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Institut National de la Santé et de la
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The lysosomal trafficking
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Lysosomes and lysosome related organelles (LROs) are dynamic organelles at the

intersection of various pathways involved in maintaining cellular hemostasis and

regulating cellular functions. Vesicle trafficking of lysosomes and LROs are

critical to maintain their functions. The lysosomal trafficking regulator (LYST) is

an elusive protein important for the regulation of membrane dynamics and

intracellular trafficking of lysosomes and LROs. Mutations to the LYST gene result

in Chédiak-Higashi syndrome, an autosomal recessive immunodeficiency

characterized by defective granule exocytosis, cytotoxicity, etc. Despite eight

decades passing since its initial discovery, a comprehensive understanding of

LYST’s function in cellular biology remains unresolved. Accumulating evidence

suggests that dysregulation of LYST function also manifests in other disease

states. Here, we review the available literature to consolidate available scientific

endeavors in relation to LYST and discuss its relevance for immunomodulatory

therapies, regenerative medicine and cancer applications.
KEYWORDS

lysosomes, vesicle traffic, Chédiak-Higashi syndrome, cancer, wound healing,
immunotherapy, LYST, beige
1 The lysosomal trafficking regulator: the roadmap

In 1943, a pediatrician discovered a strange, previously uncharacterized disease. The

pediatrician described the patients’ peripheral blood smears as containing abnormally

large, distended granules, a first-in-man observation (1, 2). Clinicians in Cuba and Japan

corroborated these findings, reporting similar childhood cases unified by three hallmark

features: oculocutaneous albinism, granule abnormality, and death in early childhood (3,

4). This disease came to be known as Chédiak-Higashi Syndrome (CHS) (5, 6). In the
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ensuing decades, the lysosomal trafficking regulator (LYST) has

emerged as the gene underlying CHS.While LYST initially garnered

attention due to its connection to CHS, researchers identified LYST

as a pivotal player in cellular and immune functions. Discovering

CHS marked the beginning of decades of efforts to understand

LYST’s role in biology and eventually its implications for human

health and disease.

For decades following the landmark discovery, the scientific

community was puzzled by this abnormal disease. While no one

understood the etiology of disease, it was clear that CHS caused

immune dysfunction and granule anomalies that warranted further

investigation. These investigations eventually led to identifying the

enlarged intracellular inclusions as being lysosomal in origin (7–9).

Following the discovery of CHS, similar phenotypes were reported

in animal models (Table 1). Many seminal publications that provide

insights into LYST molecular function involve the mouse homolog

of LYST, beige, which has a phenotype that closely resembles

human CHS. This model is discussed in more detail in section

III. Animal models of LYST mutations. Human samples and animal

models provided tools to examine the consequences of CHS on

immune function and molecular biology, but efforts were limited by
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the unidentified cause of CHS. It was not until 1996, forty years after

the first description of CHS, that researchers identified and cloned

the causative human LYST gene (19, 20), which consists of 53 exons

and is located on chromosome 1q42.1-1q42.2 (21).

After identifying the causative gene, researchers began dedicating

efforts to understanding a place for LYST in cellular biology. Some

groups focused on clarifying whether LYST causes granule

abnormalities through fusion or fission processes (8, 22–28). Other

groups were interested in potential binding partners of LYST that

could suggest how LYST is involved in membrane dynamics and

vesicle trafficking (29, 30). The journey to understanding LYST has

extended into the 21st century. With time, more tools have become

available for studying LYST function. Recently, sequencing and

structural analysis provided a more detailed molecular

understanding of the LYST gene and protein structure (31, 32).

These advancements provided more clues for its involvement in a

myriad of cellular processes. Over the past decade alone, LYST has

been linked to human health outside of CHS through connections to

cancer and wound healing (33–40).

Despite longstanding interest in investigating LYST, a complete

understanding of LYST biology is yet to be established. Here, we
TABLE 1 Summary of the model organisms available for lyst research.

Animal Genetic Variant Mutation Details Phenotypic Observations Ref

Mouse

Beige (Lystbg); Beige-J
(Lystbg-J);
Beige-2J (Lystbg-2J)

Lack WD40 and BEACH

- Light coat color
- Delayed wound healing
- Defective natural killer cell cytotoxicity
- Reduced chemotaxis and bactericidal activity of
granulocytes
- Decreased T-cell response to allogeneic tumor cells

(10)

Beige-grey
(Lystbg-grey)

Unstable protein - Light coat color (11)

LystIng3618 Missense WD40 mutation

- Enlarged lysosomes in CNS and PNS
- Purkinje cell degeneration + severe neurological
degeneration
- Prolonged bleeding; mild hypopigmentation

(12)

