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Wound healing represents a complex and evolutionarily conserved process across

vertebrates, encompassing a series of life-rescuing events. The healing process runs

in threemain phases: inflammation, proliferation, andmaturation/remodelling.While

acute inflammation is indispensable for cleansing the wound, removing infection,

and eliminating dead tissue characterised by the prevalence of neutrophils, the

proliferation phase is characterised by transition into the inflammatory cell profile,

shifting towards the prevalence of macrophages. The proliferation phase involves

development of granulation tissue, comprising fibroblasts, activated myofibroblasts,

and inflammatory and endothelial cells. Communication among these cellular

components occurs through intercellular contacts, extracellular matrix secretion,

as well as paracrine production of bioactive factors and proteolytic enzymes. The

proliferation phase of healing is intricately regulated by inflammation, particularly

interleukin-6. Prolonged inflammation results in dysregulations during the

granulation tissue formation and may lead to the development of chronic wounds

or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune

chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired

repair following viral infections notably share morphological and functional

similarities with granulation tissue. Consequently, wound healing emerges as a

prototype for understanding these diverse pathological processes. The prospect of

gaining a comprehensive understanding of wound healing holds the potential to

furnish fundamental insights into modulation of the intricate dialogue between

cancer cells and non-cancer cells within the cancer ecosystem. This knowledgemay

pave the way for innovative approaches to cancer diagnostics, disease monitoring,

and anticancer therapy.
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Introduction

Globally, the elderly population is experiencing significant

growth, attributed to enhanced management of chronic diseases

(1). In 2004, there were 461 million individuals aged 65 and older,

and projections suggest this number will increase to 2 billion by

2050, posing unprecedented challenges for healthcare planning and

delivery (2). Recognising ageing as a key factor in chronic

conditions (3), the growing elderly population’s socio-economic

impact has forced research to focus on the aspects of extending

human health span (4).

Wound healing is a fundamental biological response, an

intricate orchestration of events, offering a unique lens through

which we can unravel the complexities of autoimmune disorders,

ageing-related conditions, and the intricate landscape of cancer.

The present review aims to underscore the important role of wound

healing as a model for understanding these overarching biological

processes. Autoimmunity, ageing, and cancer, seemingly different

biological events, reveal interconnected threads that converge in the

epicentre of wound healing. Central to this convergence is the

orchestrating influence of inflammation, with interleukin-6 (IL-6)

emerging as a key regulatory player. The structural parallels

between tumours and wound healing have been recognised for

decades, notably illustrated in the seminal work by Dvorak in 1986

(5). Recent insights emphasise the striking resemblance between

granulation tissue, pannus-like tissue from chronic inflammation

(such as progressive arthritis), and tissues attacked by viral

infections, with the solid cancer stroma (6). These pathologies

result in fibrotic tissue, also observed in conditions such as tissue

fibrosis in the lungs of COVID-19 patients or the stroma of

pancreatic ductal adenocarcinoma (PDAC) (6, 7).

We will delve into the stages of wound healing, exploring the

dynamic interplay of cellular and molecular components. By

unravelling the parallels between wound healing and autoimmune

responses, investigating the impact of ageing on tissue regeneration,

and scrutinising the intricate relationship between wound healing

and cancer ecosystems, we aspire to elucidate the profound

implications that a comprehensive understanding of wound

healing holds for these complex biological phenomena. The

spotlight on inflammation, especially IL-6, serves as the central

key point, guiding our exploration where wound healing serves

not only as a metaphor but also as a model for broader

biological processes.
Wound healing

Wound healing is a dynamic process influenced by various

factors, including the size and extent of the wound, microbial

contamination, and the overall health and age of the individual.

Failure to navigate this intricate process can result in chronic

wounds or formation of hypertrophic/keloid scars (8–10). An

intriguing aspect lies in the regenerative capacity of the

interfollicular epidermis in humans, capable of full regeneration.

In contrast, the repair of the dermal architecture in humans is a
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more intricate process leading to scar formation. This dermal repair

unfolds through three/four distinct phases: blood clotting/

haemostasis (potentially part of the inflammatory response),

inflammation, proliferation, and maturation/remodelling.

Epidermal regeneration occurs concurrently with dermal healing,

and the restoration of the barrier integrity is completed during the

process of re-epithelisation, while dermal remodelling continues for

several weeks or months after (11). Despite the complexity and

precision inherent in wound healing, this orchestrated process is

not immune to interruptions and failures. Such disruptions can

result in the development of non-healing/chronic wounds or

pathological scars, underscoring the delicate balance required for

successful tissue repair and regeneration (8). The vulnerability of

the wound healing process to deviations emphasises the need for a

nuanced understanding of its intricacies to develop effective

interventions and therapies. The key events in the wound healing

sequence have been described in detail previously (8, 12) and are

summarised in Table 1 and Figure 1.
Inflammatory phase

Traumatic tissue injury often initiates with haemorrhage, leading

to the formation of a stable haemostatic clot composed of

polymerised fibrin. This essential process, known as haemostasis, is

crucial in preventing major blood loss. The resulting coagulum,

which temporarily fills the wound defect and forms a protective

crust, serves as a provisional barrier, safeguarding deeper tissues. Both

platelets and clotting factors participate in haemostasis, with the

intrinsic and extrinsic pathways distinguished by the upstream

factors that activate the coagulation cascade, ensuring swift

establishment of a temporary protective barrier (12). Subsequent to

haemostasis, vessel dilatation and permeabilisation facilitate the

migration of leucocytes to the injury site, marking the onset of the

inflammatory phase. The primary goal of infiltrating leucocytes is to
TABLE 1 Wound healing (humans).

Phase 1
Inflammation

After haemostasis, the wound bed is infiltrated by immune
cells from both innate and adaptive immunity, including
neutrophils, macrophages, and lymphocytes. This infiltration
aims to prevent wound contamination by pathogens and
facilitate phagocytosis of the tissue debris. Additionally, these
immune cells produce a range of inflammation-supporting
growth factors, cytokines, and chemokines.

