
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jeremy P. McAleer,
Marshall University, United States

REVIEWED BY

Pranita Sarangi,
Indian Institute of Technology Roorkee, India
Carla Guenther,
Osaka University, Japan

*CORRESPONDENCE

Koichi Yuki

koichi.yuki@childrens.harvard.edu

†These authors have contributed equally to
this work

RECEIVED 19 March 2024

ACCEPTED 24 May 2024
PUBLISHED 10 June 2024

CITATION

Alhamdan F, Bayarsaikhan G
and Yuki K (2024) Toll-like receptors
and integrins crosstalk.
Front. Immunol. 15:1403764.
doi: 10.3389/fimmu.2024.1403764

COPYRIGHT

© 2024 Alhamdan, Bayarsaikhan and Yuki. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 10 June 2024

DOI 10.3389/fimmu.2024.1403764
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Immune system recognizes invading microbes at both pathogen and antigen

levels. Toll-like receptors (TLRs) play a key role in the first-line defense against

pathogens. Major functions of TLRs include cytokine and chemokine production.

TLRs share common downstream signaling pathways with other receptors. The

crosstalk revolving around TLRs is rather significant and complex, underscoring

the intricate nature of immune system. The profiles of produced cytokines and

chemokines via TLRs can be affected by other receptors. Integrins are critical

heterodimeric adhesion molecules expressed on many different cells. There are

studies describing synergetic or inhibitory interplay between TLRs and integrins.

Thus, we reviewed the crosstalk between TLRs and integrins. Understanding the

nature of the crosstalk could allow us to modulate TLR functions via integrins.
KEYWORDS

toll-like receptor, b1 integrin, b2 integrin, aV integrin, crosstalk
Introduction

Immune cells are mounted with a number of pattern recognition receptors (PRRs) that

recognize foreign pathogens. Microbial components are main targets for host immune cells to

use for the recognition of microbes, and Toll-like receptors (TLRs) are one of major PRRs and

evolutionarily ancient mediators for innate host defense (1, 2). Other PRRs include RIG-I-like

receptors (RLRs), Nod-like receptors (NLRs), and C-type lectin receptors (CLRs) (3). So far

10 human TLRs (TLR1-TLR10) and 12 mouse TLRs (TLR1–9, TLR11–13) are identified (4).

They are expressed on the plasma membrane or the endocytic vesicles.

Among all the TLRs, TLR4 has been studied most extensively. TLR4 mainly recognizes

lipopolysaccharide (LPS) of Gram-negative bacteria (5, 6). To demonstrate its function,

TLR4 binds to adaptor protein MD-2 to form TLR4-MD-2 complex (7). TLR4-MD-2

complex binds to LPS, then forms a dimer to activate intracellular signaling cascade. Other

TLRs also form dimers (homodimer or heterodimer) to be functional. TLR2 recognizes

peptidoglycan, lipopeptide, and lipoprotein of Gram-positive bacteria in concert with TLR1

or TLR6 (8, 9). TLR3 recognizes double-stranded RNA (dsRNA) (10). TLR5 recognizes

bacterial flagellin (11). TLR7 and TLR8 recognize single-stranded RNA (ssRNA) (12–14).
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TLR9 recognizes bacterial and viral CpG DNA motifs (15, 16). The

recognition of microbial pathogens by TLRs induces the activation

of intracellular signaling pathways, resulting in the production of

inflammatory cytokines, type I interferon, and chemokines. TLRs

also induce the upregulation of costimulatory molecules on

dendritic cells (DCs) (17). TLR10 is the latest human TLR to be

discovered, and its ligand is still unclear (18). In contrast to TLR1–9,

TLR10 demonstrates anti-inflammatory response (19, 20). While it

is known to respond to influenza virus infection (21), this TLR still

requires more extensive work in the future.

In addition to recognizing exogenous ligands derived from

microbes, TLRs interact with endogenous molecules released from

damaged tissues or dead cells (22). For example, high mobility

group box 1 (HMGB1) is a nonhistone nuclear protein (23) and can

bind to TLR2, TLR4, and TL9. The list of ligands for each TLR is

listed in Table 1. The location of each TLR is also shown.

The production of pro-inflammatory mediators such as

cytokines and chemokines is one of the major TLR functions.

Those inflammatory mediators would help regulating the immune

system (35). For example, TLR2 and TLR4 are recognized by

various ligands (Table 1). However, inflammatory response by

different TLR2 ligands may not be the same. The involvement of

non TLR receptors can provide a more tailored, specific response to

TLRs. Integrins are critical adhesion molecules involved in many

biological processes and play an important role in TLR crosstalk.

