlying

infectious cause of the immune dysregulation.

WHAT WE KNEW: Historically, Leishmania has been

considered a triggering pathogen for HLH and the clinical course

of VL can be complicated by HLH, especially in the pediatric

population. In VL-HLH, antimicrobial therapy of the underlying

cause may be sufficient for complete recovery.

WHAT WE NOW KNOW: Currently, the existence of the

nosological entity VL-HLH is debated due to the clinical and

laboratory overlap between the two conditions and it should be

considered more accurate referring to this condition as VL-

associated HLH-mimic. It is essential to exclude VL in patients

presenting with HLH. Due to the spread of viscerotropic

Leishmania strains in traditionally non-endemic regions, it is
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important to screen for Leishmania also patients presenting with

HLH in non-endemic regions. Patients presenting with VL-

associated HLH-mimic should undergo a complete immune

work-up to rule out underlying IEI like CGD.

WHAT WE STILL DO NOT KNOW: Unraveling shared

pathogenic mechanisms between severe forms of VL and HLH

not associated with leishmaniasis can provide insights into the

functioning of HLH and facilitate the identification of potential new

therapeutic targets. The role of systemic corticosteroid therapy in

severe forms of VL-associated HLH-mimic might be beneficial but

is still debated.
6 Immunity and post-kala-azar
dermal leishmaniasis

PKDL is a dermatological complication occurring months to

years after successful treatment of L. donovani-associated VL (110).

PKDL is prevalent in East Africa and the Indian subcontinent,

where L. donovani is endemic, emerging in 5-15% of South Asian

patients within 5 years and up to 50% in East Africa within months

(110, 111). Interestingly, 16% of Sudanese patients presented PKDL

lesions during VL treatment, suggesting a potential new clinical

entity called para-kala-azar dermal leishmaniasis (112).

Furthermore, the clinical presentation varies as shown in

Table 1. African patients present papular, macular or nodular

lesions mostly healing spontaneously within 6 months to 1 year

from onset, whereas in South Asia, PKDL is not self-limiting and

presents in two distinct clinical forms, the polymorphic or the

macular one (113).

PKDL poses a significant public health concern increasing the

spread of VL: indeed, patients’ skin lesions act as a reservoir of

viable parasites (114–117).

To date, the reasons why L. donovani turns its tropism from

visceral to dermal during a reactivation is still debated. Several

factors, including treatment regimens, environmental conditions,

host immune system, as well as parasite-related factors, are

proposed to influence this transition from cured VL to PKDL.

Since PKDL lesions typically appear on sun-exposed-skin (face,

ears, arms) it is believed that UV light plays a crucial role in PKDL

susceptibility (112, 118). Indeed, UV light, especially UVB, is a potent

immunosuppressive agent causing a dysfunction in the antigen-

presenting activity of epidermal Langherans cells, producing cellular

morphology alterations such as shortening and loss of dendrites,

swelling and rounding, that ultimately lead to a reduction of

expression of the major histocompatibility complex (MHC) class II

(118). Moreover UV light plays a role in the generation of Treg cells

and leads to skewed cytokine production (119).

Host immune response has a decisive role in PKDL

development. As broadly demonstrated, after antileishmanial

treatment for VL the immune response shifts to Th1 dominance,

with increased IL-12 and INF-g production, leading to an efficient

response to the parasite (120).

On the other hand, in PKDL patients there is a discrepancy in

the immune response observed between the skin and the visceral

organs. Indeed, as reported by Mukhopadhyay et al, PKDL patients
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toward Th2 and Treg response at a cutaneous level, promoting M2

macrophage polarization, exerting a pro-leishmania activity (121).

It could be speculated that the parasite evades treatment by

concealing itself within the skin cells where the environment is

more permissive.

Mukherjee et al.’s analysis of histopathological data from intra-

lesional PKDL biopsies confirmed the predominance of a Th2

environment (122). Notably, these biopsies exhibited a diffuse

dermal inflammatory infi ltrate primarily composed of

lymphocytes and macrophages. The extent of the infiltrate varied,

ranging from severe involvement in the polymorphic form to a

patchy perivascular distribution in the macular variant (113, 122). It

is worth noting that Indian PKDL lesions displayed a significant

increase in intra-lesional CD8+ T-cells, along with an almost

complete absence of CD4+ T-cells. CD8+ T-cell cytotoxicity

activates the NLRP3 inflammasome, causing the release of IL-1b
and contributing to chronic inflammation (113). On the other hand,

African PKDL presented a predominance of CD4+ T-cells and an

overall reduction of the inflammatory infiltrate, explaining the

relatively milder presentation and the possibility to self-heal (123).

Elevated IL-10 levels in both the skin and plasma could serve as

a predictive factor for the development and severity of PKDL,

according to findings from a Sudanese study (124).

HIV co-infection is another risk factor for PKDL development

and its severity, especially in patients with low CD4+ counts (125).

In most cases skin lesions appear during VL treatment, as in a para-

kala-azar form, and they are more widespread, with mucosal

involvement also being more frequently observed. Furthermore,

PKDL in co-infected patients is not restricted to L. donovani as

cases of L. infantum have been reported from the Mediterranean

area as well as from Latin America (126).

