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Colorectal cancer exhibits a notable prevalence and propensity for metastasis,

but the current therapeutic interventions for metastatic colorectal cancer have

yielded suboptimal results. ICIs can decrease tumor development by preventing

the tumor’s immune evasion, presenting cancer patients with a new treatment

alternative. The increased use of immune checkpoint inhibitors (ICIs) in CRC has

brought several issues. In particular, ICIs have demonstrated significant clinical

effectiveness in patients with MSI-H CRC, whereas their efficacy is limited in MSS.

Acquired resistance can still occur in patients with a positive response to ICIs.

This paper describes the efficacy of ICIs currently in the clinical treatment of CRC,

discusses the mechanisms by which acquired resistance occurs, primarily related

to loss and impaired presentation of tumor antigens, reduced response of IFN-l
and cytokine or metabolic dysregulation, and summarizes the incidence of

adverse effects. We posit that the future of ICIs hinges upon the advancement

of precise prediction biomarkers and the implementation of combination

therapies. This study aims to elucidate the constraints associated with ICIs in

CRC and foster targeted problem-solving approaches, thereby enhancing the

potential benefits for more patients.
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1 Introduction

More than 1.9 million new cases of colorectal cancer (CRC) and

904,000 deaths were estimated to occur in 2022, representing close to

one in 10 cancer cases and deaths. Overall, colorectal cancer ranks in

third place in terms of incidence but second in terms of mortality (1).

In 2022, China recorded a total of 517,100 new cases of CRC, placing it

second in terms of incidence and fourth in terms of mortality among all

types of cancers (2). Around 20% of individuals diagnosed with CRC

have metastases at the time of diagnosis, and this percentage has

remained constant over the previous 20 years (3). The primary

treatment for unresectable metastatic CRC (mCRC) is systemic

therapy (cytotoxic chemotherapy, biologic therapy such as antibodies

to cellular growth factors, immunotherapy, and their combinations)

(4). However, the five-year survival rate for mCRC remains poor, at

around 14% (5). The development of immunotherapy, especially

immune checkpoint inhibitors (ICIs), provides novel therapeutic

options for mCRC.

Currently used immune checkpoint inhibitors (ICIs) can be

categorized into programmed cell death protein 1/programmed cell

death 1 ligand 1 (PD-1/PD-L1) inhibitors and cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) inhibitors, based on

the specific immunosuppressive receptor they target. ICIs have

demonstrated effectiveness in clinical trials, with nivolumab,

pembrolizumab, and ipilimumab approved by the FDA for CRC

patients with microsatellite instability-high or mismatch repair

deficient (MSI-H/dMMR) (6–8).

MMR system dysfunctions or mutations (dMMR) cause DNA

mutations to accumulate (9), which produce enough tumor

neoantigens to enhance tumor immunogenicity and trigger a potent

T-cell and tumor immune response that allows MSI-H/dMMR CRC

patients to respond to ICI therapy (9, 10). MSI-H/dMMR CRC

exhibited elevated numbers of CD8+ T cells and Th1 cell infiltration,

and there was a notable upregulation of T cell suppressor ligands,

including PD-L1, as well as the B80 family of CD86 and CD7 (11, 12).

Upon binding to the co-inhibitory receptors, ICIs exploit the existing

inflammatory microenvironment by inhibiting T-cell inhibitor

signaling, thereby rendering cancer cells susceptible to cytotoxic

injury. In contrast, CRC with microsatellite instability-low (MSI-L)

exhibited a lack of immunostimulatory neoantigen production and a

relative decrease in the expression of immunosuppressive ligands (13).

MSI-H/dMMR is present in only 5% of patients with mCRC (14, 15).

This means that the clinical application of ICIs in CRC is considerably

restricted. Even patients with MSI-H/dMMR may ultimately develop

ICI resistance and suffer illness progression. In addition, adverse effects

from ICI therapy, most notably over-immunization of systemic organs,

have limited its clinical application (16). The development of predictive

biomarkers and the refinement of combination therapy strategies may

be both an opportunity and a challenge for ICI therapy to expand the

beneficiary population and improve efficacy.
2 Clinical trials of ICIs in CRC

ICIs show significant efficacy in MSI-H/dMMR CRC patients

(17). Currently, anti-PD-1 monoclonal antibody is the used most in
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clinical practice, followed by anti-CTLA-4 monoclonal antibody.

Specific drug combinations and clinical trials are listed below

according to target classification:
2.1 PD-1

The anti-PD-1 monoclonal antibodies currently approved by

the FDA for clinical application are nivolumab and pembrolizumab.

In the KEYNOTE-164 trial, 124 patients with MSI-H/dMMR CRC

(61 in cohort A and 63 in cohort B) had a median follow-up of 31.3

and 24.2 months (range, 0.1–27.1 months), with objective remission

rates (ORR) of 33% (95% CI, 21% to 46%) and 33% (95% CI, 22% to

46%) (18). In evaluating the efficacy of pembrolizumab in patients

with advanced dMMR cancers of different tumor types, 11 patients

with MSI tumors and 21 patients with MSS-refractory tumors had

an ORR of 0% (95% CI, 0–20) and a PFS of 11% at 20 weeks. (19).

