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The therapeutic and biomarker
significance of ferroptosis in
chronic myeloid leukemia
Fangmin Zhong1,2, Xueru Zhang1, Zihao Wang1, Xiaolin Li1,
Bo Huang1, Guangyao Kong2* and Xiaozhong Wang1*

1Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical
Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated
Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China, 2National and Local
Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of
Xi’an Jiaotong University, Xi’an, Shaanxi, China
Background: The relationship between ferroptosis and the progression and

treatment of hematological tumors has been extensively studied, although its

precise association with chronic myeloid leukemia (CML) remains uncertain.

Methods: Multi-transcriptome sequencing data were utilized to analyze the

ferroptosis level of CML samples and its correlation with the tumor

microenvironment, disease progression, and treatment response. Machine

learning algorithms were employed to identify diagnostic ferroptosis-related

genes (FRGs). The consensus clustering algorithm was applied to identify

ferroptosis-related molecular subtypes. Clinical samples were collected for

sequencing to validate the results obtained from bioinformatics analysis. Cell

experiments were conducted to investigate the therapeutic efficacy of induced

ferroptosis in drug-resistant CML.

Results: Ferroptosis scores were significantly lower in samples from patients with

CML compared to normal samples, and these scores further decreased with

disease progression and non-response to treatment. Most FRGs were

downregulated in CML samples. A high ferroptosis score was also associated

with greater immunosuppression and increased activity of metabolic pathways.

Through support vector machine recursive feature elimination (SVM-RFE), least

absolute shrinkage selection operator (LASSO), and random forest (RF)

algorithms, we identified five FRGs (ACSL6, SLC11A2, HMOX1, SLC38A1,

AKR1C3) that have high diagnostic value. The clinical diagnostic value of these

five FRGs and their effectiveness in differentiating CML from other hematological

malignancies were validated using additional validation cohorts and our real-

world cohort. There are significant differences in immune landscape,

chemosensitivity, and immunotherapy responsiveness between the two

ferroptosis-related molecular subtypes. By conducting cellular experiments,

we confirmed that CML-resistant cells are more sensitive to induction of

ferroptosis and can enhance the sensitivity of imatinib treatment.

Conclusion: Our study unveils the molecular signature of ferroptosis in samples

from patients with CML. FRG identified by a variety of machine learning

algorithms has reliable clinical diagnostic value. Furthermore, the
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characterization of different ferroptosis-related molecular subtypes provides

valuable insights into individual patient characteristics and can guide clinical

treatment strategies. Targeting and inducing ferroptosis holds great promise as a

therapeutic approach for drug-resistant CML.
KEYWORDS

chronic myeloid leukemia, ferroptosis, immune microenvironment, treatment, machine
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Introduction

Chronic myeloid leukemia (CML) is a hematological neoplasm

initiated by the fusion gene BCR-ABL (1). The introduction of

tyrosine kinase inhibitors (TKIs), such as imatinib, has significantly

enhanced therapeutic efficacy for CML patients while substantially

improving their prognosis (2). However, intricate escape

mechanisms employed by tumor cells inevitably hinder the

effectiveness of these kinase drugs and lead to the gradual

development of drug resistance in patients with CML (3). These

resistance mechanisms include both primary and secondary factors;

among them, mutations in BCR-ABL protein play a crucial role (4).

Despite the advancements achieved in the development of novel

TKIs that target specific mutation sites associated with enhanced

treatment response in CML (5); challenges persist due to emerging

new mutation sites over time as well as non-mutation-based

resistance mechanisms that arise during therapy course (6).

Therefore, a more comprehensive analysis of the molecular

biology and metabolic characteristics of CML cells holds

significant clinical value for treatment decision-making and

prognosis evaluation in patients with CML.

Ferroptosis is a novel form of cell death, characterized by distinct

mechanisms and morphology compared to apoptosis, necrosis, and

autophagy (7). The process is initiated by intracellular divalent iron

or ester oxygenase, resulting in the peroxidation of highly expressed

unsaturated fatty acids on the cell membrane and subsequent

induction of ferroptosis (8–10). Morphological changes observed in

cells undergoing ferroptosis include disruption of the cell membrane,

mitochondrial outer membrane, and loss of cristae (11). The

occurrence of ferroptosis involves various regulatory pathways such

as the classical GPX4-regulated mechanism (Cyst(e)ine/GSH/GPX4

axis) (12), as well as GPX4-independent mechanisms like NAD(P)H/

FSP1/CoQ10 axis (13), GCH1/BH4/DHFR axis (14), and squalene

accumulation. Additionally, signaling pathways including E-

cadherin-NF2-Hippo-YAP, AMPK, and HIF2a-HILPDA also

modulate cellular sensitivity to ferroptosis (15–17). Numerous

studies have demonstrated that targeted induction of ferroptosis

holds promise as a new therapeutic strategy for acute myeloid

leukemia (18–20). Liu et al.’s research revealed TXNRD1’s crucial

role in cysteine depletion-induced ferroptosis in CML cells in vitro

(18, 21). However, there remains a limited understanding
02
regarding the relationship between ferroptosis and CML,

as well as its underlying mechanism, necessitating further

comprehensive investigation.