Phase 2
Proliferation

Fibroblasts and other precursors are recruited to the wound,
where they proliferate and generate an extracellular matrix,
along with various active factors (including inflammation-
supporting factors as observed in Phase 1). This phase is
characterised by maximal development of granulation tissue,
accompanied by continuation of the inflammation. It
stimulates angiogenesis of the wound bed and the process of
re-epithelisation, involving epithelial-mesenchymal transition,
migration of epithelial cells, and their proliferation.
Additionally, many fibroblasts transform into myofibroblasts,
also contributing to the wound contraction.

Phase 3
Remodelling

Fibroblasts produce both extracellular matrix and proteolytic
enzymes responsible for the degradation of extracellular
matrix, leading to reduced scar (fibrosis) formation.
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eliminate pathogens, resolve inflammation, and clear necrotic cells/

tissue (13). Key immune cell players include granulocytes

(neutrophils and eosinophils), macrophages, mast cells, natural

killer (NK) cells, B lymphocytes, and various T lymphocyte subsets.

Neutrophils, the initial and predominant immune cells at the wound

site, play a pivotal role in the removal of debris and pathogens (14).

Macrophages play a central role throughout all phases of wound

healing. M1-activated macrophages are crucial for orchestrating the

onset of the inflammatory phase, while their reprogramming into

M2-polarised macrophages is essential for resolving inflammation

and supporting the subsequent phases of proliferation and

remodelling. The ultimate functional and morphologic outcome of

wound healing relies heavily on the successful resolution of

inflammation (15). Persistent inflammation may disrupt

keratinocyte and fibroblast differentiation, potentially leading to

excessive scarring and, in severe cases, formation of hypertrophic/

keloid scars (16).

To orchestrate the inflammatory activity across the wound site,

immune cells release a diverse array of bioactive factors. These

encompass transforming growth factor (TGF)-b, tumour necrosis

factor (TNF)-a, interferon (IFN)-g, vascular endothelial growth

factor A (VEGFA), basic fibroblast growth factor (bFGF),

interleukins (IL-4, -6, -9 -13, -17, -23), chemokines (CXCL-8,

CXCL-12), and numerous proteases (8). Notably, certain factors

exhibit pleiotropy, being produced by multiple immune cell types.

For instance, IL-6 is synthesised by neutrophils, macrophages, mast

cells, and T lymphocytes. Similarly, members of the TGF-b family
Frontiers in Immunology 03
are widely produced by immune cells, influencing various cells in

the wound microenvironment (WME) simultaneously. Moreover,

these cytokines can influence local fibroblasts, keratinocytes, and

endothelial cells. These cytokines can also enter systemic

circulation, making them measurable indicators for monitoring

large wound healing (17). Hyperactivation of the immune system,

although rare, has been observed in large, infected wounds or

extensive burn injuries, leading anecdotally to the so-called

cytokine storm syndrome (18).
Proliferation phase

Successful resolution of inflammation marks the transition to

the proliferation phase, typically observed 2–4 days post-injury

(19). Central to this phase is formation of granulation tissue, a

provisional structure comprising persisting recruited inflammatory/

immune cells, sprouting capillary endothelium, and fibroblasts

actively engaged in extracellular matrix (ECM) production.

Initially, fibroblasts generate a loose ECM, forming a temporary

scaffold vital for the migration and proliferation of other cells

involved in the healing process (20). Remarkably, dermal

fibroblasts constitute a remarkably heterogeneous population of

mesenchymal cells, with two principal subgroups - papillary and

reticular - identified histologically. These subsets differ in

proliferative capacity, wound contraction ability, and expression

profiles. Recent single-cell sequencing has unveiled up to six
FIGURE 1

Schematic presentation of events associated with wound healing over time. The relationship between the presence of inflammatory cells, fibroblasts,
myofibroblasts, and reepithelisation across different phases of wound healing is shown.
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functionally distinct subsets of dermal fibroblasts, among which the

CD26-expressing population stands out as a key contributor to

ECM production and, consequently, new tissue formation during

the wound healing (21). The resulting scar’s characteristics are

intricately linked to the fibroblast subset predominant at the wound

site (22).
Fron
[note: Origin of fibroblasts - where do they come from? The

intriguing diversity among fibroblasts may also stem from their

developmental origin. In the craniofacial region, dermal

fibroblasts may have a dual embryonic origin, originating

from both cranial neural crest (facial fibroblasts) and cephalic

mesoderm. Dorsal skin fibroblasts trace back to the somites,

while those in the ventral flank and limb dermis arise from the

lateral plate mesoderm (23). Notably, fibroblasts or fibroblast-

like cells can emerge from various cell populations, including

epithelial cells, through epithelial-to-mesenchymal transition

(EMT) (24), epidermal stem cells (25), bone marrow-derived

mesenchymal stem cells (26), and circulating fibrocytes (27).

Additionally, endothelial-to-mesenchymal transition (EndMT)

offers another pathway for the generation of fibroblast-like cells

(28).]
Within the intricate landscape of fibroblasts, a distinctive

subpopulation emerges, characterised by the active ACTA2 gene,

encoding a-smooth muscle actin. This distinctive fibroblast

subpopulation plays a significant role in wound contraction, also

facilitating the subsequent process of re-epithelisation (29, 30).

While playing a central role in the wound contraction,

myofibroblasts demonstrate a dual nature. In addition, these cells

are potent producers of a diverse array of bioactive factors. Notably,

among these factors are those with inflammation-supporting

activity, such as IL-6 and IL-8, not only contributing to

inflammation but also exhibiting pro-fibrotic effects. Multiple

stimulators, including cytokines (TGF-b1), growth factors (CTGF,

FGF, PDGF, IGF), and galectins (galectin-1), have been identified to

regulate fibroblast and myofibroblast activities (31–35). TGF-b1, in
particular, stands out as a recurrently reported critical factor driving

fibroblast differentiation into myofibroblasts (36) (Figure 1). This

intricate interplay between diverse fibroblast subsets and their

regulatory factors forms the foundation for understanding the

complexities of wound healing and scar formation.

Simultaneously with the proliferation phase, the critical process

of angiogenesis unfolds, fostering the formation of new blood

vessels to meet the escalating demands of rapidly proliferating

cells (37). The vascular endothelial growth factor (VEGF) stands

at the forefront of pro-angiogenic molecules during wound healing.