Another study included patients with advanced refractory PD-L1-

positive colon or rectal cancer regardless of MSI status, with a final

median follow-up of 5.3 months, and the majority of patients (n =

15, 65%) experienced disease progression. One patient with MSI-

high CRC (4%) experienced partial remission (20).
2.2 PD-1 + CTLA-4

Nivolumab is used alone or with ipilimumab to treat MSI-H or

dMMR cancer that has spread to other parts of the body and got

worse after treatment with a fluoropyrimidine, oxaliplatin, and

irinotecan hydrochloride (21). According to the Checkmate-142

study, 23 of 74 patients treated with nivolumab (3 mg/kg every two

weeks) achieved an objective response, and 68.9% had disease

control for ≥ 12 weeks (7). Pembrolizumab is used to treat MSI-

H or dMMR cancer that has spread to other parts of the body or

cannot be removed by surgery (21). The immune-related ORR and

immune-related progression-free survival rates were 40% (4 of 10

patients) and 78% (7 of 9 patients), respectively, for dMMR

colorectal cancers and 0% (0 of 18 patients) and 11% (2 of 18

patients) for pMMR colorectal cancers (22).

In addition, the trial on botensilimab in combination with

balstilimab found a median follow-up of 6.4 months (range 1.6–

29.5), an ORR of 22% (95% CI, 12–35), and a disease control rate

(DCR) of 73% (95% CI, 60–84), which did not meet the median

duration of remission. 12-month overall survival (OS) was 61%

(95% CI, 42–75), with a median OS not met (23).
2.3 PD-1 + LAG3

Lymphocyte Activation Gene-3 (LAG-3), also known as

CD223, has the primary function of negatively regulating T cell

function and is a member of the immunoglobulin superfamily.

LAG-3 molecule negatively regulates T cells and plays a vital role in

maintaining the homeostasis of the immune system and promoting

tumor immune escape. As a new target, LAG-3 has excellent

potential in tumor immunotherapy. Clinical studies on LAG-3
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inhibitors are still at a relatively early stage. In the NCT02720068

trial, the median follow-up was 5.8 months in the favicelizumab

arm and 6.2 months in the favicelizumab combined with the

pembrolizumab arm (24). Another trial combining BI 754111 and

BI 754091 showed that of 40 patients with advanced solid tumors

with MSS mCRC, 3 (7.5%) patients achieved partial remission (PR),

and 11 (27.5%) patients had stable disease (SD) in optimal

remission (25). Overall, promising clinical outcomes have been

observed thus far with the combination of LAG-3 and PD-

1 inhibitors.
2.4 PD-L1

The PD-L1 blocker atezolizumab demonstrated better efficacy

in the NCT02788279 trial, with a median follow-up of 7.10 months

(6.05–10.05) (26). Another trial of the blocker durvalumab included

30 cases for MSI-H/dMMR and 3 cases of POLE mutant MSS CRC,

with a median follow-up of 11.2 months (95% CI: 7.3–15.0) and an

ORR of 42.4% (95% CI: 25.5–60.8) (27).
2.5 PD-L1 + CTLA-4

A single-arm Phase 1b/2 MEDITREME trial evaluated the

safety and efficacy of durvalumab in combination with

tremelimumab in combination with mFOLFOX6 chemotherapy

as first-line treatment in 57 patients with unresectable metastatic

CRC with RAS mutations. The Phase 2 primary efficacy goal in

patients with MSS tumors was met with a 3-month PFS of 90.7%

(95% confidence interval (CI): 79.2–96%). For the secondary

objective, the response rate was 64.5%; the median PFS was 8.2

months (95% CI: 5.9–8.6); and overall survival was not achieved in

patients with MSS tumors (28).

Despite the clinical efficacy of ICIs, it is important to note that

the potential benefits of this therapy are limited to a specific

population, that is, patients with MSI-H/dMMR. In addition, the

identification of issues such as drug resistance and adverse events

has hampered the therapeutic application of ICIs.
3 The limitation of ICI therapy in CRC

The response rates to ICI treatment exhibit significant

variability among different subgroups of CRC patients. Based on

the hypothesis, dMMR patients will benefit from ICIs, whereas

pMMR patients will not (22). Nonetheless, dMMR/MSI-H is

uncommon (approximately 20% of CRC and 5% of mCRC

patients) (14, 15). Even patients who initially respond to ICIs

may ultimately develop acquired drug resistance and suffer

disease progression. In conclusion, only a minority of patients

acquire a long-term and durable response to ICIs, while most

patients develop resistance (29). Immune-related adverse events

that follow ICI therapy have also limited its clinical application.
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3.1 Limited population responsive to ICIs