In this study, we conducted a comprehensive analysis of the

ferroptosis pathway and gene expression characteristics in CML,

aiming to elucidate the underlying mechanism of ferroptosis and its

interaction with the CML tumor microenvironment. Through

multi-group cohort analysis, we validated the diagnostic value of

ferroptosis-related genes (FRGs) in CML, and subsequent

experiments further confirmed the potential therapeutic

significance of targeting ferroptosis in overcoming drug resistance.
Methods

Data acquisition and preprocessing

The sequencing data of CML cohorts GSE13159, GSE144119,

GSE4170, and GSE44589 were obtained from the Gene Expression

Omnibus (GEO) database. The analysis cohort for this project was

the GSE13159 cohort, which consisted of 76 CML samples and 74

normal samples. Raw sequencing data were downloaded and

normalized for subsequent analysis. The validation cohort

(GSE144119) included 48 newly diagnosed CML samples, 32

remission CML samples, and 17 normal samples that were

converted to transcripts per kilobase million (TPM) values. For

clinical validation purposes, transcriptome sequencing was

performed on five chronic-phase CML samples, five blast crisis

samples, and five normal control samples with written consent from

patients approved by the Ethics Committee of the Second Affiliated

Hospital of Nanchang University; these data were also transformed

into TPM values for further validation. To differentiate between

other types of leukemia such as acute lymphoblastic leukemia (750

cases), acute myeloid leukemia (542 cases), chronic lymphocytic

leukemia (448 cases), and myelodysplastic syndromes (206 cases), a

subset of the GSE13159 cohort was utilized. Furthermore, we used

the imatinib-treated sample dataset from GSE44589 containing 198

sequenced samples to evaluate treatment response in CML patients.

Additionally, single-cell RNA-seq data from the GES76312 cohort

were employed to visualize clusters using the uniform manifold

approximation and projection (UMAP) algorithm. Finally, we
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retrieved ferroptosis pathway genes from the MSigDB database

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).
Differential expression analysis of FRG

The “limma” software package was employed for conducting

differential expression analysis of FRG. Adjusted p values below

0.05 were considered significant, indicating the presence of

differentially expressed FRGs (DEFRGs) between CML and

normal samples. Subsequently, we performed Gene Ontology

(GO) annotation and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis on these genes using the

“clusterProfiler” package (22). To quantify the activity of a

biological pathway or gene set, we utilized the Gene Set Variation

Analysis (GSVA) algorithm to calculate an enrichment score (23).
Correlation analysis and protein-protein
interaction (PPI) network construction

The Spearman method was employed for correlation analysis.

The STRING database (https://string-db.org/) was used to analyze

the PPI of DEFRG. Subsequently, the PPI network was visualized

using Cytoscape software.
Analysis of immune cell infiltration

The estimation of immune cell infiltration was conducted by

employing the deconvolution algorithm “CIBERSORT” to

accurately quantify the proportions of 22 distinct immune cell

types based on the gene expression profiles of individual

samples (24).
Potential regulatory mechanisms
associated with ferroptosis

Weighted correlation network analysis (WGCNA) was

employed to identify the genes associated with ferroptosis scores

in the GSE13159 cohort (25). Pearson correlation analysis was

utilized to construct the adjacency matrix for all matched genes, and

the scale-free topology of this matrix was established based on an

optimal soft threshold power. Subsequently, the adjacency matrix

was transformed into a topological overlap matrix (TOM). By

employing the TOM dissimilarity measure, modules consisting of

genes exhibiting similar expression patterns were identified through

average linkage hierarchical clustering, with a minimum module

size set at 30 and a cut height at 0.2. Finally, an evaluation of the

correlation between module signature genes (MEs) and ferroptosis

score was performed.
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Analysis of the diagnostic value of FRGs

To identify diagnostic biomarkers for CML, three machine

learning algorithms, namely support vector machine recursive

feature elimination (SVM-RFE), least absolute shrinkage selection

operator (LASSO), and random forest (RF) were employed to

screen the diagnostic FRGs. Additionally, LASSO regression

analysis was used to calculate regression coefficients for the

diagnostic FRGs, and a CML risk score diagnostic model was

constructed using the following formula:

Risk   score =oi
1(Coefi   *   ExpGenei),  

where i represents the specific diagnostic FRG and “Coef” and

“ExpGene” denote the regression coefficient and expression value of

that particular FRG respectively. By constructing this risk score

model, we can further assess the combined diagnostic value

of FRGs.
Revealing molecular subtypes via FRG
expression profiling

To comprehensively assess inter-individual variations in CML

patients, we employed the “ConsensusClusterplus” package to

conduct a cluster analysis of CML samples based on the

expression profiles of the diagnostic FRGs, aiming to identify

distinct molecular subtypes within CML (26). The robustness and

stability of the clustering results were confirmed through 1000

iterations. Additionally, principal component analysis (PCA) was

utilized for classification validation.
Prediction of the sensitivity of CML
samples to TKI treatment
and immunotherapy