Recognised as a vascular endothelial cell mitogen and a regulator of

endothelial integrin expression during vessel sprouting, VEGF

extends its influence as a chemokine for macrophages, activating

them directly via the VEGF receptor (VEGFR) (38). Consequently,

VEGF assumes the role of an indirect pro-inflammatory cytokine,

potentially contributing to excessive scar formation.

Re-epithelisation stands as the ultimate process in the

establishment of a protective barrier, shielding the body’s interior
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from potential microbial threats and minimising the loss of essential

fluids and crystalloids (8). Keratinocytes, particularly those residing

in the wound margins and hair follicles, emerge as a cellular base for

re-epithelisation. This intricate process involves a harmonious

interplay of biological events encompassing cell proliferation,

epithelial-mesenchymal transition, and migration (39, 40).

Underpinning re-epithelisation is the intrinsic genetic programme

of epithelial cells, orchestrated in conjunction with the active

involvement of granulation tissue cells and their secretory

products that influence the epithelium (41). The interaction

between the epithelium and granulation tissue cells is

bidirectional, as the completion of wound closure marks the

cessation of ECM, growth factor, cytokine, and chemokine

production by granulation tissue cells, initiating the subsequent

phase of scar remodelling (41, 6). This dynamic interplay ensures

the seamless progression from wound closure to scar maturation,

contributing to the overall integrity and functionality of the

healed tissue.
Maturation/Remodelling phase

Regeneration in postnatal mammals is a rare phenomenon, with

the human liver being a notable exception. In the majority of tissues,

wound healing culminates in scar formation. Following wound

closure, a critical phase of remodelling ensues, predominantly

impacting the granulation tissue. This intricate process

necessitates the degradation of the ECM and its subsequent

reconstruction in the scar. Proteolytic enzymes play a remarkable

role in wound healing, specifically in the context of tissue

remodelling (42, 43). The degradation of the non-matured ECM

is instrumental in facilitating the establishment of the matured

matrix, important for achieving the correct size of the scar while

ensuring sufficient strength to prevent secondary wounding due to

mechanical stress (8, 44). Any misstep in these interactions can

result in suboptimal healing outcomes, with scars that may be

inconspicuous in neonates but more prominent in adults (45). It has

been suggested that neonatal fibroblasts preserve distinct properties

of mesenchymal stem cells (46), accompanied by the deregulation of

TGF-b signalling and low expression of the TGF-b II receptor (47).

Despite being a well-documented clinical phenomenon, the

complex mechanisms underlying the age-dependent variation in

healing capacity remain a subject of ongoing exploration. As the

granulation tissue formation gradually halts through cell apoptosis,

the wound transforms into an almost avascular and acellular

scar (8).

In cases of complicated wounds with prolonged inflammatory

response, for example, due to contamination by microorganisms or

debris, scarring can become intricate, potentially leading to

hypertrophic or keloid scars (48, 49). There is evidence suggesting

a genetic predisposition to keloid formation, with ethnicity also

playing a role. The highest incidence of keloids is reported in Africa

(5-10%), with Asia following closely (up to 1%) (50). However, our

understanding of the genetics underlying keloid formation is still

evolving, and further research is needed in this area (51). Keloid

formation is a complex process, sharing similarities with tumour
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development, particularly in the context of stromal characteristics

(52). Inflammation is a key player in the aetiopathogenesis of

keloids and hypertrophic scars, evident in the infiltration of

leucocytes into the scar tissue (8, 53, 54). This pro-inflammatory

microenvironment supports the presence of myofibroblasts,

aligning with their frequent occurrence. In contrast to tumour

stroma, keloid scars lack elastin and hyaluronic acid (55), further

distinguishing their unique composition. Unravelling the intricate

mechanisms underlying keloid formation holds promise for

developing targeted interventions to modulate scar outcomes and

improve patient outcomes.
Organ fibrosis

Connective tissue, containing the intricate molecules of the

ECM, is a universal component found in all organs. The deposition

of ECM plays an irreplaceable role in the healing process. However,

an imbalance between deposition and degradation can lead to organ

fibrosis, resulting in scar formation, and significantly affecting the

organ function (56). Inflammation further contributes to the

formation of a pro-fibrotic microenvironment, with immune cells

producing an array of cytokines, chemokines, and bioactive factors

such as IL-4, IL-6, IL-13, TGF-b, and TNF-a. These factors activate
fibroblasts and also shift their phenotype from a-smooth muscle

actin-negative (a-SMA-, fibroblast-like) to a-smooth muscle actin-

positive (a-SMA+, myofibroblast-like), which, in turn, contributes

to ECM deposition and perpetuation of inflammation (57).

Organ fibrosis is a severe condition often leading to fatal

outcomes, exemplified in complications of COVID-19 lung injury

due to SARS-CoV-2 infection. The massive occurrence of

myofibroblasts, coupled with cytokine dysregulation during the

cytokine storm, particularly accompanied by elevated levels of IL-

6, has systemic effects on the patients (6, 58, 59). Monitoring IL-6

levels in severe COVID-19 cases has been recommended for

assessing the health status and adjusting therapeutic protocols to

prevent exacerbation of complications (60). Therapeutic

interventions targeting the IL-6 signalling pathway, such as anti-

IL-6 receptor antibodies tocilizumab or sarilumab, have shown

promise in managing these complications (61). In parallel,

immune infiltration and the presence of myofibroblasts are

common in autoimmune diseases such as the terminal stage of

systemic sclerosis or Hashimoto’s thyroiditis (62, 63). The

association of systemic sclerosis and other autoimmune diseases

with cytokine dysregulation, including hyperproduction of IL-6, has

been well-established (64, 65).

Desmoplastic stroma characterises the microenvironment of

certain tumours, such as pancreatic ductal adenocarcinoma (PDAC),

resembling scar-like fibrosis with numerous myofibroblasts playing a

significant role (66, 67, 7). The controlling role of myofibroblasts,

particularly in producing IL-6, underscores their potential significance

in the stromal desmoplasia of tumours. This intricate interplay

between immune response, fibrosis, and tumour microenvironment

(TME) highlights the interconnectedness of these biological processes,

offering novel avenues for therapeutic exploration.
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Autoimmunity

Autoimmune diseases, characterised by the immune system

targeting self-antigens, result in chronic inflammation-mediated

tissue injury. Coined by immunologist Paul Ehrlich, the term

“horror autotoxicus” captures the phenomenon of immune-

mediated self-destruction (Ehrlich, 1900). Despite the immune

system ’s diverse mechanisms causing tissue damage in

autoimmune diseases, fibrosis and impaired function frequently

emerge as common features in these deleterious scenarios,

demonstrating scleroderma and rheumatoid arthritis as

extemporary examples (6).