ICIs have exhibited significant clinical efficacy in CRC patients

with MSI-H, while limited efficacy in CRC patients with MSS/MSI-

L. In a phase II clinical trial that aimed to evaluate the effectiveness

of pembrolizumab in CRC patients with MSI-H and MSS, the rates

of immune-related OR and immune-related PFS at 20 weeks, were

found to be 40% and 78%, respectively, in the MSI-H cohort. In

contrast, the corresponding percentages in the MSI-L cohort were

0% and 11%. Furthermore, the MSI-H cohort had a greater

concentration of CD8+ cells (22). In clinical trials in the MSI-L

CRC population, it revealed that following 8 cycles of treatment

with pembrolizumab and maraviroc, the median PFS was 2.10

months, the median OS was 9.83 months (30). Additionally,

when pembrolizumab was administered with ibrutinib, the

median PFS was 1.4 months, and the median OS was 6.6

months (31).

Trials targeting the MSI-H CRC population have yielded

improved clinical outcomes. In the CheckMate-142 trial, the

treatment combination of Nivolumab plus ipilimumab had 9- and

12-month PFS rates of 76% and 71%, respectively, and 9- and 12-

month OS rates of 87% and 85%, respectively (8). The subsequent

tremelimumab treatment combination of Nivolumab plus low-dose

ipilimumab had 24-month PFS and OS rates of 74% and 79%,

respectively (32). In the KEYNOTE-164 trial, Pembrolizumab

treatment in patients with two prior lines of standard therapy was

associated with an OS of 31.4 months (18). The clinical trials that

have produced outcomes for ICIs in MSI-H and MSS CRC are

presented in Table 1.

When comparing MSS/MSI-L CRC to MSI-H CRC, it was

observed that MSI-H CRC had a greater degree of immune cell

infiltration, higher levels of immune-related gene expression, and

increased immunogenicity. The potential factors contributing to the

variations in the effectiveness of ICIs across CRC with distinct

microsatellite stability types are likely associated with the tumor

immune characteristics and the immune microenvironment. In

contrast to MSS/MSI-L CRC, MSI-H CRC exhibited more

infiltration of immune cells, elevated expression of immune-

related genes, and increased immunogenicity (41). Specifically,

MSI-H CRC is characterized by high levels of CD8+ T cell,

Th1 cell infiltration and IFN-g secretion (11, 12). To avoid the

process of immune-mediated death inside the inflammatory

microenvironment of T-cells, cancer cells exhibit a significant

increase in the expression of T-cell inhibitory ligands, such as PD-

L1 as well as CD86 and CD7 of the B80 family, which bind the co-

suppressor receptors PD-1 and CTLA-4. ICIs exploit the existing

inflammatory microenvironment by inhibiting the signaling of T-

cell inhibitors, hence rendering cancer cells susceptible to cytotoxic

damage. Conversely, MSI-L lacks immunostimulation for

neoantigen production and has relatively reduced expression of

immunosuppressive ligands (42). In addition, MSI-H CRC also

exhibited increased expression of genes associated with antigen

presentation, cytolytic activity, and IFN response. The expression

levels of chemokines, cytokines, genes linked to the tumor necrosis
frontiersin.org
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TABLE 1 The current clinical trails of ICIs in MSI-H and MSS CRC.

NCT Number Interventions Enrolment
Primary
endpoint

Outcome

MSS+MSI-H

NCT01876511 (22) pembrolizumab 32 CRC patients with pMMR or dMMR
ORR

PFS

dMMR: ORR = 40%; PFS =
78%

pMMR: ORR = 0%; PFS
= 11%

MSI-H

NCT02460198 (18) pembrolizumab
124 metastatic MSI-H/dMMR CRC patients treated
with ≥ 2 prior lines of standard therapy or ≥ 1 prior

line of therapy
ORR

≥ 2 prior lines: ORR = 33%
≥ 1 prior lines: ORR = 33%

NCT02563002 (33) pembrolizumab or chemotherapy
307 patients with metastatic MSI-H/dMMR CRC who

had not previously received treatment
PFS
OS

Pembrolizumab: PFS = 16.5
months

chemotherapy: PFS = 8.2
months

(follow-up time: 32.4 months)

NCT02060188 (7, 8, 32)

nivolumab plus low-dose
ipilimumab

nivolumab plus ipilimumab
nivolumab

Eastern Cooperative Oncology Group (ECOG)
performance status of 0 to 1

Histologically confirmed recurrent or metastatic
colorectal cancer

Microsatellite instability expression detected by an
accredited laboratory

Participants enrolled into the C3 Cohort must have
not had treatment for their metastatic disease

ORR

nivolumab plus low-dose
ipilimumab:ORR=69%(95%

CI, 53 to 82)
DCR=84%(95% CI, 70.5 to

93.5)
nivolumab plus ipilimumab:
ORR=55% (95% CI, 45.2 to

63.8)
DCR≥ 12 weeks = 80%

nivolumab:
ORR=31.1% (95% CI, 20.8 to

42.9)
DCR≥ 12 weeks = 68.9%

NCT03350126 (34)
ipilimumab
nivolumab

57 patients with
1.In ICH, the extinction of MLH1 (+/- PMS2), or
MSH2 (+/- MSH6), or MSH6, or PMS2 alone for

inclusion (dMMR),
2.In PCR, BAT25, BAT26, NR21, NR24, and NR27.
Only tumor samples with ≥2 instable markers for

inclusion (MSI-H).