The expression matrix and drug response data of blood cell lines

from the Cancer Genome Project (CGP) database were utilized in

this study to predict the half-maximal inhibitory concentrations

(IC50) of CML samples to TKIs. This prediction was made using

the “pRRophetic” package, a computational tool commonly used

for such analyses (27). To further investigate the response of

different risk score groups towards anti-PD-1 and anti-CTLA4

immune checkpoint inhibitors, we employed the “SubMap”

algorithm available at a publicly accessible website called

GenePattern. The SubMap algorithm is widely recognized for its

ability to forecast treatment responses based on gene expression

profiles. To assess the level of immune escape exhibited by tumor

cells in CML samples, we computed the TIDE score using an

established online resource known as Tumor Immune

Dysfunction and Exclusion (TIDE).
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Construction of microRNA (miRNA)
regulatory network for diagnostic FRGs

We employed miRTarBase, miRDB, and TargetScan databases

to predict the binding sites of miRNAs on CML diagnostic ARGs.

Subsequently, we filtered out the miRNA-target pairs that were

predicted by all three databases. The GSE90773 cohort was utilized

to identify differentially expressed miRNAs between CML cells and

normal cells, which served as the basis for constructing the miRNA

regulatory network.
In vitro experiments

The CML cell line K562 was cultured in RPMI1640 medium

supplemented with 10% fetal bovine serum and 1% penicillin-

streptomycin in a humidified incubator saturated with 5% CO2 at

37°C. The K562 cells were exposed to imatinib, and the

concentration was gradually increased until the development of

K562/IR cells capable of sustained growth in a medium containing

1mM of imatinib. This concentration is considered physiologically

relevant and may simulate the peak plasma/serum level of imatinib

(5mM). Transcriptome sequencing analysis was conducted on K562,

K562/IR, K562/IR control, and erastin-treated K562/IR cells. The

processing procedure employed in this study was based on our

previous research (28). The concentration of imatinib was gradually

increased until the induction of resistant cells was completed. Cell

viability was assessed using the cell counting kit-8 (CCK-8) assay.

For this assay, 5-e3 cells were seeded in 96-well plates, and each

group was repeated three times. After the indicated culture time, 10

mL of CCK8 solution was added, followed by incubation at 37°C for

2 hours. The optical density (OD) value at 450 nm was measured

using a microplate reader. Apoptosis detection involved staining

cells with the Annexin V-PE/7-AAD apoptosis detection kit and

subsequent examination in a flow cytometer. Additionally, reactive

oxygen species (ROS) were detected using a fluorescent probe

DCFH-DA in flow cytometry. The levels of GSH and GSSH were

determined using Solarbio’s BC1175 and BC1185 kits, respectively.

Bioss’ AK091 kit was used for GPX4 activity measurement. All

reagents were employed following the manufacturer’s instructions.

Cell homogenization was performed using lysate buffer to facilitate

the reaction between REDOX substances in the sample and

reagents, resulting in the formation of adducts that can be

quantified through colorimetry.
Statistical analysis

All analyses were conducted using the R software and

corresponding software packages. Differences between two or

more groups were assessed using the Wilcoxon rank sum test

and the Kruskal-Wallis test, respectively. The diagnostic value

of biomarkers was determined through receiver operating

characteristic (ROC) curve analysis. A bilateral P-value less than

0.05 indicates a statistically significant difference.
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Results

Molecular characteristics linked to
ferroptosis in CML

We conducted a comprehensive evaluation of ferroptosis activity

and molecular characteristics in CML using transcriptomics analysis.

The GSVA algorithm was utilized to calculate ferroptosis scores,

revealing significantly lower ferroptosis scores in CML samples

compared to normal samples (Figure 1A), while the ferroptosis

score increased following treatment remission (Figure 1B). Patients

in blast crisis (BC) exhibited even lower ferroptosis scores than those

in the chronic phase (CP) (Figures 1C, D) (Due to the limited sample

size and vulnerability to individual outliers, although Figure 1C does

not exhibit a statistically significant difference, the overall trend

persists that BC patients display lower ferroptosis scores compared

to CP patients.), and individuals with major molecular responses

displayed higher ferroptosis scores compared to non-responders

(Figure 1E). Single-cell analysis consistently demonstrated a trend

of decreased ferroptosis scores in CML patients, particularly those in

BC, which subsequently increased after treatment with TKI

(Figures 1F-H). Differential expression analysis indicated the down-

regulation of numerous genes associated with ferroptosis in CML

samples (Figures 1I, J), including those involved in iron ion

homeostasis, mitochondrial outer membrane function, and ligase

activity (Figure 1K). These differentially expressed genes were

primarily enriched in signaling pathways related to ferroptosis,

metabolic pathways, mineral absorption, and cysteine and

methionine metabolism (Figure 1L). PPI network analysis

identified STEAP3, TFRC NCQA4 TP53 IREB2 as hub genes

within the network formed by these DEFRG (Figure 1M). Volcano

plot analysis further revealed down-regulation of gene expression for

various suppressors of ferroptosis in CML samples (Figures 1N, O).