Scleroderma, also known as systemic sclerosis, is a complex

autoimmune disease characterised by fibrotic changes affecting both

the skin and visceral organs (68). It leads to increased mortality,

particularly due to cardiac disease, pulmonary fibrosis, and

pulmonary hypertension. The disease progression is not

effectively prevented by current immunosuppressive treatments,

as they are only partially successful in halting fibrotic tissue

accumulation. Histological examination reveals myofibroblasts as

key drivers of fibrosis in scleroderma, and their resistance to

apoptosis contributes to abundant collagen overproduction,

elevated ECM stiffness, and heightened pro-fibrotic cytokine

levels (69, 70). TGF-b (71) and IL-6 (72) are implicated in

scleroderma pathogenesis, with IL-6 acting as a pro-fibrotic factor

and correlating with disease severity. Inhibition of IL-6 has shown

promise in preventing early lung disease progression in patients

with systemic sclerosis. Combining different immunotherapies,

such as CD47 and IL-6 blockade, has demonstrated efficacy in a

murine model, hinting at potential benefits for patients (73).

Rheumatoid arthritis, another autoimmune inflammatory

disease, is characterised by joint pain, swelling, and stiffness.

Activated mesenchymal cells, particularly fibroblast-like

synoviocytes, contribute to pathological tissue repair, leading to

pannus formation and joint destruction (74). Extra-articular

manifestations, including lung fibrosis, are common in

rheumatoid arthritis, and elevated levels of IL-6 are frequently

associated with the disease (75). While IL-6 participates in

controlling articular and extra-articular pathologies, it is

important to note that experiencing the cytokine storm,

characterised by elevated IL-6 levels, is relatively rare in these

patients (76). However, the autoimmune progression in

rheumatoid arthritis can lead to cachexia and severe psychiatric

issues, and anti-IL-6 therapy has shown efficacy in treating affected

joints, alleviating extra-articular manifestations, stabilising lung

fibrosis, and reducing cachexia (77). Notably, drugs such as

tocilizumab and sarilumab have demonstrated good efficacy and

tolerability in rheumatoid arthritis patients with a poor response to

conventional treatments.
Ageing

Inflammation is a natural process for tissue repair, but chronic

inflammation, termed “inflammageing” in ageing individuals, can
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have adverse effects (78). Immunosenescence, age-related changes

in the immune system, and increased cytokine secretion by adipose

tissue contribute to chronic inflammation. Elevated levels of IL-6,

IL-1, TNF-a, and C-reactive protein in older individuals are linked

to higher morbidity and mortality (79), with TNF-a and IL-6

serving as frailty markers. In this context, chronic wounds often

stall at the inflammatory stage, where pro-inflammatory cytokines

such as TNF-a, IL-1 (a and b), and IL-6 play important roles in

signalling immune cell recruitment, angiogenesis, and epithelisation

(80). These cytokines, primarily secreted by immune cells but also

by epithelial cells, fibroblasts, and endothelial cells, are major

components of the senescent secretome. IL-1a, in particular, can

stimulate the expression of other cytokines in senescent cells,

reinforcing the pro-inflammatory senescence-associated secretory

phenotype. The chronic presence of senescent cells in the WME

may enhance inflammation and hinder its resolution, contributing

to impaired wound healing if the inflammatory stage persists.

Understanding this interplay is essential for developing effective

interventions in chronic wound management.

In addition to the inflammageing issue, proper wound healing

involves transient senescence marked by up-regulated cell cycle

arrest proteins (p16, p21, p53) and SASP (81, 82). Studies in mice

demonstrate impaired wound healing upon selective elimination of

senescent cells, while senescent fibroblasts and endothelial cells,

expressing PDGF-AA as part of the senescence-associated secretory

phenotype, actively promote wound healing (81). In ageing, the

altered senescence response contributes to delayed wound healing,

with studies showing improved outcomes in aged mice by inhibiting

p21 expression (83). Chronic wounds, such as venous and diabetic

ulcers, exhibit senescent fibroblasts, and their presence correlates

with decreased healing rates (84). Persistent senescent cells can lead

to chronic wounds, emphasising the importance of transient

senescence. Additionally, senescent fibroblasts, induced by

oxidative stress, regulate the fibrotic response by inhibiting

proliferation and matrix synthesis (85), with CCN1 triggering

senescence and anti-fibrotic gene expression (86). This complex

interplay of senescence dynamics plays a crucial role in regulating

the trajectory of wound healing, scarring, and fibrosis.
Cancer ecosystem: understanding the
tumour as an organ

Organogenesis, an intricate ballet of prenatal events

encompassing cell proliferation, differentiation, migration, ECM

deposition, intercellular interactions, and programmed cell death,

orchestrates the correct formation and function of organs. Any

deviations during this developmental course can significantly affect

the architecture and subsequent function of an organ. In a

conceptual shift, malignant solid tumours can be likened to

organs, orchestrated by genetically aberrant cancer cells. Their

interaction with non-cancer cells, including connective tissue

cells, inflammatory cells, and blood vessels, plays a significant role

in shaping their aberrant function and subsequent dissemination

(87). The connective tissue component, often referred to as the
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stroma, is a dynamic entity within malignant tumours. It houses

fibroblasts producing ECM, growth factors, chemokines, cytokines,

matrix metalloproteinases (MMPs), as well as vessels supplying

nutrition and oxygen to the tumour (88).