DCR DCR=86%

NCT02715284 (35) dostarlimab
69 patients with Status of tumor MMR/MSI: needs to

be determined by MMR IHC results.
ORR ORR=36.2%

NCT03150706 (36) avelumab
33 patients with Mismatch repair deficient or

microsatellite instable (defined below), or POLE
mutated tumors

ORR ORR=24.2%

NCT03186326 (37) avelumab
132 patients with MSI-H determined
Mutational status RAS and BRAF

PFS PFS=12 months

NCT02227667 durvalumab
36 patients with Microsatelite-high colorectal cancer;

Locally advanced or metastatic CRC
ORR ORR=22%

MSS

NCT03631407
vicriviroc (150 mg or 250 mg) in
combination with pembrolizumab

(200 mg)
41 participants with advanced/metastatic MSS CRC ORR

Vicriviroc (150 mg) +
Pembrolizumab (200 mg):

ORR = 5%
Vicriviroc (250 mg) +

Pembrolizumab (200 mg):
ORR = 5%

NCT03274804 (30) pembrolizumab and maraviroc
20 patients received pembrolizumab and maraviroc,

followed by pembrolizumab monotherapy.
feasibility

rate
feasibility rate = 94.7%

NCT02981524 (38)
GVAX/Cy in combination

with pembrolizumab
17 patients with pMMR ORR

no objective responses
PFS = 82 days

median OS = 213 days

(Continued)
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factor receptor superfamily, and immunological checkpoint genes

considerably increased (41). The immunogenicity of cancer cells is a

crucial determinant of ICI response. Higher neoantigen burdens are

positively correlated with lymphocytic infiltration, tumor-infiltrating

lymphocytes (TILs), memory T-cells, and CRC-specific survival, as

determined by CRC whole exome sequencing. The median

neoantigen load of MSI-H CRC is approximately 20-fold higher

than that of MSS/MSI-L, and making them sensitive to immune

checkpoint blockade (19, 43).
3.2 Acquired drug resistance in ICI therapy

Acquired drug resistance is considered to be mainly related to

the molecular type of the tumor microenvironment (TME) (29).

MSI-H/dMMR mCRC tumors display type 1 TME, with a high

tumor mutation burden (TMB) and an inflammatory gene profile

(29). The type of TME regulates the relationship between tumor

cells and the immune system, with elevated TMB levels and an

inflammatory genetic profile indicating a prolonged but suppressed

immune response (44). MSI-H/dMMR tumors, although most

likely to respond to the revitalizing effects of ICI, can still exploit

immunosuppressive strategies in the TME signaling pathway to

achieve drug resistance (29). Specific immunosuppressive strategies

include loss of tumor antigen expression and impaired presentation,

reduced response to IFN-g, and cytokine or metabolite

dysregulation (Figure 1).
Frontiers in Immunology 05
3.2.1 Loss of tumor antigen expression and
impaired presentation

Tumor antigens are immune system targets used to recognize

cancer cells. This is the initial stage of the anti-tumor immune

response and is essential for the anti-tumor effects of ICIs. Loss of

tumor antigens renders the immune system incapable of

recognizing tumor cells and initiating an immune response in the

body. On the other hand, under the strain of anti-tumor immunity,

cancer antigens are reduced or lost, a process known as antigen

regulation, which permits tumor cells to elude immune recognition

and killing. Tumors characterized by elevated mutational loads and

neoantigen loads, such as melanoma and non-small cell lung cancer

(NSCLC), tend to exhibit more sensitivity to ICIs. Conversely, most

CRC patients often demonstrate lower mutational loads (45). In

MSI-H CRC, expression of the structural components of the major

histocompatibility complex (MHC) is hindered by mutations that

disrupt antigen presentation (46). MHC-I displays tumor antigens

on the cell surface. The absence or weak expression of MHC-I of

tumor cells reduces the presentation of tumor antigens and cannot

provide the first signal for T cell activation, resulting in T-cell-

resistance in tumor cells (47, 48). b2-microglobulin(b2M)

contributes to the transport and steady expression of MHC on

the cell surface. Frameshift deletion of b2M disrupts the transport of

MHC-I to the cell surface, thereby rendering tumor cells invisible to

cytotoxic CD8+ T cells and ultimately inducing acquired ICI

resistance (49, 50). Studies in CRC have also found that increased

b2M mutations are significantly associated with increased
TABLE 1 Continued

NCT Number Interventions Enrolment
Primary
endpoint

Outcome

MSS

NCT02860546 (39)
trifluridine/tipiracil
plus nivolumab

18 patients with MSS mCRC ORR
No patient achieved a tumor

response
Median PFS = 2.2 months

NCT04126733 regorafenib plus nivolumab 94 patients with MSS/pMMR CRC ORR ORR = 7%