Therefore, we speculate that the observed lower ferroptosis score in

CML may be attributed to an overall decrease in inhibition of this

process within cancer cells indicating their heightened susceptibility

towards undergoing cell death through the mechanism of the

ferroptosis pathway. Ferroptosis is closely linked to lipid

metabolism, and our findings reveal a significant increase in the

activity of unsaturated fatty acids such as linoleic acid, arachidonic

acid, and a-linolenic acid in CML (Figure 1P). Considering that the

peroxidation of unsaturated fatty acids is a prerequisite for ferroptosis

to occur, this result further supports the hypothesis that CML exhibits

heightened susceptibility to ferroptosis. These results collectively

indicate an aberrant regulation of ferroptosis in CML samples,

which may have implications for the initiation and progression of

the disease.
The correlation between the ferroptosis
score and the immune microenvironment
as well as signaling pathways

The relationship between the ferroptosis score and the immune

microenvironment of CML as well as cancer pathways was further
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analyzed. It was observed that there were significant associations

between the ferroptosis score and key tumor marker pathways,

including xenobiotic metabolism, reactive oxygen species pathway,

heme metabolism, and epithelial mesenchymal transition activities

(Figure 2A). Moreover, positive correlations were found with

glycolysis and hypoxia, while negative correlations were observed

with Notch signaling and WNT beta-catenin signaling. These

findings suggest that an increased activity in the ferroptosis

pathway is accompanied by enhanced cancer cell metabolism.

Immune infiltration analysis revealed a positive correlation

between the ferroptosis score and eosinophil infiltration, M0
Frontiers in Immunology 05
macrophage infiltration, as well as regulatory T cell (Treg)

infiltration; meanwhile, a negative correlation was identified with

naive CD4+ T cells (Figure 2B). Furthermore, a significant positive

correlation was also found between the ferroptosis score and gene

expression of immune checkpoints LAG3 and TNFRSF9

(Figure 2C), indicating potential immunosuppression among

patients with high ferroptosis scores.

To gain a deeper understanding of the underlying mechanisms

associated with ferroptosis in CML, we conducted WGCNA to

explore the network of co-expressed genes significantly correlated

with ferroptosis scores. The cluster dendrogram depicted the
A B D E
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L M

N

C

O P

FIGURE 1

The characteristics of ferroptosis score and FRG expression in CML samples. (A-E) Differences in ferroptosis scores between CML samples and
normal samples were observed in various datasets: (A) GSE13159, (B) GSE144119, (C) our clinical cohort, (D) GSE4170, (E) GSE44589. (F-H) UMAP
analysis of the CML single-cell sequencing dataset GSE76312 revealed the distribution of ferroptosis scores among different patients. (I-J) Volcano
map (I) and heat map (J) illustrated the expression characteristics of FRG. (K, L) Functional annotation (K) and pathway enrichment analysis (L) were
conducted on DEFRG. (M) PPI network analysis was performed on DEFRG. (N, O) Expression characteristics of ferroptosis suppressors and drivers
were examined. (P) Differences in lipid metabolic pathway scores between normal and CML samples. BC refers to blast crisis, CP to chronic phase,
MMR to major molecular response, and NR to no response. *p < 0.05; **p < 0.01; ***p < 0.001.
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clustering characteristics of all CML samples (Figure 2D).

Figures 2E, F illustrate the scale-free fit exponential and average

connectivity analysis for various soft threshold powers. We set the

cut height at 0.2 to include modules exhibiting a correlation

coefficient greater than 0.8 (Figure 2G). Based on an optimal soft

threshold power b=15 (unscaled R^2 = 0.9), WGCNA classified the

top 5000 genes with the highest standard deviation into

23 independent co-expression modules (Figure 2H). The

correlograms depicting module-trait relationships revealed that

both yellow and sienna3 modules exhibited strong correlations
Frontiers in Immunology 06
with ferroptosis scores (Figure 2I). KEGG enrichment analysis

demonstrated that these two modules were enriched in porphyrin

and chlorophyll metabolism as well as metabolic pathways

(Figures 2J, K). Additionally, yellow module genes were found to

be associated with nitrogen metabolism, adipocytokine signaling

pathway, mTOR signaling pathway, and mitophagy; while sienna3

module genes showed enrichment in hippo signaling pathway,

glutathione metabolism, glycolysis/gluconeogenesis, and carbon

metabolism. The findings suggest that metabolic reprogramming

may contribute to the malignant proliferation of CML cells, while
A B

D
E F

G IH

J K

C

FIGURE 2

The correlation between the ferroptosis score and the immune microenvironment and signaling pathways. (A-C) Correlation analysis revealed
associations between the ferroptosis score and enrichment scores of tumor marker gene sets (A), infiltration of immune cells (B), and expression of
immune checkpoints (C). (D) Cluster plot displaying CML samples. (E, F) Scale-free fitting index and average connectivity were used to analyze
various soft threshold powers. (G) Clustering was performed on different modules, with a cutting height set at 0.2 represented by the red line. (H)
Cluster plots were generated based on different measures using 1-TOM calculation. (I) Heatmap illustrating the correlation between module genes
and ferroptosis score. (J, K) KEGG enrichment analysis was conducted for yellow module genes, as well as sienna3 module genes.
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also enhancing the susceptibility of CML cells to ferroptosis by

generating higher levels of ROS and unsaturated fatty acids (11, 29).
Analysis of the diagnostic value of FRG