Drosophila
melanogaster

Mauve mutation Nonsense mutation in mv2 (3L-85) allele

- Enlarged pigment granules with decreased number
- Defective cellular immunity + increased
susceptibility to infection
- Enlarged starvation-induced autophagosomes
- Eye color defect

(13)

Caenorhabditis
elegans

Lyst-1 mutant
lyst-1(gk295717);
lyst-1(gk803491)

- Decreased size and increased number of gut
granules
- Reduced lysosome size
- Decreased number of early endosomes

(14)

Dicyostelium
discoideum

LvsB null mutant LvsB (-/-) mutant

- Secretory defect
- Defective lysosome maturation; reduced number of
post lysosomes
- Normal development

(15)

Corn snake Lavender variant
Exon 41 SNP ➔ truncated BEACH & partially
absent WD40

- Enlarged and aggregated LROs
- Reduced chromatophores, gray and pink
color morph

(16)

Japanese
black cattle

Bovine Lyst missense A ➔G at nucleotide 6050 ➔ H2015R
- Hypopigmentation
- Heritable bleeding disorder

(17)

Zebrafish Lyst 7653 mu107 C ➔T mutation at nucleotide 987
- Hypopigmentation
- Hepatomegaly + steatosis
- Kidney defects

(18)
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provide a comprehensive literature review to consolidate available

scientific endeavors in relation to LYST, which may be of great value

to the basic science and clinical community.
2 LYST and Chédiak-Higashi syndrome

Following the initial discovery of the CHS, researchers

published additional reports discussing clinical cases. The

connection of LYST to CHS prompted further efforts to

understand LYST function, which ultimately revealed its

involvement in cellular biology and human health outside of

CHS-related conditions. This autosomal recessive disorder

presents a long a c l inica l spectrum character ized by

hypopigmentation, recurrent bacterial infections, developmental

delays, and coagulation defects (41–43). Over 80% of patients

reach the “accelerated phase” of the disease, wherein they develop

life-threatening hemophagocytic lymphohistiocytosis (HLH), a

hyper-inflammatory disorder associated with recurrent viral

infections. This phenomenon represents the most common cause

of death in patients with CHS (1, 2). Hematopoietic stem cell

transplant is the only available curative treatment for CHS. Case

studies demonstrated its potential in correcting immunologic

complications and extending lifespan into adulthood (44). Yet,

patients who survive into adulthood develop progressive central

and peripheral neurodegeneration. A paucity of literature exists

surrounding CHS, and while the exact prevalence is unknown, there

have been fewer than 500 reported cases worldwide since its

discovery (45, 46).
3 Animal models of LYST mutations

Animal models are critical for gaining further insight into the

pathophysiology of LYST mutations. The most investigated animal

models are murine equivalents of CHS. A radiation-induced

mutation resulted in the first described Lyst-mutant mouse,

deemed the beige (bg or Lystbg) mouse for its silvery-grey coat

coloration compared to C57BL/6J wild-type (WT) mice (47, 48).

The spontaneous mutation of beige allele is caused by either i. 3-bp

deletion of a single amino acid (isoleucine) within WD40 domain,

or ii. a LINE1 element insertion, resulting in a truncated Lyst

protein lacking both WD40 and BEACH domains (49). The genetic

details are more thoroughly described in section VII toward a

molecular understanding of LYST. Today, researchers use the

beige-J (Lystbg-J) strain, which is a spontaneous re-mutation

virtually identical to the originally reported Lystbg mice (10).

Lystbg-J and the less commonly used Lystbg-2J mice, are

phenotypically identical to the original Lystbg mouse (10). Murine

beige-grey mutant (Lystbg-grey) mice carry a chemically induced Lyst

mutation (discovered in an ENU mutation screen) that results in an

unstable Lyst protein caused by Exon 25 skipping (11). Thus, unlike

Lystbg and Lystbg-J mice, the beige-grey mutation leaves the WD40

and BEACH domains intact (11). Notably, all Lyst-mutant mice

exhibit phenotypes commonly seen in human CHS patients,

including abnormal pigmentation of coat color comparable to
Frontiers in Immunology 03
oculocutaneous albinism in human, immunodeficiency associated

with abnormal or defective NK cells, and enlarged granules

(Table 1). The differential inclusion and/or exclusion of WD40

repeats, the BEACH domain, and Exon 25 result in a variety of Lyst-

mutant transcripts and a spectrum of unstable Lyst proteins,

potentially mirroring the spectrum of disease severity observed in

human CHS patients.

A murine missense mutation (LystIng3618) located in Exon 48 of

the WD40 domain caused a progressive neurodegenerative

phenotype, and the mouse lacked the immunodeficiency observed

in beige mice (12). LystIng3618/LystIng3618 mice display progressive

Purkinje cell degeneration and impaired neurological functions

during aging compared to WT mice (12). By 18 months, the

LystIng3618 mice have enlarged lysosomes and almost no

detectable neuronal Purkinje cells. This phenotype resembles the

mild, atypical forms of CHS, character ized by early

neurodevelopmental issues in childhood followed by progressive

neurodegeneration in adulthood (50). Many other animal models

possessing CHS-equivalent diseases resulting from Lyst mutations

have also been reported (Table 1), including mink (51, 52), cat (53–

55), fox (56, 57), Wagyu cattle (58), corn snake (16), and rat (59).