NCT03271047
nivolumab+binimetinib

(+ Ipilimumab)
21 patients with MSS mCRC

Incidence
of DLTs

Nivolumab + Binimetinib:
incidence of DLTs = 11%
Nivolumab + Ipilimumab +
Binimetinib: incidence of

DLTs = 18.2%

NCT04166383
vascular biogenics (VB)-111

and nivolumab
14 patients with MSS CRC that has spread to the liver

safety and
tolerability

BOR

Complete Response: 0%
Partial Response: 0%

Progressive Disease: 84.6%
Stable Disease: 15.4%

NCT03007407 durvalumab plus tremelimumab
21 Patients with MSS mCRC progressing on

chemotherapy following palliative
hypofractionated radiation

ORR ORR = 9.52%

NCT03206073 (40)
PexaVec + durvalumab
(+ tremelimumab)

34 patients advanced pMMR mCRC
safety
and

feasibility

not result in any unexpected
toxicities

PexaVec + durvalumab: PFS =
2.1 months

PexaVec + durvalumab +
tremelimumab: PFS =

2.3 months
DLTs, dose-limiting toxicities; BOR, Best Overall Response.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1403533
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yan et al. 10.3389/fimmu.2024.1403533
infiltration of PD-1-positive T cells and are significantly associated

with the MSI phenotype (51, 52). Also, the interference of the

original protease processing process, and the function of the

transporter that regulates the treatment of the antigen, can

destroy the antigen representation of the process (46). To address

ICI resistance due to the lack of tumor antigens, tumor vaccines

have been used in combination with ICIs. The primary aim of

cancer vaccines is to elicit an adaptive immune response against

specific tumor antigens, resulting in the regression of tumors (53).

In a mouse model, Duraiswamy et al. demonstrated that

simultaneous blockade of PD-1 and CTLA-4 in the presence of a

GVAX vaccine induced 100% rejection of CT26 colorectal tumors

in mice. However, this effect has not yet been validated in clinical

trials (54, 55). However, the utilization of this combination therapy

is a strategic approach aimed at mitigating the issue of

ICI resistance.

3.2.2 Reduced response to IFN-g
Interferon-g (IFN-g) is primarily released by CD8+ cytotoxic T

cells and CD4+ Th1 cells. IFN-g binds to the IFN-g receptor

(IFNGR), which activates Janus kinases 1 (JAK1) and 2 (JAK2),

followed by the recruitment and phosphorylation of STAT1 (56).

The complex is transferred to the nucleus, activating the interferon

adjustment factor 1(IRF1), and its transcription activity eventually
Frontiers in Immunology 06
leads to the anti-tumor effect of the aconic-mediated anti-tumor,

and the increased PD-L1 expression (57–60). Bioinformatics

analysis studies have shown that transcriptional profiles enriched

in IFN-g-responsive genes are positively associated with prognosis

and response to anti-tumor immunotherapy (61). In contrast,

tumors having a transcriptional profile of inherent anti-PD-1

resistance did not react to anti-PD-1 ICI (62). In a study designed

to prospectively predict the response of NSCLC patients to

checkpoint inhibitor therapy, patients with elevated IFN-g levels

benefited significantly from ICI therapy (63). JAK1/JAK2 mutations

lead to blocked signaling of IFN-g and consequent lack of PD-L1

expression (59, 64). Analysis of the TCGA database revealed the

presence of JAK1 mutations in 10% of CRCs and JAK2 mutations in

12% of CRCs. Whole-exome sequencing of tissue from CRC

patients resistant to PD-1 blockade therapy has revealed JAK1

mutations (65). In conclusion, a reduced response to IFN-g is one
of the essential mechanisms of ICI resistance.

3.2.3 Cytokine or metabolite dysregulation
Hypoxia in the tissue microenvironment (TME) enhances the

accumulation of extracellular ATP metabolized to adenosine and

generates potent immunosuppression (66). On one side, adenosine

may inhibit effector T cells and NK cells (66–68). ADP-mediated

immunosuppression via adenosine synthesis, on the other side,
frontiersin.or
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Anti-tumor mechanism of ICIs and mechanism of resistance to ICI therapy.
g

https://doi.org/10.3389/fimmu.2024.1403533
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yan et al. 10.3389/fimmu.2024.1403533
induces tumor resistance to PD-1/PD-L1 inhibitors (69).

Tryptophan catabolism in TME mediates immunosuppression by

overexpressing indoleamine 2,3-dioxygenase 1 (IDO1), which can

induce IFN-g (70). The expression of IDO1 is increased following

treatment with ICIs, and it is inducible for other checkpoints (71).

IDO1 inhibitors shows synergistic effects when combined with ICIs,

according to preclinical research, however this has not been

confirmed in clinical trials (72). Recent clinical trials have

demonstrated, nevertheless, that tryptophan 2,3-dioxygenase

(DTO), a key rate-limiting enzyme along with IDTO, has a

stronger correlation with the tryptophan-kynurenine pathway,

leading to tumor progression and ICI resistance in renal cell

carcinoma patients (73).