We conducted further analysis on the diagnostic value of FRG

in CML. Three machine learning algorithms, namely LASSO, RF,

and SVM-RFE, were employed for dimensionality reduction to

select the most informative FRGs. From the DEFRGs, we identified

5, 6, and 6 variables that accurately distinguished CML samples

from normal samples, respectively (Figures 3A–E). Among these

variables, there were five overlapping diagnostic FRGs (ACSL6,

SLC11A2, HMOX1, SLC38A1, and AKR1C3) included among

them (Figure 3F). The expression levels of all five FRGs were

significantly downregulated in CML samples compared to normal

samples (Figure 3G). Using LASSO regression analysis, we

developed a risk score model to assess the combined diagnostic

value of FRG (Figure 3H, Supplementary Table S1). The risk score

levels were significantly elevated in the CML samples (Figure 3I).

ROC curve analysis revealed high diagnostic AUC values for ACSL6

(0.818), SLC11A2 (0.864), HMOX1 (0.782), SLC38A1(0.783),

AKR1C3(0.791), as well as for the risk score (0.920) (Figure 3J).

The combination of these five FRGs further improved their

diagnostic value.
Frontiers in Immunology 07
Validation of the diagnostic value of FRG
and analysis of their role in the evaluation
of therapeutic effect

We confirmed the diagnostic value of the five FRGS. In the

GSE144119 cohort, we observed a significant decrease in expression

levels of all five FRGS in CML samples, which showed partial

restoration after treatment response (Figure 4A). Furthermore, the

risk score levels were significantly increased in CML samples and

exhibited a significant decrease after treatment remission

(Figure 4B), thereby demonstrating the therapeutic evaluation

value of FRG. ROC curve analysis revealed that ACSL6,

SLC11A2, HMOX1, SLC38A1, AKR1C3, and the risk score model

had AUC values of 0.949, 0.934, 0.868, 0.842, and 0.975 respectively

(Figures 4C-H); thus confirming their diagnostic value in CML

cases. In our clinically independent cohort study, we also observed a

significant decrease in ACSL6, SLC11A2, HMOX1, and SLC38A1

expression in CML samples while AKR1C3 did not show a

significant difference due to small sample size issues (Figure 4I).

The risk score levels were also significantly increased in CML

samples (Figure 4J). ROC curve analysis demonstrated an AUC

value of 1 for the risk score model (Figure 4K). Clinical sample-

based sequencing data further verified the high diagnostic value

associated with these five FRGs in CML. In conclusion, we have

identified highly reliable FRGs which could potentially serve as a
A

B D

E

F

G
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J

C

FIGURE 3

Identification of diagnostic FRG. (A, B) Diagnostic FRGs were identified by the LASSO regression algorithm. (C, D) Diagnostic FRGs were identified by
the RF algorithm. (E) Diagnostic FRGs were identified by the SVM-RFE algorithm. (F) Venn diagram of variables identified by LASSO, RF, and SVM-RFE
algorithms. (G) Differences in expression of the three diagnostic FRGs between CML samples and normal samples in the GSE13159 cohort. (H)
Coefficients of risk score model. (I) Differences in risk score between CML samples and normal samples in the GSE13159 cohort. (J) ROC curve
analysis was used to evaluate the diagnostic value of the five FRGs and risk score in the GSE13159 cohort.
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novel adjunctive tool for clinical diagnosis and treatment decision-

making in patients with CML.
Analysis of the differential diagnostic value
of FRG

We conducted a comprehensive analysis to evaluate the

differential diagnostic value of the five FRGs. The GSE13159

cohort included sequencing data from 750 ALL samples, 542

AML samples, 448 CLL samples, and 206 MDS samples.

Interestingly, the expression levels of most FRGs, including

SLC38A1, SLC11A2, and HMOX1, were found to be lower in

CML samples compared to other types of hematologic tumors.

Conversely, ACSL6 exhibited higher expression levels (Figure 5A).

Furthermore, subsequent calculations revealed that CML samples

displayed the highest risk score (Figure 5B). ROC curve analysis

demonstrated that the risk score effectively distinguished CML from

other hematological malignancies with high accuracy (AUC=0.844)

(Figure 5C). The diagnostic value of FRG has been systematically

evaluated, and we have also endeavored to investigate the regulatory
Frontiers in Immunology 08
mechanisms governing FRG expression. In this study, our focus lies

on miRNA, as we aim to construct a miRNA regulatory network to

identify potential miRNAs that could inhibit FRG expression by

binding to FRG in CML cells (Figure 5D).
Identification of ferroptosis-related
molecular subtypes and analysis of
differences in biological characteristics
between subtypes

To comprehensively analyze the biological significance of FRGs

in CML, we utilized the expression profiles of the five diagnostic

FRGs in CML samples to identify two distinct molecular subtypes,

namely Cluster C1 and Cluster C2, employing a consensus

clustering algorithm (Figure 6A, Supplementary Table S2). The

distribution characteristics of these two molecular subtypes were

further confirmed by PCA, revealing significant and discernible

differences (Figure 6B). Subsequently, through heatmap

visualization, it was observed that ACSL6, SLC11A2, HMOX1,

and AKR1C3 exhibited up-regulation in subtype C1 while
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FIGURE 4