The stroma, far from being a passive bystander, actively

participates in the tumour’s dynamic processes. The ECM

influences cancer cell adhesion and migration, with proteolytic

enzymes remodelling it to create channels facilitating cancer cell

migration (11, 89). Furthermore, the stroma acts as a platform for

immune cell infiltration into the tumour site. Despite cancer cells

expressing numerous neo-antigens due to frequent mutations, the

anticancer activity of immune cells is often down-regulated by

products of various cell types in the cancer ecosystem. For instance,

tumour-associated macrophages may paradoxically support cancer

cell growth and spread (90). Accordingly, the intricate dialogue

between immune cells and cancer cells opens new horizons in

anticancer therapy. Therapeutic manipulation of this dialogue,

exemplified by immune checkpoint inhibitors, proves to be a

powerful anticancer strategy that enhances the quality of life and

life expectancy for many oncological patients (91). Understanding

the complexity of the tumour as an organ and deciphering the

interplay between its cellular components paves the way for

innovative approaches in cancer treatment and management.

Cancer is a genetic disease, grounded in fundamental gene

alterations that drive its onset. The molecular scrutiny of individual

cancer cells constituting the bulk has unequivocally revealed the

heterogeneous nature of tumours, with metastatic cells often

displaying significant distinctions from their counterparts in

primary tumours (92, 93). Cancer cells, rather than existing in

isolation, intricately collaborate with non-cancer cells, which play

indispensable roles in fostering cancer cell growth and systemic

dissemination. These non-cancer cells actively contribute to

shaping a cancer-supporting microenvironment, typically

characterised by pro-inflammatory conditions.

Central to the orchestration of tissues and organs are adult

tissue stem cells, reliant on specific microenvironments to sustain

their stemness. Extending this hypothesis to cancer stem cells

suggests that non-cancer cells within the cancer ecosystem and

their products actively participate in establishing the niche

supportive of cancer stem cell maintenance (94, 95). As cancer

progresses, the tumour evolves under the selective pressures exerted

by endogenous mechanisms, including the microenvironment,

immunity, and exogenous factors such as anticancer therapies (96).

Tumour-associated macrophages (TAM), cancer-associated

fibroblasts (CAFs), and various types of lymphocytes are

significant components within the cancer ecosystem, each

contributing distinctive elements to the intricate milieu (97).

Given the scope of this review, our focus will delve into the roles

of TAMs and CAFs.
Tumour-associated macrophages

Macrophages, components of innate immunity originating from

the bone marrow, play a critical role in shaping the intricate

landscape of the cancer ecosystem. Their plasticity allows for
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polarisation into distinct subtypes: M1 pro-inflammatory

macrophages and M2 alternatively activated macrophages

associated with the resolution of inflammation. While M1

macrophages fuel Th1-dependent stimulation, fostering CD8-

positive T-cell proliferation and exerting anticancer activity, M2

macrophages orchestrate an immunosuppressive microenvironment

and drive tissue remodelling that supports tumour growth and

formation of metastasis (98). The shift from M1 to M2 is

orchestrated by interleukins IL-4 and IL-13, secreted by various

cells within the cancer ecosystem, including cancer cells themselves

(99–101). Intriguingly, the recruitment of macrophages to the

tumour and their subsequent M2 polarisation fall under the

regulatory influence of CAFs (102). Acting as chemical factories,

TAMs unleash a diverse array of bioactive factors, including EGF,

VEGFA/D, TGF-b, TNF-a, IL-1b, IL-6, IL-24, CXCL1/5/8, CCL2/8,
MMP2/9, PDL1, and various non-coding RNAs. These factors exert a

multifaceted impact on the tumour ecosystem, stimulating cancer cell

proliferation, enhancing invasion, promoting angiogenesis, and

concurrently suppressing the immune system’s anticancer activity

(103, 104). Unfortunately, the prevailing expression of cancer-

supporting factors tends to overshadow the inhibitory signals. For

example, it is widely recognised that the inflammatory cytokine IL-1b
is a key player in cancer-related inflammation (105). Exploring the

therapeutic avenues, the manipulation of TAMs emerges as a suitable

target for anticancer interventions, currently in the developmental

stage. Propelling M1 cells as carriers of therapeutic cargo to cancer

sites presents a promising strategy for the treatment of solid

tumours (106).
Cancer-associated fibroblasts

Traditionally seen as a structural scaffold for organ development,

connective tissue and its architects, fibroblasts, have evolved into

dynamic contributors to organ homeostasis. These cells produce not

only the ECM but also a diverse array of bioactive factors. CAFs often

dominate the stromal landscape over cancer cells themselves. In

contrast to the historical perception of fibroblasts as uniform entities,

recent methodological advancements, particularly single-cell

sequencing, have unravelled several fibroblast subtypes.

Remarkably, these subtypes exhibit striking inter- and intra-organ

heterogeneity and localisze to discrete anatomical positions, offering

novel predictions about physiological functions (107).

Myofibroblasts, characteriszed by the presence of a-SMA, make a

ubiquitous appearance in the pathological scenarios discussed herein

- ranging from wound healing and autoimmune disorders to organ

fibrosis, including post-infectious conditions. Myofibroblasts, true

conductors of the inflammatory orchestra, actively produce

inflammation-supporting factors, notably IL-6, thereby shaping a

microenvironment conducive to inflammation (6). Unravelling the

mysteries surrounding myofibroblasts opens doors to therapeutic

possibilities and deeper insights into various pathological conditions.
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Origin of CAFs: Where do they come from?

Previously, the primary origin of CAFs was attributed to the

activation of local fibroblasts by TGF-b factors, often involving

human endogenous lectin galectin-1 (34); extensive research has

revealed a more complex landscape of CAF precursors.

Mesenchymal stem cells, emerging from adipose tissue migration

(99) or bone marrow recruitment (108), stand out as strong

contenders. These mesenchymal stem cells, reprogrammed by

cancer cells, acquire CAF functionalities, albeit retaining some

characteristics of their original phenotype (109). Despite these

observations, the notion of local fibroblasts as the primary source

for CAF formation persists, supported by experimental evidence

demonstrating that CD26-positive fibroblasts, acting as CAF

precursors, exhibit enhanced protumorigenic characteristics

compared to their CD26-negative counterparts (110). Further cell

types which may also contribute to the CAF pool include stellate

cells, adipocytes, mesothelial cells, circulating fibrocytes, pericytes,

smooth muscle cells, haematopoietic stem cells, and endothelial

cells (111). Multiple factors, such as IL-1b, IL-12, FGF, PDGF,
SDF1, HDGF, IFN-g, and TNF-a, participate in CAF formation

from various precursors. However, TGF-b cytokine family factors

consistently play an active role, regardless of the precursor source of

CAFs (112).