In addition to the dysregulation of metabolites, tumor cells acquire

drug resistance by the overexpression of immunosuppressive

cytokines, such as VEGF and TGF-b. VEGF within the tumor

microenvironment exerts a down-regulatory effect on adhesion

molecules, including ICAM-1 or VCAM-1, and inhibits T-cell

trafficking and dendritic cell development. Therefore, it is reasonable

to suggest that the administration of antiangiogenic medications may

have the capacity tomitigate these occurrences, leading to a synergistic

antitumor impact when combined with ICI treatment. This assertion

supports in numerous in vitro investigations (74). TGF-b is an

inhibitory cytokine released by Treg that inhibits effector T cell

responses and has been demonstrated to upregulate PD-L1

expression (75, 76).
4 Predictive biomarkers for ICIs

Despite the remarkable levels of enduring remission witnessed

in cancer immunotherapy, a majority of patients do not experience

any therapeutic benefits (primary resistance). In contrast, a subset

of individuals who initially react to treatment may later experience a

relapse (acquired resistance) (77). The patient heterogeneity in

response to immune checkpoint suppression is comparable to the

issue of identifying responders and non-responders to traditional

first-line neoadjuvant chemotherapy (78). Researchers are looking

for biomarkers and personalized genes through which they hope to

identify the ideal patient candidates for immunotherapy. We are

listing biomarkers that are currently considered to have some

predictive value. MSI-H and POLE mutations are regarded as

biomarkers, and the POLE mutation is considered a promising

marker for enhancing the efficacy of immunotherapy in MSS mCRC

patients (79). In addition to this, other markers are also valuable

and worth developing. TMB also has high application value as an

independent biomarker for ICI treatment. However, determining

the critical value of TMB and optimizing its detection method is

challenging (80, 81). The use of PD-L1 as a biomarker to guide ICI

therapy has not been validated, but it is also true that PD-L1 is one

of the most established biomarkers available (82). Achieving

reproducibility of PD-L1 assays and developing combination

applications of biomarkers may facilitate the use of PD-L1 as a

stable biomarker for ICI therapy in CRC patients (83, 84).
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4.1 Expression of PD-L1

In 2019, the American Society of Clinical Oncology

Gastrointestinal Conference viewed the expression of PD-L1

combined positive score ≥ 10 as a potential biomarker for the

treatment of advanced esophageal cancer with pembrolizumab (85).

The predictive role of PD-L1 have been confirmed in the solid

tumors immunotherapy and high PD-L1 expression is associated

with clinical benefit. Still, there is no consensus on the performance

of PD-L1 as a predictive target. The CheckMate-142 study assessed

the effects of nivolumab and PD-L1 on tumor cells or immune cells.

As Lu et al. hypothesized, the data demonstrated no link between

the expression and the immunotherapy response (8, 86). These

disparate outcomes may be attributable to the varied antibodies

used, the unequal distribution of PD-L1 in the tumor and

mesenchyme, and changes in PD-L1 expression before and after

therapy (87–89). PD-L1 is not a stand-alone and comprehensive

biomarker. Its main drawbacks are the lack of a universal threshold

for PD-L1 expression, insufficient standardization of PD-L1 assays

and antibodies, and the spatial and dynamic heterogeneity of PD-L1

expression (90). To maximize the therapeutic potential of PD-1/

PD-L1 blockers, predictive biomarkers of therapeutic response need

to be identified, new therapeutic strategies need to be developed,

and therapeutic strategies for combinations with other agents must

be improved (91). Improved prediction of PD-L1 assessment can be

achieved by the following methods: assessment of PD-L1 status,

assessment of PD-L1 expression kinetics, evaluation of PD-1/PD-L1

proximity, and automated digital pathology algorithms (91). Single

biomarkers often lack the sensitivity and specificity to predict

response to ICIs reliably. Recent reports have shown that

combinations of multiple biomarkers based on TMB, PD-L1

expression, NLR (neutrophil to lymphocyte ratio), or gene

expression profiles have greater sensitivity and specificity than

single biomarkers in predicting clinical response (92).
4.2 Tumor mutational burden

TMB indicates the number of acquired somatic mutations in the

coding regions of the cancer cell genome. High somatic mutation

loads are a unifying feature of many cancer types for which ICI

therapies have proven effective (93). For MSI-H and MSI-L, ORRs

were 54.5% and 31.0%, mPFS was 8.3 and 5.6 months, and median

OS was NE and 19.8 months, respectively, for patients with TMB≥16

mut/MB, according to the results of the clinical research. In the MSI-

L population, PFS was significantly better in patients with TMB≥16

mut/MB than with 10≤TMB<16 mut/MB (p<0.0001) (94). Initially

TMB was determined by whole exome sequencing (WES) of tumor

DNA and matched normal DNA. More recently validation of

targeted NGS assay combinations has begun based on WES data

(95). The panels tested to date (F1CDx and MSK-IMPACT) have

demonstrated their ability to predict ICI responses (96).