Thus, we will first describe TLR signaling pathways. Then we will

examine the role of integrins as regulators of TLR functions.
TLRs signaling pathways

TLRs induce intracellular pro-inflammatory signaling events

via myeloid differentiation primary response protein 88 (MyD88)

and/or Toll/IL-1R (TIR) domain-containing adaptor inducing

interferon (TRIF) (Figure 1). Here we focus on describing pro-

inflammatory signaling pathways via MyD88 and/or TIR for

TLR1–9. The dimerization of TLRs triggers signaling events.
MyD88 signaling pathway

TIR domains are essential components of the innate immune

system (36). The proximal events of TLR-mediated intracellular
Frontiers in Immunology 02
signaling are initiated by the interaction of TIR-domain of TLRs

with TIR-domain-containing cytosolic adaptors and MyD88 is a

central adaptor protein for TLRs. With the exception of TLR3, all

TLRs mediate the downstream signaling pathway via MyD88 (37).

The association of TLRs with MyD88 recruits the members of the

interleukin-1 receptor associated kinase (IRAK) family, forming

MyD88-IRAK-4 complex. This recruits IRAK-1 and IRAK-2,

leading to the phosphorylation of IRAKs and interaction with

tumor necrosis factor receptor associated factor 6 (TRAF6).

TRAF6 induces the activation of transforming growth factor-b
activated kinase 1 (TAK-1), thereby I-kB (IkB) and mitogen-

activated protein kinase (MAPK). The activation of IkB and

MAPK results in nuclear factor kappa B (NF-kB) and activator

protein 1 (AP-1)-mediated gene transcription (38, 39). IRAK

activation also stimulates interferon-regulatory factor (IRF) such

as IRF7 (40–42) and activates the gene transcription of type I IFN

(43). As a result, pro-inflammatory cytokines including tumor

necrosis factor (TNF), interleukin (IL)-1, IL-6, IL-12, and

interferon (IFN)-a are produced (44).
TRIF signaling pathway

TRIF was identified as MyD88-independent pathway

(alternative pathway). TRIF is recruited to TLR3 and TLR4.

TRAF activation recruits TRAF6 and TRAF3. TRAF6 recruits

receptor interacting protein 1 (RIP1). The subsequent activation

of TGF-b-activated kinase 1 (TAK1)/TAK1-binding proteins

(TABs) leads to the activation of NFkB and IFN-b promoter (45)

to express pro-inflammatory cytokines and type I interferons. TRIF

also activates TANK-binding kinase 1 (TBK1) and inhibitor of NF-

kB kinase (IKK). Subsequently interferon regulatory factor 3 (IRF3)

is activated and negatively regulates the activation of NF-kB and

IFN-b promoter (46).
Integrins

Integrins are a/b heterodimeric cell adhesion molecules that

mediate cell-to-cell and cell-to-matrix interactions (47, 48). They

are type I membrane glycoproteins with large extracellular domains,

single transmembrane domains, and relatively short intracellular

tails. The head of the large extracellular domain serves for ligand

binding. To date, 18 a- and 8 b-subunits have been identified that

combine to form at least 24 distinct a/b heterodimers. The list of

integrins with representative ligands is included in Table 2.

Integrins on the membrane (the outside) can receive signals

triggered by non-integrin receptors via intracellular signaling

(inside-out signaling) and vice versa (outside-in signaling)

(Figure 2) (52).
Inside-out signal

Inside-out signal is initiated by non-integrin receptors such as G

protein-coupled receptors (GPCRs), selectins, and chemokine
TABLE 1 List of TLRs, their location and ligands.

TLRs Ligands Expression

TLR2

TLR3
TLR4
TLR5
TLR7
TLR8
TLR9

Triacyl lipopeptide (24), peptidoglycan,
lipopeptide, lipoprotein, zymosan (25),
HMGB1 (26), HSP60 (27), HSP70 (28),
hyaluronan (29)
dsRNA (10), mRNA (30)
LPS (5), HMGB1, HSP60, HSP70, hyaluronan
flagellin (11)
ssRNA (31), siRNA (32)
ssRNA (31), siRNA (32)
unmethylated CpG (15), HMGB1 (33),
DNA (34)