Remarkably, cancer cells undergoing EMT have been identified

as potential contributors to the pool of CAFs, a phenomenon

observed for example in breast and pancreatic cancers (113, 114).

However, a cloud of controversy hangs over this observation,

casting doubt on its universality. Experiments injecting human

cancer cells into nu/nu mice have unveiled tumours exhibiting a

stroma originating from the recipient mouse cells rather than EMT-

induced CAFs (115). This discrepancy calls for meticulous

examination, necessitating further experiments to untangle the

intricacies surrounding the reliability of the utilised model and

the true origin of CAFs. Resolving these lingering questions is

inevitable for a comprehensive understanding of CAF genesis and

its implications in cancer progression.
Distinguishing CAFs: a challenge in cellular
identification resulting from heterogeneity

Vimentin, an intermediate filament, is expressed in fibroblasts,

yet its presence in various cell types complicates the task of

distinguishing CAFs definitively. Despite efforts, no specific

marker exclusive to CAFs has been identified, contributing to the

challenge of differentiation. The expression of a-SMA is commonly

considered a CAF marker, but its limitations arise from a

substantial subset of these cells being negative for this marker.

Furthermore, a-SMA is shared with smooth muscle cells, adding to

the complexity of the specificity issue (112). CAFs exhibit a diverse

array of expressed proteins, including type I collagen, tenascin C,
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periostin, podoplanin, CCL2, RAB3B, S100A4, CD31, CD74, CD90,

DDR2, FSP-1, CXCL12, calponin-1, PDGFR-a, FAP, ASC-1, TGF-
b2, and NG2 (112). However, the absence of a singular, distinctive

marker underscores the necessity of employing a combination of

markers for accurate identification.

In in vitro experiments, determining the negativity for proteins

associated with other cell types – e.g., keratins (epithelium), CD45

(leucocytes), CD31 (endothelium), and melanocyte markers such as

MELAN-A or HMB45 – proves useful for characterising and

isolating CAFs (116). The pursuit of more specific markers

remains crucial for advancing our ability to identify CAFs in the

cellular milieu.

CAFs display heterogeneity, appearing morphologically

homogeneous, but further analysis reveals subcategories. MyCAFs,

identified by a-SMA positivity, coexist with negative cells. Single-cell

analysis delves deeper, identifying distinct subtypes. In experimental

settings, dermal fibroblasts in 3D spheroids with melanoma cells

differentiate into ECM producers, inflammation-supporting iCAFs,

and ID gene-rich cells influenced by TGF-b family proteins, likely

representing precursor CAFs (117). Prognostically, a prevalence of

inflammation-supporting iCAFs is associated with poorer outcomes

(118, 119). Directly isolated tumour CAFs exhibit further subdivision,

including antigen-presenting apCAFs expressing MHC class II (120).

Their anticancer effects vary with CAF origin (121). These subtypes

also differ in metabolic profiles, with iCAFs favouring glycolysis and

myCAFs exhibiting elevated tricarboxylic acid cycle markers (122).

The functional implications of these metabolic distinctions are

actively investigated.
Functions of CAFs

Summarising the impact of CAFs on cancer cells, they play a

multifaceted role in stimulating cancer cell proliferation, EMT,

ECM remodelling, anchorage-independent growth, dissemination

of metastasis, immunosuppression, angiogenesis, chemoresistance,

and radioresistance (123). Notably, iCAFs, particularly through IL-

6 and IL-8 production, significantly influence the dialogue within

the tumour ecosystem for various malignancies (124, 125). iCAFs’

stimulatory effects, driven by exosomes released by cancer cells,

impact hepatocellular, breast and colorectal cancers (126–128).

Elevated serum levels of IL-6 and IL-8 are associated with

multiple tumour types, including melanoma, lung, oral

(squamous), and gastric cancers (129–132). iCAFs also contribute

to the pro-inflammatory microenvironment by increasing serum

levels of factors such as IFN-a/g, IL-1b, IL-2, IL-4, IL-5, IL-10, IL-
12P70, IL-17A, and TNF-a (133–136).

Several of these factors participate in the premetastatic niche

formation, supporting tumour spread (137). Normal dermal

fibroblasts from unaffected skin in patients with metastatic

melanoma exhibit CAF-like features, suggesting a role in

facilitating malignant cell docking (138).

When CAFs express PDL1, they contribute to the

immunosuppressive microenvironment, affecting patient prognosis

(139). IL-6-induced STAT3 signalling in CAFs is implicated in

muscle protein breakdown and cachexia, a severe systemic
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complication of cancer (140). IL-6, TNF-a, and IL-8 from CAFs

influence adipose tissue loss, organ fibrosis, and appetite reduction,

associated with cancer wasting and cachexia (141, 142). Additionally,

neuropsychological symptoms, including depression in cancer

patients, are linked to high levels of IL-6 and TNF-a (143–145).

CAFs secrete ECM molecules, including collagens, elastin,

proteoglycans, periostin, hyaluronic acid, and heparan sulphate,

influencing cancer cell proliferation and migration (146). Lysyl

oxidase produced by CAFs crosslinks collagen strongly via

exosomes (147). ECM components such as tenascin-C and

fibronectin are up-regulated in tumour stroma, and the signal-

specific information promotes tissue stiffness, facilitating cancer

growth and dissemination (148).

Interestingly, the activity of CAFs may not be strictly specific to

the tumour type. As we have shown previously, CAFs from one

cancer type can influence the phenotype of cells from other cancers

(115, 149). Active genes, including IL6, VEGFA, and MFGE8,

appear to be common among CAFs across various origins and

have a significant impact on cancer cell phenotypes (150). While

most CAFs are known to promote cancer progression, local

aggressiveness, and metastasis, recent findings indicate that

certain subpopulations may exhibit anticancer effects, particularly

those associated with MHC II expression and markers such as

meflin or CD146 (151–154). Ongoing research aims to unravel the

complexities of CAF function and its diverse roles in cancer biology.