Validation of the diagnostic value of the diagnostic FRG. (A, B) Differences in expression of the five diagnostic FRGs and risk score between CML
samples and normal samples in the GSE144119 cohort (The Kruskal-Wallis test was employed for the comparison among the three groups). (C-H)
ROC curve analysis was used to evaluate the diagnostic value of the five FRGs and risk score in the GSE144119 cohort. (I, J) Differences in
expression of the five diagnostic FRGs and risk score between CML samples and normal samples in our clinical cohort. (K) ROC curve analysis was
used to evaluate the diagnostic value of risk score in our clinical cohort. **p < 0.01; ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1402669
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2024.1402669
SLC38A1 displayed higher expression levels in subtype C2

(Figure 6C). To explore additional distinctions between these

subtypes at a biological level, immune infiltration analysis

demonstrated that subtype C1 had an increased proportion of

CD8+ T cells, follicular helper T cells, activated dendritic T cells,

and eosinophils compared to subtype C2 (Figure 6D). Furthermore,

there were notable variations in the expression levels of immune

checkpoint genes; specifically within subtype C1 where PD-L1,

CTLA-4, HAVCR2, PD-1, and CD80 showed elevated expressions

(Figure 6E). This suggests that subtype C1 may exhibit certain

immunosuppressive tendencies leading to potential exhaustion of

CD8+ T cells. These findings were corroborated by higher TIDE

scores for subtype C1 (Figure 6F). Conversely, C2subtype appeared

more likely to benefit from immunotherapy (Figure 6G).

Additionally, our GSVA analysis revealed that the C1 subtype

demonstrates heightened activation of signal transduction pathways

such as hedgehog signaling and TNFA signaling via NFKB

(Figure 6H). Moreover, we observed increased activity in cancer-

promoting pathways including hypoxia and reactive oxygen species

pathway. In contrast, the C2 subtype exhibited elevated activity in

proliferation-related pathways such as G2M checkpoint, E2F

targets, and MYC targets V1. Notably, C1 displayed a higher

ferroptosis score while C2 had a higher risk score (Figures 6I, J).

Drug prediction analysis indicated that imatinib, nilotinib,

dasatinib, and bosutinib demonstrated greater efficacy against

subtype C1 compared to subtype C2 (Figures 6K-N). These

findings will significantly contribute to the development of

personalized treatment strategies for patients with CML.
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In vitro experiments confirmed that CML-
resistant cells were more sensitive to
ferroptosis treatment

The expression of five FRGs was detected in CML cell lines

K562 and imatinib-resistant cell lines K562/IR. In comparison to

K562, SLC38A1 expression showed a slight up-regulation in

K562/IR, whereas ACSL6, SLC11A2, and AKR1C3 expressions

were down-regulated (HMOX1 gene expression was not

detected and therefore not shown) (Figure 7A). In our study

above, our preliminary analysis indicated that CML cells may

exhibit sensitivity to ferroptosis, while CML cells in blast crisis

demonstrate resistance towards TKI treatment and potentially

higher sensitivity. To validate these findings, we conducted in

vitro experiments. However, it was observed that the CML cell

line K562 did not display sensitivity to erastin-induced ferroptosis

(Figure 7B); nevertheless, erastin exhibited a certain cytotoxic effect

on imatinib-resistant K562 cells (K562/IR) with an IC50 of 5.099

mM (Figure 7C). Furthermore, treatment of K562/IR cells with the

ferroptosis inhibitor Fer-1 significantly restored cellular viability

(Figure 7D). Compared to K562 cells, there was a significant

increase in ROS levels within K562/IR cells which further

escalated after erastin treatment-indicating ROS as a crucial factor

for inducing ferroptosis (Figure 7E). Additionally, it was discovered

that low-dose erastin enhanced the therapeutic sensitivity of

imatinib towards K562/IR cells by reducing the IC50 from 3.184

mM to 1.886 mM (Figure 7F). Moreover, low-dose erastin promoted

apoptosis levels in K562/IR cells treated with imatinib (Figures 7G,
A

B

D

C

FIGURE 5

Differential diagnostic value of the five FRGs in CML and other hematological malignancies. (A) Expression differences of the five diagnostic FRGs
among CML, AML, CLL, ALL, MDS, and normal samples. (B) differences in risk scores among CML, AML, CLL, ALL, MDS, and normal samples. (C) ROC
curve analysis of risk scores in CML and other hematological malignancies. (D) Regulatory network of miRNAs and the five diagnostic FRGs; red
indicates miRNA expression is up-regulated in CML samples, and green indicates expression is down-regulated. ***p < 0.001.
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H). GSH and GPX4 are important indicators of ferroptosis. We

found that after erastin treatment, GSH content, GSH/GSSH ratio,

and GPX4 enzyme activity of K562/IR cells were significantly

decreased, and GPX4 mRNA expression level was slightly

increased (Figures 7I-L), indicating that erastin inhibited GSH

production. In turn, the GPX4 enzyme activity is reduced, which
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can not inhibit the production of excess ROS, resulting in

ferroptosis of K562/IR cells. Finally, we also detected GPX4

expression in K562 and K562/IR cells and CML samples, and the

results showed that GPX4 expression in K562/IR cells was lower

than that in K562 cells, and there was no significant difference in

GPX4 expression between BC-CML and CP-CML samples and
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FIGURE 6