Plasma membrane

Endosome
Plasma membrane
Plasma membrane
Endosome
Endosome
Endosome
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receptors (49, 53, 54). Their signals are transmitted to

activate integrins. Integrin aLb2 was extensively studied on

inside-out signal in the setting of T cells (55, 56). The activation

of T cell receptor (TCR) and tyrosine kinase Lck leads to

the phosphorylation of ZAP-70 kinase. This triggers the

phosphorylation of LAT adaptor protein and the activation of

phospholipase Cg1. This ultimately activates the small G protein

ras-related protein-1 (Rap1). Rap1 binds to Rap-1 interacting

adaptor molecule (RIAM). These events trigger the binding of

talin and kindlin to b2 subunit, which induces the conformational

change of aLb2 into its active form (57). Although the binding of

talin alone to integrin can activate it, its potency is extremely weak,

supporting the critical role of kindlin in this process (58). The

activation of aLb2 results in its binding with ligands including

intercellular adhesion molecule-1 (ICAM-1). What kind of

molecules each integrin uses for inside-out signal and whether the

same integrin uses different combination of molecules depending

on cell type would be an important research area.
Outside-in signal

Upon the inside-out activation, an integrin binds to a specific

ligand. However, for the integrin to tightly bind to its ligand to

mediate cell adhesion and migration, its cytoplasmic domains must

be anchored to the cytoskeleton (59, 60). When the integrin binds to

its ligand, it triggers the assembly of large protein complexes known

as focal adhesions by incorporating a variety of molecules including

cytoskeletal proteins and signaling molecules. Linking the integrin
Frontiers in Immunology 03
to the actin cytoskeleton promotes firm cell adhesion, cell

spreading, migration and proliferation (57). Talin and kindlin

serve as seed proteins to recruit proteins and initiate focal

adhesion assembly (61). In case of aLb2, the binding of ICAM-1

induces the activation/deactivation of kinases and phosphatases,

leading to the cytoskeletal remodeling for the fine-tuning of effector

functions such as T cell migration (62). Interestingly, this outside-in

signal can be modified by the heterotrimeric guanine nucleotide-

binding protein (G protein) Ga13. GPCRs activate Ga13, triggering
its interaction with b integrin to regulate the outside-in signal (53).
Integrin-TLR crosstalk

b1 integrin

b1 integrin receptors regulate numerous functions, including

cell adhesion, migration, differentiation, growth, and survival. b1
integrin subfamily consists of 12 a-chains that non-covalently bind
to b1 chain (CD29) (49, 63). They can be categorized by their

binding characteristics such as Arg-Gly-Asp (RGD)-binding

integrins (avb1, a8b1, and a5b1), Leu-Asp-Val (LDV)-binding
integrins (a4b1 and a9b1), collagen-binding integrins through

triple helical GFOGER sequence in major collagens (a1b1, a2b1,
a10b1, and a11b1), and laminin-binding integrins which includes

both non-a Inserted (I) domain-containing integrins (a3b1, a6b1
and a7b1) and aI domain-containing integrins (a10b1, a2b1, and
a1b1) (64). The key downstream signaling molecules of integrins

include focal adhesion kinase (FAK), AKT, MAPK, Src-family
FIGURE 1

TLR signaling pathway TLR1, TLR2, TLR4, TLR5 and TLR6 are expressed on the cell surface. TLR3, TLR7, TLR8 and TLR9 are expressed in the
endosome. Following ligand engagement, TLRs are dimerized, and interact either with MyD88 or TRIF. MyD88 signaling pathways involve NFkB and
AP-1, both of which induces pro-inflammatory cytokines. Via TRIF, IRF3 and NFkB induces interferons and pro-inflammatory cytokines, respectively.
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protein tyrosine kinases, and integrin-linked kinase (ILK) (65).

Integrins regulate intracellular signal transduction cascades that

control differentiation, proliferation, and survival. Upon binding to

fibronectin, collagen, and laminin, b1 integrin induces cell adhesion

and migration that is extensively observed in pancreatic cancer

models. Blockade or knockdown of b1 on cancer cells resulted

better prognosis by reducing tumor growth and metastasis (66),

which makes b1 integrin as an attractive therapeutic target. b1
integrins, in particular a9b1 has been reported to induce Th17 cell

promoting cytokines in dendritic cells and macrophages in synergy

with TLR2 and TLR4 through ERK pathway, that developed

functional Th17 cells and arthritis (67). In addition to that, upon

engaging with extracellular matrix (ECM) or other ligands, they

initiate signaling pathways that can either reinforce or inhibit the

activity of other receptors through negative or positive feedback

loops. Interactions of a3b1 and a4b1 with TLRs have reported in

several studies, which will be discussed in the following sections.
i. a3b1
a3b1 is expressed extensively on nearly all types of cells. It binds

to a wide range of ligands with or without classical RGD integrin-

binding motifs (68). a3b1 integrin serves as a receptor for collagen

(type I and VI), laminin (a1b1g1), laminin-5 (a3b3g2), laminin-10

(a5b1g1), laminin-11 (a5b2g1), fibronectin, entactin, nidegon, and
thrombospondin-1 with high specificities and affinities (69).