Differences between normal fibroblasts and those associated with

wound healing, hypertrophic/keloid scars, autoimmunity, and

cancer are summarised in Figure 2. These fibroblasts differ in

their expression of a-SMA in some cells, their elevated

production of extracellular matrix components, and their

secretion of inflammation-supporting factors.
Paraneoplastic syndromes

The onset of paraneoplastic syndromes may serve as an early

warning sign, indicating an underlying health issue. These

syndromes typically arise from chronic inflammation, with IL-6

playing a pivotal role and contributing to the dysregulation of blood

plasma proteins (155). Many paraneoplastic syndromes exhibit

significant biological activity, leading to systemic effects (130).

Examples of syndromes not directly linked to cancer therapy are

detailed in Table 2. Skin, muscles, joints, the nervous system, and

endocrine glands appear particularly responsive to inflammation-

associated dysregulation associated with cancer development (155).

In addition to hormones produced by cancer cells, factors

supporting inflammation seem implicated in many paraneoplastic

syndromes. These syndromes are not strictly tumour type-specific

and are observed in both leukaemias and solid tumours.

Furthermore, cancer treatments, including immune checkpoint

inhibitors (156), may exacerbate paraneoplastic syndromes,

highlighting the potential role of cell disintegration in therapy-

related manifestations (157). While the application of anti-IL-6

receptor antibody tocilizumab has a minimal impact on cancer

growth, it can reduce the occurrence of paraneoplastic syndromes

(158, 159).
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Cancer and the elderly exhibit many
systemic similarities

Cancer and ageing share several systemic similarities. Ageing is

a complex process influenced by various endogenous and

exogenous factors, with chronic inflammation being a hallmark

(169, 170). In aged individuals, including humans, there is an
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elevated level of inflammation-supporting factors in the serum

compared to younger counterparts (171–173). High levels of IL-6,

both in absolute numbers and when expressed as a ratio to albumin,

can predict mortality in seriously ill elderly individuals (174, 175)

and may impact cognitive functions in the aged population (176).

Similar to cancer cachexia, age-related sarcopoenia in the elderly is

associated with increased inflammation-supporting factors (177).

The mechanisms of age-related cachexia are not fully understood,

but it is hypothesised that chronic inflammation in ageing is linked

to the dysregulation of iron metabolism (178). Another explanation

for elevated pro-inflammatory activity in the elderly may be

differences in intestinal microbiota and intestinal permeability

(179). Collectively, these age-dependent differences are referred to

as inflammageing, as mentioned above, and can contribute to

various age-related disorders (180). Given the negative impact of

elevated cytokine levels on the physiological functions of the elderly,

reducing inflammation could be a promising avenue to enhance the

quality of life for seniors. Some approaches, such as incorporating

dietary soy isoflavonoids and proteins, show promise (181).

Monitoring inflammation-supporting factors in the serum of

polymorbid older individuals is relevant in clinical medicine. The

high levels of these cytokines associated with age-related frailty

could serve as indicators to identify cancer patients who may not

benefit from therapy and could even face a risk of reduced life

quality (182).
IL-6: the key player from
wound healing to cancer –
therapeutic implications

It has been shown that the formation of wound-healing

granulation tissue featuring a-SMA-rich myofibroblasts is a
TABLE 2 Examples of paraneoplastic syndromes in humans.

Paraneoplastic syndrome Location Reference

Paraneoplastic pemphigus Skin/mucosa (160)

Chronic urticaria Skin (161)

Acanthosis nigricans (162)

Acrodermatitis paraneoplastica

Florid cutaneous papillomatosis

Necrolytic migratory erythema

Palmoplantar keratoderma

Lambert-Eaton myasthenic
paraneoplastic syndrome

Muscles (163)

Arthritis Joints (164)

Anti-Tif1-gamma autoantibody-
positive dermatomyositis

Skin/muscles (165)

Sensory neuropathy Peripheral nerves (166)

Paraneoplastic cerebellar degeneration Cerebellum (167)

Limbic encephalitis Limbic system

Necrotising myelopathy Spinal cord

Endocrine syndrome Numerous (168)
FIGURE 2

Schematic presentation of the differences between normal fibroblasts and activated fibroblasts associated with wound healing, scar formation,
autoimmunity, and cancer. Fibroblasts from pathological conditions exhibit similar characteristics.
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linking point of various pathological conditions such as wound

healing, autoimmune inflammation, tissue fibrosis, post-serious

infection status, cancer, and age-associated frailty. Central to

these processes is the cytokine IL-6 and its signalling pathway

(183, 184). IL-6, a glycoprotein of 184 amino acids (MW 23.7kDa),

is produced by immune cells and, notably, by non-immune cells

such as myofibroblasts. Its function hinges on receptor expression.

The transmembrane IL-6 receptor interacts with the signal

transducer (gp130) upon IL-6 binding, initiating signalling.

However, the IL-6 receptor can also be found in biological fluids.

When unoccupied, the IL-6 receptor undergoes enzymatic cleavage

from its transmembrane domain, releasing it into the extracellular

space. Once interacting with IL-6 and signal transducers, this

soluble IL-6 receptor can then dock to the membrane and initiate
Frontiers in Immunology 10
signalling (185). The immune function, primarily initiation of the

immune response, and other functions – spanning from wound

healing to cancer – rely on the type of cells that express membrane

receptors. This involves docking of the complex of soluble receptors

with IL-6 to permissive cells. The non-immune functions

encompass epithelial cell proliferation and migration, along with

the production of ECM by fibroblasts and neovascularisation.

Given the IL-6’s impact on cancer-related processes, therapeutic

modulation of its signalling axis holds promise. A range of drugs,

from antibodies to small inhibitors targeting IL-6 signalling, have

been developed. These interventions include blocking IL-6 synthesis

and its receptor, neutralising IL-6, inhibiting its binding to the IL-6

receptor, and disrupting the interaction of the IL-6 receptor with

gp130 (186). Anti-IL-6 therapy, exemplified by the widely used anti-
FIGURE 3

Illustrates the similarities between events in wound repair and cancer. The granulation tissue of the wound/tumour stroma is composed of
fibroblasts/cancer-associated fibroblasts (CAFs), macrophages/tumour-associated macrophages (TAMs), and endothelial cells (ECs). Both granulation
tissue and stromal elements communicate with normal/malignant epithelial cells through the production of extracellular matrix (ECM) and paracrine
secretion of cytokines such as IL-6 and others. While the dialogue between cells of granulation tissue and the proliferating epithelium is switched off
after reepithelisation, the unlimited proliferation of cancer cells stimulates further development of stromal tissue. This process leads to the
progression of the tumour, its spreading, and subsequent wasting of patients (A). The hierarchy of the steps is disorganised in cancer compared to
wound healing (B).
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IL-6 receptor humanised monoclonal antibody tocilizumab, is a

common practice in rheumatology (187). Moreover, tocilizumab

was successfully employed in treating COVID-19-induced cytokine

storms in indicated patients (188). A similarly positive effect was

also observed with the use of the anti-IL-6 antibody siltuximab,

although it was not as commonly utilised as tocilizumab (189).