TMB as a biomarker faces two main challenges: first, the

predictive limitations of TMB itself. It was found that only
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hypermutated tumors benefit from ICIs, and MSS tumors with high

TMB do not (97). Current FDA approvals granted based on tumor

mutational load may be too broad, and immune checkpoint

inhibitors should be considered in the context of the cause of

high tumor mutational load, not just on the basis of absolute

thresholds. Second, there are challenges in methods for detecting

TMB, include (1) determining the therapies to which TMB status

best informs its response; (2) robust definition of predictive TMB

cutpoints; (3) standardization of sequencing panel sizes and

designs; and (4) the need for robust technical and informatics

rigor to generate precise and accurate TMB measurements across

different laboratories (98).
4.3 Microsatellite instability

MMR encodes the appropriate mismatch repair protein, and DNA

mismatch repair system deficiencies can lead to MSIs, which are

categorized into three groups based on the functional integrity of

MMR: MSI-H, MSI-L, and MSS (99). MIS-H/dMMR phenotype

typically leads high frameshift mutations and the generation of

neoantigens, and it stimulates immune recognition and immune cell

infiltration which may cause a more robust immune response (100).

Therefore, MSI is an effective predictive marker. In the KEYNOTE-062

clinical study, 22 (44%) of 50 patients with TMB ≥10 mut/Mb had

MSI-H tumors. However, only 3 (1%) of patients with TMB <10 mut/

Mb had MSI-H tumors, indicating that high TMB is frequently

associated with MSI-H (101).
4.4 POLE mutation

DNA Polymerase Epsilon (POLE) is a crucial enzyme involved

in DNA synthesis and repair, and mutations in POLE prevent DNA

repair deficiencies and genetic material mistakes from being

corrected, resulting in a significant number of mutations (102, 103).

In CRC patients with POLE mutations, which are usually with

MSS, elevated numbers of TIL, promoted PD-L1 expression, and

upregulated production of cytotoxic T cell markers and effector

cytokines indicate heightened tumor immunogenicity. Notably,

MSS CRC patients with POLE mutations have a long-term and

durable clinical response to ICI treatment (104). This shows that

POLE mutations are a promising marker for enhancing the efficacy

of immunotherapy in MSS mCRC patients (79).
4.5 Tumor infiltrating lymphocyte

TIL is an essential component of TME, and distinct TIL

environments correlate with distinct immunotherapy responses,

revealing the complexity of the underlying tumor-immune

interactions. The number of TILs is a predictor of ICIs’

effectiveness, and a more significant CD28+ TIL cell fraction

usually means a more favorable treatment outcome (105). Multiple

studies have found relationships between TILs, various histological
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characteristics of the tumor, disease-free survival (DFS), cancer-

specific survival (CS), and overall survival (OS) (106, 107). High

TILs were a positive predictive factor for colorectal cancer specificity

and OS, according to a multivariate study of 76 patients (108).
4.6 IFN-g

IFN-g induced infiltration of CD8+ T cells and NK cells into the

TME. Antigen-presenting cells (APCs) and cancer cells are

stimulated to produce MHC-I by IFN-g, which improves antigen

identification by CD8+ T lymphocytes and leads to the death of

cancer cells (109). Nevertheless, loss-of-function mutations and

genomic modifications in the IFN-g signaling pathway and antigen

presentation signaling pathway result in cancer immune evasion,

and IFN-g may promote tumor antigen loss and induce tumor

immune editing, resulting in tumor progression and recurrence (49,

65, 110). In conclusion, the dynamic and kinetic effects of IFN-g on
immunogenicity and immune evasion may ultimately determine

the fate of tumor growth. Accordingly, exposure to persistent IFN-g
signaling can cause tumors to acquire immune resistance and

increase the expression of immunosuppressive molecules, and

INF-g merits additional investigation as a potential predictive

biomarker for the efficacy of immunotherapy in CRC (111, 112).
4.7 The intestinal flora microenvironment

Increasing evidence suggests that the gut microbiome (GM) of

immunotherapy-treated colorectal cancer patients is related to anti-

cancer immune responses. The interaction between the gut

microbiota and the gastrointestinal mucosa influences the local

immune response and the systemic innate and adaptive

immune responses. Antibiotics administered 60 days before or

after the initiation of an ICI are linked to inferior results in

several cancer types (113). Multiple bacteria, including

Akkermansia, Faecalibacterium, Clostridium, and Bifidobacterium

have been associated to the antitumor effects of PD-L1 inhibitors

(114). Additionally, host immune cells can interact directly with

particular bacteria, such as Akkermansia muciniphila, which

increases the efficiency of immunotherapeutic drugs in an IL-12-

dependent way by engaging directly with DCs in lymph nodes

(115). Bacteroides also directly improve the anti-tumor immune

response of Th1 and CD8+T cells (116).
5 Combination of ICIs with
other therapies

Up to 95% of patients with MSS/pMMR CRC are unlikely to

benefit from a single immunotherapy treatment. Compared to MSI-H

patients, patients with MSS mCRC had considerably reduced numbers

of cytotoxic cells, CD8+, Th1, Th2, and T cell markers. Furthermore,

there was a striking difference between the proportion ofMSI andMSI-

H patients in the prevalence of TMB, missense or frameshift mutations,
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and the number of novel tumor epitopes. Numerous clinical trials have

assessed the efficacy and practicability of immunotherapy in

combination with other treatments (7, 117, 118).