Integrins are often targeted by bacterial and viral pathogens to

adhere to and invade host cells. b1 integrins are particularly prone

to their targets (70). b1 integrins serve as receptors for bacterial

surface proteins including invasin and FimH (71, 72). a3b1 binds to
BBB07 expressed on Borrelia burgdorferi (B. burgdorferi), the

causative microbe of Lyme disease (73). BBB07 also serves as a

TLR2 ligand. By ligation to the same ligand by both a3b1 and

TLR2/1, human macrophages manifested enhanced pro-

inflammatory responses to bacterial components.

a3b1 also mediates the endocytosis of TLR2 ligand Pam3CSK4,

thereby facilitating its recognition by TLR2/1 within the endosome

(74). This leads to the recruitment of adaptor molecules such as

MyD88 by TLR2/1, eventually activating NF-kB signaling pathway

and inducing the production of pro-inflammatory cytokines such as

IL-6 (56). In murine macrophages, the endosomal activation of

TLR2/1 induces IFN-b (75). This endocytosis mediated by a3b1
was observed for both live bacteria and bacterial proteins.
TABLE 2 List of integrins, their ligands and expression distribution (48–51).

Integrins Ligands Expression

a1b1 Laminin, Collagen I, Collagen IV Activated T and B cells,
NK cell, glial cell, Schwann
cells,
fibroblasts, endothelium

a2b1 Laminin, Collagen, Tenascin Activated T and B cells,
NK cell, cell, fibroblasts,
endothelium, epithelium

a3b1 Laminin, Fibronectin Activated T cells,
thymocytes, astrocytes,
fibroblasts,
endothelium, epithelium

a4b1 Fibronectin, VCAM-1,
MAdCAM-1, TSP-
1, Osteopontin,

T and B cells, NK cell,
eosinophils,
fibroblasts, endothelium

a5b1 Fibronectin, murine L1 Activated T and B cells,
thymocytes, platelets,
astrocytes, fibroblasts,
endothelium, epithelium

aVb1 Vitronectin, Fibronectin,
Collagen, Fibrinogen, von
Willebrand factor

Oligodendroglia

a6b1 Laminin T cells, thymocytes, glial
cell, fibroblasts,
endothelium, epithelium

a7b1 Laminin Melanoma, skeletal and
cardiac muscle

a8b1 Fibronectin,
Vitronectin, Tenascin

Neurons,
oligodendroglia, epithelium

a9b1 Osteopontin, Tenascin, VCAM-1,
Fibronectin, ADAM, VEGF

Epithelium
(airway), muscle

a10b1 Collagen Chondrocyte, mesenchymal
stem cell

a11b1 Collagen Skeletal and smooth muscle

aLb2 ICAM-1, ICAM-2, ICAM-3 T cells,
leucocytes, thymocytes,

aMb2 ICAM-1, Factor X,
iC3b, Fibrinogen

NK cell, activated B cell,
myeloid cell, macrophage

aXb2 iC3b, Fibrinogen Activated B cell, myeloid
cell, dendritic
cell, macrophage

aDb2 ICAM-1, ICAM-3, VCAM-1 Myeloid cell

aIIb3 Fibronectin, Vitronectin, von
Willebrand factor,
Thrombospondin, Fibrinogen

Platelets

aVb3 Fibronectin, Osteopontin, von
Willebrand factor, PE-CAM-1,
Vitronectin, human L1,
Thrombospondin, Collagen

Activated T and B cells,
monocytes,
endothelium, glia

a6b4 Laminin Schwann cell, endothelium,
epithelium, fibroblasts

aVb5 Vitronectin,
Fibronectin, Fibrinogen

Monocytes, macrophages,
oligodendroglia,
epithelium, fibroblasts

(Continued)
TABLE 2 Continued

Integrins Ligands Expression

aVb6 Fibronectin Epithelium

a4b7 Fibronectin, VCAM-1,
MAdCAM-1

NK cell, T and B cell

aEb7 E-cadherin Intraepithelial
T lymphocyte

aVb8 Fibronectin, Vitronectin Schwann cell,
oligodendroglia,
brain synapses
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The impact on TLR2 mediated signaling via a3b1 is cell type-

dependent (76). As in macrophages, a3b1 and TLR2/1 crosstalk

selectively enhances IL-6 and IL-10 production by neutrophils in

the setting of sepsis. However, neutrophils do not produce TNF

production. Activated neutrophils release laminin (77) which bind

to a3b1 on their cell surface, and increase the phosphorylation of

FAK, but not Syk. This is responsible for the aforementioned

profiles of pro-inflammatory cytokines by neutrophils (78).