Identification of ferroptosis-related molecular subtypes and analysis of their differences in biological characteristics and treatment sensitivity. (A) Based
on the expression of DEFRG, CML patients were divided into two ferroptosis-related molecular subtypes by consensus clustering algorithm. (B) PCA
algorithm was used to analyze the distribution differences of patients between subtypes. (C-F) Differences in expression of DEFRG (C), infiltration of 22
immune cells (D), expression of immune checkpoints (E), TIDE score (F), immunotherapy response (G), activity of tumor hallmark gene sets (H),
ferroptosis scores (I), risk score (J), and therapeutic sensitivity to four TKIs (K-N) between the two molecular subtypes. *p < 0.05; **p < 0.01.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1402669
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2024.1402669
normal samples (Figures 7M, N). These results suggest that

important mechanisms of ferroptosis resistance in CML-resistant

cells may not be regulated by GPX4.
Discussion

Ferroptosis, a newly discovered mode of cell death in recent years,

plays a crucial role in regulating various physiological and

pathological processes (10). In the context of tumors, ferroptosis is

closely associated with the biological characteristics of tumor cells.

The hypoxic microenvironment easily triggers the generation of ROS,

while the lipid metabolism required for rapid proliferation creates

favorable conditions for lipid peroxidation (7). These features

collectively indicate that tumor cells are inclined to undergo

ferroptosis. The induction of ferroptosis in tumor cells and the

attenuation of their protective capacity have significant clinical

value for cancer therapy, aiming to enhance tumor cell death or

develop novel targeted therapies against apoptosis resistance (30).

In this study, we conducted a systematic analysis of ferroptosis

levels in samples from patients with CML using transcriptome

sequencing data. Our findings confirm the clinical significance of

FRG in diagnosing and evaluating treatment outcomes for CML.

Analysis of data from multiple cohorts reveals a significant reduction

in ferroptosis scores in CML samples, which further decreases with

disease progression. Non-responders also exhibit lower ferroptosis

scores compared to CML patients who respond to TKI therapy.

Subsequent analyses indicate that lower ferroptosis scores may be

associated with decreased expression of genes involved in suppressing

ferroptosis, suggesting that CML cells with weaker inhibition against

ferroptosis may be more susceptible to induction therapy targeting

this process. Through additional cell experiments, we validate that

CML-resistant cells are more sensitive to the induction of ferroptosis

and can enhance the sensitivity of imatinib treatment, providing a

novel target and strategy for overcoming drug resistance in CML.

Furthermore, our results demonstrate that the ferroptosis score serves

as an informative indicator reflecting the characteristics of the tumor

microenvironment in CML. Patients with high ferroptosis scores

exhibit increased infiltration by Tregs and higher expression levels of

immune checkpoint genes LAG3 and TNFRSF9, which are associated

with immunosuppression. Additionally, there is a positive correlation

between ferroptosis scores and activity levels within most tumor

signature pathways. By conducting WGCNA analysis, we have

further identified metabolic pathways as crucial determinants

influencing the activity of the ferroptosis pathway itself. Therefore,

metabolic reprogramming plays a crucial role not only in promoting

malignant proliferation but also contributes to triggering ferroptosis

(8, 29).

The expression profile and clinical significance of FRG were

further analyzed in this study. The majority of differentially expressed

FRGs were found to be down-regulated in CML samples, suggesting

their potential involvement in the pathogenesis of CML. Additionally,

these FRGs were found to participate in various metabolic pathways,

highlighting their multifaceted functions beyond regulating

ferroptosis. To comprehensively validate the diagnostic value of

FRG, three machine learning algorithms were employed to identify
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five CML-specific diagnostic FRGs: ACSL6, SLC11A2, HMOX1,

SLC38A1, and AKR1C3. These genes showed significantly reduced

expression levels in CML samples compared to normal samples.

The diagnostic value of these five FRGs was confirmed not only

within the analysis cohort and validation cohort but also in a real-

world clinical cohort. This comprehensive validation enhanced the

performance of the risk score model based on their expression levels

for diagnosing CML patients accurately. Furthermore, it was

observed that as treatment remission occurred in CML patients,

the expression levels of FRGs increased while the risk scores

decreased accordingly. Importantly, these five FRGs can also be

utilized for distinguishing CML from other hematological

malignancies with clinical relevance. These bioinformatics

findings provide strong evidence supporting the diagnostic and

therapeutic evaluation potential of FRG specifically in CML

patients. Additionally, based on distinct patterns of FRG

expressions identified through our analysis approach, we classified

two molecular subtypes within the population of CML patients:

subtype C1, characterized by a higher proportion of CD8+ T cell

infiltration and elevated immune checkpoint gene expressions

suggesting immunosuppression; these patients are predicted to

exhibit greater sensitivity towards TKI treatments compared to

subtype C2. In conclusion, the proposed molecular subtypes will

significantly enhance our understanding of the distinct disease

characteristics exhibited by patients with CML, thereby providing

valuable insights for tailored clinical guidance in personalized

treatment strategies.