Unfortunately, clinical studies attempting to influence IL-6

interaction with the receptor complex in anticancer treatment

were not entirely successful (184). It is suggested that inhibition

of Jak/Stat3, which is involved in the signalling pathways of various

cytokines, chemokines, and growth factors, including IL-6, could be

more effective (190, 186). A combination of anti-IL-6 signalling

therapy with other anticancer drugs or drugs inhibiting chronic

inflammation in the TME may be more appropriate (190, 191).

Another potential approach could involve the use of drugs with dual

effects, such as targeting both the IL-6 receptor and mitochondria,

representing a promising model for complex therapy (192).

Of note, the potential systemic effects of IL-6 produced by the

TME, including CAFs, on cancer wasting, cachexia, and

paraneoplastic syndromes are detailed in the chapters “Functions

of CAFs” and “Paraneoplastic syndromes”.
Conclusion

Inflammation influences wound healing, solid cancer

progression and spreading, with cytokines, notably IL-6, playing a

central role. During wound healing, macrophages and fibroblasts in

the granulation tissue are the main contributors to IL-6 production,

enhancing wound re-epithelisation. Closure of the wound prompts

termination of new granulation tissue deposition, starting the

maturation/remodelling phase. Complications such as bacterial

infections or foreign body contamination may prolong healing,

introducing inflammation and overproduction of myofibroblasts

leading to hypertrophic scarring or keloid formation. This scenario

mirrors inflammation seen in autoimmune disorders or viral

infections (e.g., COVID-19), often resulting in fibrosis, which can

be severe and fatal.

Solid tumours follow a similar narrative, as the cancer stroma,

featuring CAFs, resembles the granulation tissue of healing,

complete with myofibroblasts, akin to the proliferation phase of

wound healing. However, in cancer, the granulation tissue-like

stroma does not undergo shutdown, and the dialogue between

cancer cells and stromal elements persists endlessly, facilitated by

the unlimited proliferation of cancer cells (Figures 3A, B). Chronic

wounds, autoimmune conditions, and cancer converge in their

systemic impact on the patient, leading to frailty, wasting, and

cachexia, ultimately compromising the quality of life and

contributing to mortality.

The present review weaves narratives under the theme of

inflammation, orchestrated by the paracrine secretion of

cytokines and chemokines, with IL-6 taking a central role – a

ubiquitous cytokine with intricate effects. Wound healing,

considered a primary event, is repurposed in autoimmunity and

cancer, offering valuable insights into understanding cancer
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regulation and informing potential anticancer therapies. Although

therapies targeting the IL-6 axis have not met all expectations,

combining them with other anticancer approaches or employing

drugs with multiple targets in cancer ecosystems may prove

beneficial in the hopefully near future.
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107. Muhl L, Genové G, Leptidis S, Liu J, He L, Mocci G, et al. Single-cell analysis
uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell
identification and discrimination. Nat Commun. (2020) 11:3953. doi: 10.1038/
s41467-020-17740-1

108. Moratin H, Böhm S, Hagen R, Scherzad A, Hackenberg S. Influence of wound
fluid on the transdifferentiation of human mesenchymal bone marrow stem cells into
cancer-associated fibroblasts. Cells Tissues Organs. (2023) 212:304–16. doi: 10.1159/
000525342

109. Frisbie L, Buckanovich RJ, Coffman L. Carcinoma-associated mesenchymal
stem/stromal cells: architects of the pro-tumorigenic tumor microenvironment. Stem
Cells. (2022) 40:705–15. doi: 10.1093/stmcls/sxac036

110. Houthuijzen JM, de Bruijn R, van der Burg E, Drenth AP, Wientjens E,
Filipovic T, et al. Cd26-negative and cd26-positive tissue-resident fibroblasts contribute
to functionally distinct caf subpopulations in breast cancer. Nat Commun. (2023)
14:183. doi: 10.1038/s41467-023-35793-w

111. Aden D, Zaheer S, Ahluwalia H, Ranga S. Cancer-associated fibroblasts: is it a
key to an intricate lock of tumorigenesis? Cell Biol Int. (2023) 47:859–93. doi: 10.1002/
cbin.12004

112. Vokurka M, Lacina L, Brabek J, Kolar M, Ng YZ, Smetana K Jr. Cancer-
associated fibroblasts influence the biological properties of Malignant tumours via
paracrine secretion and exosome production. Int J Mol Sci. (2022) 23:964. doi: 10.3390/
ijms23020964

113. Aboussekhra A, Islam SS, Alraouji NN. Activated breast stromal fibroblasts
exhibit myoepithelial andmammary stem cells features. Trans Oncol. (2023) 35:101721.
doi: 10.1016/j.tranon.2023.101721

114. Adjuto-Saccone M, Soubeyran P, Garcia J, Audebert S, Camoin L, Rubis M,
et al. Tnf-A Induces endothelial-mesenchymal transition promoting stromal
development of pancreatic adenocarcinoma. Cell Death Dis. (2021) 12:649.
doi: 10.1038/s41419-021-03920-4

115. Dvorankova B, Smetana K Jr., Rihova B, Kucera J, Mateu R, Szabo P. Cancer-
associated fibroblasts are not formed from cancer cells by epithelial-to-mesenchymal
transition in nu/nu mice. Histochem Cell Biol. (2015) 143:463–9. doi: 10.1007/s00418-
014-1293-z

116. Dvorankova B, Lacina L, Smetana KJr. Isolation of normal fibroblasts and their
cancer-associated counterparts (Cafs) for biomedical research. Methods Mol Biol.
(2019) 1879:393–406. doi: 10.1007/7651_2018_137
Frontiers in Immunology 14
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