Activated FAK feeds into the MyD88-dependent TLR signaling. It

is not certain about the presence of direct interaction between a3b1
and TLR2/1 on the neutrophils, but it is suggested that they may

interact transiently within the lipid rafts upon activation since both

of them localize there during activation (79, 80).

ii. a4b1
a4b1, also referred to as very late antigen-4 (VLA-4), is

expressed on most leukocytes. It plays a crucial role in cell

homing, trafficking, differentiation, activation, and survival. The

ligands of this receptor include ECM protein fibronectin and the

vascular cell adhesion molecule-1 (VCAM-1), which are expressed

on endothelial cells (81). a4b1 binding site to fibronectin contains

the tripeptide sequence Leu-Asp-Val (LDV) and is located in the

alternatively spliced connecting segment 1 (CS-1) region, while

VCAM-1 is recognized through the sequence Ile-Asp-Ser (IDS)

(82). The domain called extra domain A (EDA) within fibronectin

activates TLR4 (83). Thus, fibronectin severs as a ligand for both

a4b1 and TLR4 (84). a4b1 was shown to function as a co-receptor

for TLR4 in fibroblasts. Blockade of a4b1 or TLR4 or knockdown of
Frontiers in Immunology 05
a4 subunit in fibroblasts resulted in a decreased production of pro-

inflammatory cytokines such as TNF and IL-10 (85).
b2 integrin

b2 integrins consist of four members- aLb2 (CD11a/CD18,

lymphocyte function-associated antigen-1), aMb2 (CD11b/CD18,

macrophage-1 antigen, complement receptor 3), aXb2 (CD11c/

CD18, p150.95, complement receptor 4), and aDb2 (CD11d/

CD18). aLb2 is ubiquitously expressed on all leukocytes, while

aMb2, aXb2, and aDb2 are mainly expressed on myeloid cells at

different levels (86). aLb2 binds to intercellular adhesion molecule

(ICAM)-1~5 that can be found on the surface of other cells. aMb2
has broad versatility, having over 40 known binding partners, such

as ICAMs, iC3b, fibrinogen, RAGE (receptor for advanced glycation

end products), and CD40L (87). aMb2 and aXb2 share several

ligands as including iC3b, ICAM-1 and fibrinogen, but their

binding sites on the same ligand are not exactly the same (88).

aDb2 also binds to multiple ligands, encompassing extracellular

matrix-associated proteins like fibronectin, fibrinogen, vitronectin,

and plasminogen as well as ICAM-1 (89). Reactive oxygen species

(ROS) produced by the ligation of TLR2 and TLR5 induced rapid

b2-integrin activation on myelomonocytes, and promoted

leukocyte adhesion, suggesting that TLRs collaborate with one

another (90). CD18 (b2) knockout (KO) macrophages and DCs

produced higher level of IL-12p40 and IL-6 in response to TLR2,

TLR4 and TLR9 stimulation, and higher level of type I interferon in
FIGURE 2

Integrin signaling Inside-out signal: Integrins are in an inactive conformation at baseline. However, the activation of receptors such as GPCRs,
chemokine receptors, and TCR induces a cascade of events within the cells. The example shown here is via TCR. At the end, talin along with kindlin
bind to b subunit of integrins, inducing its conformational change, which triggers the structural change of a subunit, allowing the integrin to bind to
its ligand. Outside-in signal: Integrins that bind to their ligands cause cytoskeletal changes via focal adhesion molecules including focal adhesion
kinase (FAK), leading to cell proliferation, survival, differentiation, and migration.
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response to TLR4 stimulation (91), suggesting that b2 integrins

modulate TLR response. Further investigation of b2 ablation

showed NF-kB and p38 MAPK pathway activations were

involved in these processes (91, 92). Among b2 integrins, the

interplay between aMb2 and TLRs is well studied, which will be

discussed further.
i. aMb2

aMb2 is highly expressed on macrophages, DCs, monocytes,

granulocytes, and mature or activated NK cells (93). It regulates

TLR signaling positively or negatively, depending on cell types and

inflammatory status.

TLR4 KO neutrophils reduced aMb2 activation, but not aLb2
or aXb2, suggesting that TLR4 would selectively facilitate the

activation of aMb2 on neutrophils. TLR4-mediated aMb2
induction involved the activation of transcription factors NF-kB
and c-Jun (94). aMb2 can affect several TLRs. Upon in vivo

challenge with TLR ligand stimulations (LPS, poly(I:C), and CpG)

pro-inflammatory cytokines (TNF, IL-6, IL-10, and IFN-b) were

greatly increased in the serum of CD11b (aM) KO mice (39).