Finally, we discovered through further experimentation that

CML-resistant cells exhibited heightened sensitivity to ferroptosis,

potentially due to elevated levels of ROS in these cells. In tumor

cells, ROS acts as a signaling molecule and promotes various

phenotypes such as growth, metastasis, resistance to apoptosis,

and differentiation disorders by activating survival signaling

pathways, accelerating energy metabolism, and generating

carcinogenic mutations (31). Numerous studies have also

confirmed that ROS serves as a major source of genomic

instability in different types of cancer. The continuous mutation

of cancer cell genomes is a significant cause of drug resistance and

relapse in cancer therapy (32, 33). Multiple studies have also

substantiated the reasons behind the substantial increase in ROS

levels observed in CML-resistant cells. This primarily stems from

the activation of various downstream signaling pathways by BCR-

ABL1, including the PI3K/AKT/mTOR pathway which enhances

glucose metabolism and mitochondrial electron transport chain

activity excessively (34, 35); augmentation of NADPH oxidase

activity (36); and regulation of target gene transcription for ROS

generation via STAT5 (37). Accumulation of ROS drives a cycle of

genomic instability leading to BCR-ABL1 mutations or other

chromosomal aberrations along with TKI resistance resulting in

drug resistance. Additionally, high levels of ROS can induce

oxidative damage to mitochondrial DNA within CML-resistant

cells causing mitochondrial dysfunction that disrupts the

oxidative respiratory chain leading to excessive electron leakage

thereby further increasing ROS production within resistant cells

(38). Elevated levels of ROS facilitate the formation of more

heteromutations while stimulating the signaling capacity within
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cancer pathways thus generating additional alternative mechanisms

promoting CML resistance. Therefore, elevated levels of ROS play a

pivotal role in rendering CML-resistant cells more susceptible to

ferroptosis, thereby offering a novel therapeutic avenue for

overcoming CML resistance. Currently, numerous regulatory

mechanisms associated with ferroptosis have been elucidated,

including the involvement of HDAC3 via the Hippo signaling

pathway (39). Further exploration into the mechanism underlying

ferroptosis in CML is warranted.
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In summary, we have elucidated the molecular characteristics of

ferroptosis in CML from a bioinformatics perspective. The findings

from these analyses will contribute to a deeper understanding of the

biological significance of ferroptosis in CML. FRG, identified through

various machine learning algorithms and validated across multiple

cohorts, demonstrates reliable clinical diagnostic value. Moreover, the

introduction of ferroptosis-associated molecular subtypes has

significantly enhanced our comprehension of individualized traits

among CML patients and facilitated personalized treatment
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FIGURE 7

Therapeutic effects of erastin on CML cells. (A) Analysis of FRG expression between K562 and K562/IR cells. (B, C) Effect of different concentrations
of erastin on cell viability of K562 and K562/IR cells after 48h treatment. (D) The activity of K562/IR cells after treatment with 5 mM erastin and the
addition of 1mM ferroptosis inhibitor Fer-1 for 48h. (E) ROS levels in K562, K562/IR, and K562/IR were treated with 5 mM erastin after 24h. (F)
Changes in cell viability with or without 1.25 mM erastin and treated with different concentrations of imatinib for K562/IR after 48h treatment. (G, H)
Changes in apoptosis levels after K562/IR treatment with or without 1.25 mM erastin and 1 mM imatinib of 24h. (I-L) Changes of GSH level, GSH/GSSH
ratio, GPX4 activity, and GPX4 mRNA expression in K562/IR cells after 5 mM erastin treatment for 48h. (M, N) The difference in GPX4 mRNA
expression between K562 and K562/IR cells, as well as among normal samples, CP-CML samples, and BC-CML samples. The IC50 value of the drug
was calculated by GraphPad software. **p < 0.01; ***p < 0.001; ns, no significance.
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strategies. The induction of ferroptosis may also serve as a promising

therapeutic approach for overcoming resistance in CML. However,

our study does have certain limitations, including the need for a larger

sample size to validate the bioinformatics findings, more cell lines and

more comprehensive experiments to elucidate the regulatory

mechanisms underlying ferroptosis in CML-resistant cells. In

subsequent studies, we will expand our sample collection and

enhance our exploration of relevant mechanisms through both in

vivo and in vitro experiments.
Conclusion

The transcriptomic analysis conducted in this study has

revealed the molecular characteristics of ferroptosis in samples

from patients with CML. By employing machine learning

algorithms, reliable clinical diagnostic value was successfully

identified for FRG expression patterns. This understanding of

individual molecular subtypes associated with ferroptosis can

effectively guide clinical treatment strategies for CML patients.

Furthermore, targeting and inducing ferroptosis shows great

promise as a potential therapeutic approach to address drug-

resistant CML.
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