Regarding the genetic host susceptibility, some studies have

shown an association between PKDL and a specific polymorphism

of IFNg receptor, which results in decreased responsiveness to the

IFNg allowing parasite survival and growth (127). Additionally, the

parasite genetic profile seems to be determinant in the clinical

manifestations. Dey et al. identified different polymorphisms in a

well-defined genetic locus (b-tubulin) of L. donovani DNA,

analyzed from VL and PKDL patients. The results showed three

different recurrent patterns among the VL strains and a genetic

homogeneity in all PKDL isolates, suggesting the importance of this

specific genetic locus in determining skin or visceral

involvement (128).

The treatment of PKDL is essential to alleviate symptoms but

also to prevent the transmission. Treatment choice depends on the

regional diversity and available resources, according to the World’s

Health Organization (Table 1) (129).

Challenges in PKDL management arise from limited

understanding of its pathogenesis and the role of host immunity.

Comprehensive research is essential for effective prevention, and

efforts to control PKDL must be integrated into leishmaniasis

control programs to achieve sustainable progress in reducing the

global burden of this debilitating condition.

WHAT WE KNEW: PKDL is a dermatological complication

post-treatment of L. donovani-associated VL. The patients’ skin
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lesions represent a reservoir of the parasite, contributing to

its transmission.

WHAT WE NOW KNOW: African and Indian PKDL patients

have different characteristics, both for the clinical presentation and the

healing process. It seems that UV light exposure increases the

susceptibility for PKDL. In PKDL patients, the host immune system

presents a Th2 and Treg response, with aM2macrophage polarization,

which creates a pro-parasite environment. In HIV co-infected patients,

PKDL can occur also in patients with L. infantum infection. A new

clinical entity known as para-kala-azar is characterized by the

presentation of typical PKDL lesions during VL treatment.

WHAT WE STILL DO NOT KNOW: the exact pathogenetic

mechanism underlying the onset of PKDL and how to prevent it is

still unknown. The reason why in the skin there is a Th1 failure after

VL treatment, with a persistence of Th2 immune response is still

debated. Similarly, questions persist regarding whether in PKDL
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manifestation, the parasite migrates from viscera to seek refuge in

the skin, if it represents a reactivation of parasites latent in skin cells,

or if it signifies reinfection with cutaneous localization.
7 Conclusions

VL is a severe and traditionally tropical disease with high mortality

rates, now extending its impact to other regions such as central Europe

due to climate change and migratory flows (130). A comprehensive

understanding of the immune-host interaction and the interpersonal

differences underlying Leishmania infection is crucial to guide research

in identifying specific markers and predictive models to foresee the

disease course. This knowledge could lead to new tailored therapeutic

approaches and more effective preventive strategies, in order to reach

the ultimate goal of disease burden control.
TABLE 1 Comparison of most important features of African and Asian PKDL.

East Africa Southern Asia

Epidemiology

Incidence of PKDL after VL 50-60% 5-15%

Interval between VL and PKDL 0-6 months 2-3 years (until 30 years)

Clinical

PKDL with absent evidence of
previous VL

Yes (10% of cases) Yes

PKDL with evidence of
previous VL

Yes (60% of cases) Yes

Para-kala-azar form Frequent (15% of cases) Rare

Body distribution Face>trunk>arms>legs (usually symmetrical) Face>trunk>arms>legs

Type of skin lesions Papulo-nodular > Maculo-papular > Micro-papular > Macular
Polymorphic (both macules and indurated lesions such as papules
are present) > monomorphic (macular or nodular) > other forms
(e.g. erythrodermic form)

Grades
Grade 1 – scattered maculopapular or nodular rash on the
face, with or without lesions on the upper chest or arms;

Mild (very few lesions, usually on the face);

Grade 2 – dense maculopapular or nodular rash covering most
of the face and extending to the chest, back, upper arms and
legs, with only scattered lesions on the forearms and legs;

Moderate (lesions easily visible and generalized);

Grade 3 – dense maculopapular or nodular rash covering most
of the body, including the hands and feet; the mucosa of the
lips and palate may be involved.

Severe (dense coverage with lesions and little normal skin remains).

Treatment

Self-healing condition Yes, 85% of cases heal spontaneously within 1 year. Not reported, all cases are treated

Treatment regimens
• Sodium stibogluconate (20 mg/kg Sb5+ per day) for 30–60
days or

• Amphotericin B deoxycholate: 1 mg/kg per day by infusion, up to
60–80 doses delivered over 4 months or

• Combination of paromomycin (11 mg/kg base per day) for
17 days plus sodium stibogluconate (20 mg/kg per day) for 17–
60 days or

• Miltefosine: 100 mg orally per day for 12 weeks for patients
weighing >25 kg; 50 mg orally per day for 12 weeks for patients
weighing <25 kg

• Liposomal amphotericin B (2.5 mg/kg per day) for 20 days
when indicated

• Liposomal amphotericin B: 5 mg/kg per day by infusion two times
per week for 3 weeks for a total dose of 30 mg/kg

• Miltefosine: 100 mg per day for 28 days may be beneficial in
patients coinfected with HIV and PKDL
PKDL, Post Kala-azar dermal reaction; VL, Visceral Leishmaniasis.
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