Higher level of pro-inflammatory cytokines in the serum was

observed in CD11b KO mice during methicillin-resistant

Staphylococcus aureus (MRSA) (95) and Escherichia coli (E.coli)

<i> (96) </i>infection. Bacterial loads were higher in CD11b KO

mice following MRSA and E. coli infections. In contrast, CD11b KO

mice demonstrated better clearance of L. monocytogenes following
Frontiers in Immunology 06
its infection, despite higher serum TNF and IL-6 levels were

detected (95). The difference in the phenotype may be because

TNF induces apoptosis of certain bacteria (97). In case of MRSA

and E.coli infection, TLR4 ligation activated aMb2 on macrophages

by inside-out signaling through PI3K and RapL pathway, which

negatively looped back TLR4 signaling (Figure 3) (96). Outside-in

signaling activated Src-Syk and promoted degradation of MyD88

and TRIF (Figure 3). This feedback loop in macrophages may

control balance of both TLR4 and aMb2 signaling pathways since

their uncontrolled activation can cause harmful pathogenesis. Of

note, syk is typically associated with other receptors such as C-type

lectin receptors (CLRs). To make complicated further, resident

macrophages or bone marrow derived macrophages from CD11b

KO mice showed similar level of pro-inflammatory cytokines and

activation status upon LPS stimulation, thus suggesting that the

interplay of aMb2 with TLR4 was not involved in steady-state

macrophages (96). Thus, the interplay between TLRs and aMb2
may be dictated by cell types and their cellular state. In fact, the lack

of aMb2 in DCs resulted in decreased pro-inflammatory cytokines

and reduced MyD88-dependent phosphorylation of p38, Erk1/2,

JNK, and IkBa in response to LPS stimulation (96). Upon

stimulation with LPS, aMb2 was clustered in DCs and co-

localized with CD14, which has been shown important for TLR4

endocytosis, suggesting that aMb2 was a part of TLR4 endocytosis.
Furthermore, CD11b KO in DCs impaired RANTES production in

LPS induced TRIF–mediated signaling in the endosome (44).

Unlike TLR4, aMb2 in DCs negatively regulated TLR9 signaling

by selectively reducing IL-12p70 production, which was possibly
FIGURE 3

aMb2 and TLR4 crosstalk The crosstalk between aMb2 and TLR4 is shown.Inside-out signal: LPS binding to TLR4 induces the activation of many
molecules including PI3K. PI3K facilitates the activation of aMb2 intracellular adaptor proteins, therefore aMb2 itself. Outside-in signal: Activated
aMb2 communicates with Src/Syk, which facilitates the degradation of MyD88 and TRIF. This will attenuate TLR4 activation signal. Of note, Syk is
typically associated with other receptors like C-type lectin receptors (CLRs).
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regulated by upregulated miR-146. The consequence of IL-12p70

production affected poor cross-priming of DCs to cytotoxic

T lymphocyte (CTL) response (98). TLR3 and aMb2 interplay

has been reported on NK cells. KO and neutralization of aMb2
enhanced cytotoxic function of NK cells in response to TLR3

stimulation and limited acute liver infection (93). aMb2
deficiency impaired the activation of MAPK/JNK pathway,

suggesting that it inhibited TLR3 mediated activation of NK cells

(99). Inside-out activation of aMb2 by TLR2 in association with

CD14 was reported in monocytes during the infection of

Porphyromonas gingivalis, a pathogen implicated in chronic

periodontitis and atherosclerosis. The activation of aMb2
induced adhesion and recruitment of monocytes to the site of the

infection (100). This recruited inflammatory monocytes can be

beneficial to control infection, but uncontrolled accumulation

results a tissue destruction. Although current data are all based

on either aMb2 or TLR KO system or depletion by neutralizing

antibodies, the studies suggested a possible indirect interplay

between aMb2 and TLR2 (100).

While most studies examined the interaction between TLRs and

aMb2 by inhibiting or deleting aMb2, some studied by activating

it. aMb2 activation by leukadherin-1 (LA1), its allosteric agonist,

protected mice from pathological injuries and reduced the mortality

induced by LPS (101). aMb2 activation by LA-1 inhibited M1

macrophage response to LPS both in vivo and in vitro. Although it is

not clear whether LA-1 facilitated a direct interaction between

aMb2 and TLR4 on macrophages, it induced an endocytosis of

both aMb2 and TLR4 and prevented LPS binding to TLR4 (101).

While it prevented an excessive activation of TLR4 signaling

pathway and pro-inflammatory response in macrophages, LA-1

pretreatment induced pro-inflammatory cytokines in DCs,

suggesting that the effect of LA-1 could be cell type-dependent

(101). It is worth noting that the expression levels of aMb2 on

macrophages and DCs are different (102), which may be in part

responsible for the different effect of LA-1 on these two cell types.