ICI therapy combined with chemotherapy is a viable treatment

strategy. The NCT03388190 study investigated repeated sequential

oxaliplatin chemotherapy (FLOX) in combination with nivolumab

and FLOX monotherapy for MSS mCRC. Results showed mPFS of

6.6 months (range 0.5–20) and ORR of 46.3% at 8 months in the

FLOX + Nivolumab group. This suggests that FLOX therapy can

transform MSS into an immunogenic state, allowing lasting disease

control in patients with untreated advanced disease where surgery is

contraindicated after ICB therapy (119). Similarly, dual

immunotherapy was predicted, with the NCT02870920 research

demonstrating considerably prolonged OS (6.6 months vs. 4.1

months) and increased disease control rate (DCR) (22.6% vs. 6.6%)

in the dual immunization group compared to the control group while

no extension of PFS (1.8 months vs. 1.9 months). Moreover, the study

indicated that patients with high TMB benefited more from dual

immunotherapy (120). The NCT04017650 research also confirmed

the efficacy of dual immunotherapy. The combination of encorafenib,

cetuximab and nivolumab had an ORR of 45%, a DCR of 95%, a

mPFS of 7.3 months and a mOS of 11.4 months (121).

Anti-angiogenic treatment enhances TME, enhances and

activates effector immune cells, reduces immunosuppressive cells,

and alleviates immunosuppression, which is essential for the

synergistic effect of immunotherapy. Refractory MSS CRC was

treated with nivolumab and regorafenib in the NCT03406871

trial. ORR (28%), mPFS (7.8 months), one-year PFS rate (41.7%),

and one-year OS rate (68.0%) were considerably more significant

than in prior trials, suggesting immunotherapy combined with anti-

angiogenic medicines may have potential benefits (122).

TGF-b inhibitors can reverse immune resistance to immune

sensitization, according to preclinical and clinical investigations, and

other ongoing or future clinical trials are exploring the possibility of

activating inactive tumors to turn “cold” tumors into “hot” tumors,

which holds promise for immunotherapy in large numbers of patients

with MSS (123). Cancer vaccines may induce cytotoxic anti-tumor

immune responses to a range of tumor-specific antigens, and current

clinical trials are evaluating the combination of cancer vaccinations

with ICIs in CRC patients (124).
6 Conclusion

The clinical application of ICIs is currently garnering broad

interest. As a novel treatment method different from radiation and

chemotherapy, their availability gives hope to some cancer patients,

particularly those suffering from melanoma and non-small cell

carcinoma. The application of ICIs in colorectal cancer has shown

promising results in several clinical trials conducted individually or in

combination. Unfortunately, ICIs benefit only a tiny proportion of

MSI-H/dMMR CRC patients, and the efficacy of immunotherapy

alone for MSS/pMMR CRC has been disappointing, with

no approved drugs to date. Even in MSI-H tumors, resistance due

to deletion of tumor antigen expression and impaired

presentation, reduced response to IFN-g, and dysregulation of
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cytokines or metabolites have hampered the use of ICIs in CRC.

Thus, addressing resistance to ICIs is critical to improving

immunotherapy outcomes in the CRC patient population, and

further research is needed to optimize the use of ICIs in colorectal

cancer. Strategies to overcome drug resistance can be approached by

developing combination therapies targeting multiple pathways,

repurposing existing drugs, and developing new drugs to evade

resistance mechanisms. We continue to believe that to maximize

the advantages of immunotherapy for CRC, it is critical to advance

the development of more predictive biomarkers or refine existing

biomarkers. This will facilitate the standardization of ICI treatments

and enable more patients to benefit from them. The application of

biomarkers to guide the treatment of different diseases is an essential

step in putting precision medicine into practice. Ideal biomarkers

should have high specificity and sensitivity, a wide range of

applications, easy sampling and measurement, and standardized

detection methods. However, the biomarkers currently known to us

do not meet these requirements. It may be possible to maximize the

utility of biomarkers by combining applications and improving

detection methods. In addition, with the rapidly expanding

indications for ICIs, it has become increasingly important to

prevent immunotherapy-related adverse effects, although ICIs are

relatively less toxic. In conclusion, despite many challenges, ICIs have

changed the landscape of colorectal cancer treatment. Ongoing

research and clinical trials are essential to address these current

obstacles, and ICIs will have an bright future.
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