A recent study showed that CD11b deficiency of donor non-

classical monocytes increased CXCL2 production and exacerbated

primary graft dysfunction in lung transplantation model (103). High

mobility group box 1 (HMGB1), a DAMP released from dying cells,

activates TLR4 in nonclassical monocytes. It was released from the

donor lungs with primary graft dysfunction. Interestingly, HMGB1

stimulation induced lower CXCR2 production by TLR4 single KO or

TLR2/TLR4 double KO monocytes, but not TLR2 single KO. It is

uncertain whether aMb2 interacts directly with TLR2 or TLR4,

however, aMb2 agonist LA-1 prevented primary graft dysfunction,

suggesting that aMb2 might facilitate TLR endocytosis.

Although all the evidence supports the presence of crosstalk

between aMb2 and TLRs, several questions still need to be answered.
Do aMb2 and TLRs bind to the same ligands? In fact, several studies

reported that aMb2 binds viral dsRNA (104), and bacterial toxins

(105) and LPS (106–108). So far the interaction between ligands and

aMb2 has been shown in vitro. Therefore, it will be critical to

determine if reported ligands for aMb2 are in fact relevant in vivo.

If so, it is not known whether both TLRs and aMb2 bind a ligand at

the same time. If they do, which signaling should be activated first?

Does ligand binding avidity and affinity affect downstream signal? Or
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do they limit activation? If they don’t, is there ligand binding

competition between TLR and aMb2? Would it be possible that

the rest of b2 integrin members interplay with TLRs? This may be

very possible since extracellular part of aXb2 has over 80% of

sequence homology to aMb2 and about 50% of homology in

intracellular tail, for example (109, 110). Furthermore, LPS also

binds to caspase-11 intracellularly (111), which makes the crosstalk

complicated. b2 integrin members may also collaborate each other to

inhibit or induce TLR response, since b2 integrin members are

expressed upon activation of cells, especially on myeloid cells. They

may function synergistically. Apparently, the proposed crosstalk

between aMb2 and TLRs depend on cell types, but does ligand

binding affinity or avidity affect crosstalk? For example, high-affinity

ligand binding affects the degree of up- or downstream signal? There

might be a rivalry between the ligands. It is interesting to know

whether these crosstalks depend on the timing of activation or not. A

previous study showed aMb2 on dendritic cells was activated

through inside-out signaling by TLR4 (112) that was necessary for

aMb2-induced phagocytosis but not affected aXb2, suggesting a

bidirectional action between aMb2 and TLR4.
aV integrin

aV integrin also known as CD51 or MSK8, is a transmembrane

protein that is involved in cell adhesion, migration, and signaling

(113). aV integrin forms heterodimers with various b integrin

subunits such as b1, b3, b5, b6, and b8. Together they designate a

various array of receptors to bind to specific ligands in the

extracellular matrix (ECM) including fibronectin, vitronectin,

fibrinogen, and osteopontin, enabling cells to adhere and respond

to their surrounding environment (114, 115).

In addition to adhesion, aV integrin promotes the activation of

a multitude of signaling pathways, primarily the FAK pathway

(116). The phosphorylation of FAK will in turn recruit Src kinases,

phosphoinositide 3-kinase (PI3K) subunit p85, or phospholipase

(PL)Cg and stimulate the signaling cascades of Ras/Erk, PI3k/Akt,

and Crk/Dock180/Rac. These pathways contribute to cell survival,

proliferation, differentiation, and migration, emphasizing the

multifaceted role of integrin aV.
The significance of aV integrin is not only linked with normal

physiological functions. Dysregulation of aV integrin function has

been associated with a variety of pathological conditions, including

cancer, metastasis, angiogenesis, and wound healing (115).

Additionally, aV integrin is involved in vascular remodeling and

fibrosis (117).
i. aVb3
aVb3 is a multifaceted integrin due to its expression on a

plethora of cell types and its ability to bind to many extracellular

ligands. Through recognizing Arg-Gly-Asp (RGD) motif, aVb3
binds to extracellular matrix proteins such as vitronectin,

fibronectin, fibrinogen, and von Willebrand factor (48, 118). It

can also serve as a receptor of some viruses for their entry into target

cells (119). The aVb3-TLRs cooperation has been described in
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several studies; Plasma membrane TLR4, TLR5 and endosomal

TLR3 activated epithelial cells via NF-kB signaling pathway in

response to viral and bacterial pathogen-associated molecular

pattern molecules (PAMPs) (120). aVb3 further enhanced their

NF-kB activation. aVb3 also positively orchestrated TLR2 signaling
by facilitating a recruitment of the adaptor MyD88 to TLR2 (121).

This mechanism was driven by a physical interaction of both aVb3
and TLR2 with herpes simplex virus (HSV). This leads to NF-kB
activation and the production of various mediators including IFN-

a, IFN-b, IL-2, and IL-10 in response to the viral infection. Another

type of aVb3-TLR2 interplay has been attested in a different study,

in which aVb3 was shown serve as a co-sensor for bacterial

lipopeptide (BLP) to be detected by TLR2 (122). The molecular

mechanism mediating TLR2 activation was through the recognition

of BLP by vitronectin on human monocytes. The TLR2-aVb3
complex interaction was entirely dissociated following the

completion of BLP stimulation. This further confirmed the

physical link between aVb3 and TLR2 in recognizing invading

pathogens and initiating a synergistic response. The collaboration

between aVb3 and TLRs was also described in bacterial infection.

In a murine cecal ligation and puncture (CLP)-induced sepsis and

in a LPS-stimulated macrophage cell model, aVb3 positively

regulated TLR4 signaling in peritoneal macrophages (123). The

deficiency of aVb3 attenuated TLR4 activation. This effect appears

to be mediated by CD14 expression, as aVb3 deficiency inhibited

CD14 expression. The deleterious impact of the aVb3 -CD14-TLR4
crosstalk was caused by the release of a variety of pro-inflammatory

cytokines. Therefore, CD61 (b3) KO mice exhibited higher survival

rates and were more resistant to septic organ injury. A similar study

revealed that thw previous crosstalk was mediated by WNT1

inducible secreted protein 1 (WISP1) (124). Ligation of WISP1 to

aVb3 synergistically enhanced TLR4-mediated TNF synthesis in

LPS treated peritoneal macrophage.

ii. aVb5
Similar to aVb3, aVb5 serves as a receptor for vitronectin (125).

aVb5 mediates phagocytosis of apoptotic cells and promotes

angiogenesis and wound healing (126). The interaction of aVb5
with TLR4 during infection was illustrated in a murine two hit-model

of CLP and mechanical ventilation (MV)-induced lung injury (127).

TLR4 KOmice showed better survival and less lung injury compared

to wild type (WT) mice. aVb5 regulated vascular permeability in

both ventilator-induced lung injury (VILI) (128) and CLP (129). In

line with this knowledge, neutralizing antibodies against aVb5
partially attenuated lung injury. In this model, peritoneal

macrophages increased the expression of aVb5 in response to

TLR4 activation. The connection between aVb5 and TLR4

contributed to the exacerbations of the CLP-MV lung injury model.
iii. aVb6
aVb6 is expressed mainly on epithelial cells and involved in

wound healing (130). Excessive production of aVb6 leads to lung

fibrosis and cancer (131). Activation of transforming growth factor-

b1 (TGF-b1) represents the key role of aVb6 (131, 132). In line with

this, influenza infection stimulated TLR3 and further induced aVb6-
dependent TGF-b1 activation in epithelial cells (132). TLR3- aVb6
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crosstalk converged on the RhoA kinase that was activated by TLR3.

RhoA kinase was further required to activate TGF-b1 via aVb6. This
suggests that the crosstalk was through a signaling pathway rather

than a direct physical interaction between TLR3 and aVb6. Blocking
aVb6 seemed to have no effect on the viral entry to the epithelial cells

or the replication of viral genes. The biological consequences of TGF-

b1 activation via aVb6-TLR3 axis were epithelial cell death and

accumulation of collagen in mouse lungs, which in turn promoted

fibrosis. Another adverse effect of aVb6 during influenza infection of

lung epithelium was the suppression of type I IFN response (133).

The IFN antiviral response was mainly mediated by endosomal

TLR7. aVb6 activated lysosomal autophagy machinery to remove

TLR7, leading to the suppression of TLR7-mediated IFN signaling

against Influenza infection. Opposite to aVb3, aVb6 seemed to have

no physical interaction with TLRs.

Conclusion

Without doubt, TLRs regulate major signaling pathways to

modulate the degree of inflammation. While TLRs crosstalk is not

exclusively restricted to integrins as complement system has been

shown to intercommunicate with TLRs in the host immunity

during infection (134), we highlighted ones involving integrins

here. As there are a number of signaling pathways to regulate

inflammation, it is not surprising that crosstalk system involving

integrins has been established to coordinate inflammatory

responses as we examined (135). Underhill has proposed several

possibilities why the crosstalk has evolved; 1) To provide robust

response against invading microbes. 2) Compensation against

genetic diversity in host population, 3) Multiple receptors can

facilitate a more tailored, specific response (136). The idea of “a

more tailored, specific response” is very fascinating, because innate

immune cells, which usually express TLRs predominantly, are

rather considered promiscuous and relatively non-specific

compared to adaptive immunity. Further understanding the role

of crosstalks between TLRs and integrins would allow us to

understand very complex system that innate immunity has

developed and intervene if indicated.
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