Together, the beige mutant mice and related strains present a

compelling experimental paradigm wherein the relative

contributions of intact WD40 or WD40/BEACH domains to

Lyst-dependent mechanisms could be interrogated in vivo to

better understand LYST function in humans. We anticipate that

these models could not only be used for understanding CHS

pathology but also for investigating defective vesicular trafficking.
4 LYST activity in specific cell types

Much of what is known about LYST comes from the cell type-

specific manifestations of LYST dysfunction observed in disease.

LYST underlies the vesicle trafficking responsible for mobilizing

specialized LROs that are central to host defense. In parallel with

characterization of Lyst-dependent molecular mechanisms,

investigations into the cel l type-specific mechanisms

demonstrated the extensive manifestations of defective

endolysosomal trafficking. Enlarged granules have been observed

in LYST-mutant NK cells (60), cytotoxic T cells (61), B cells and

helper T cells, neurons, neutrophils/granulocytes, monocytes/

macrophages, fibroblasts, platelets, and pigment-producing cells.

Available evidence regarding each cell type is discussed in the

following section, a graphical overview of which is provided

in Figure 1.
4.1 Natural killer cells

Defective natural killer (NK) cell function is a common feature

of CHS. NK cells are a lymphocyte subset critical to the innate host

defense against tumors and microbial infections (62). The cytotoxic

function of NK cells is accomplished via secretory lysosome

exocytosis. In this process, cytotoxic proteins are released from
frontiersin.org
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the NK cell secretory lysosome, or lytic granule, resulting in the

death of the target cell through interruption of membrane integrity

and inducing apoptosis (62, 63). Interestingly, NK cells are present

in normal quantities in CHS patients and the LYST mutation did

not impact their ability to recognize and bind target cells in vitro

(61). Studies involving CHS patient-derived cells suggested that

LYST may modulate the exocytosis of secretory lysosomes (64).

However, LYST-deficient granules contained a relatively normal

number of lysosome-associated proteins and lytic protein activity,

despite their enlarged morphology (60). Chiang et al. reported that

enlarged granules failed to polarize to the immune synapse and

release their cytotoxic cargo (61). To further resolve the impaired

transportation of enlarged granules, Gil-Krzewska et al. investigated

the actin meshwork as a potential mechanistic barrier to

polarization (60). They observed that the cellular actin meshwork

is not permissive for enlarged granules in LYST-deficient cells, since

lytic granules must navigate the tangled actin network at the

immunologic synapse to be secreted onto target cells (60). The

authors concluded that the cortical actin meshwork may prohibit

the exocytosis of LYST-mutated granules in NK cells. Unresponsive

NK cells increase the patient’s susceptibility to contracting viral

infections (Figure 1) which are known to accelerate CHS to HLH.
4.2 Cytotoxic T cells

Cytotoxic T lymphocytes (CTLs) have an important role in the

adaptive immune response, recognizing antigens presented in MHC

class I molecules (65). Similar to NK cells, activated CTLs kill target

cells through the release of perforin and granzyme from lytic
Frontiers in Immunology 04
granules (66). LYST deficiency reduces the normal cytotoxicity of

CTLs and enlarges their granules (61, 67, 68).

Compared to CHS NK cells, Lyst-mutant CTLs contain a

greater quantity of relatively smaller yet still abnormally enlarged

LROs. This suggests that these smaller CTL granules may more

efficiently navigate cellular obstacles. However, in vitro assays

revealed a marked deficiency of granule exocytosis and decreased

cytotoxicity (61). As described previously, while entanglement in

the cytoskeleton may impact the exocytosis of enlarged LROs, data

from CHS CTLs suggest that the mechanism of defective vesicular

transport is likely more complex (69).

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), a

major T cell regulator, functions by inhibiting the activation of T

cells. Although CTLA-4 is mainly stored in intracellular vesicles,

cell membrane expression is highly regulated by endocytosis and

trafficking through a secretory lysosome pathway. An earlier study

revealed that CHS patients have impaired intracellular trafficking of

CTLA-4 in the T cells, which results in defective cell-surface

expression of CTLA-4 (69). This abnormal regulation of cytotoxic

T cells likely contributes to the accelerated phase of CHS (69).
4.3 B cells and T helper cells

Although efforts to define the nature and extent of the LYST

protein’s role in B and T helper cell (Th cells) biology have provided

some insights regarding the kinetics of adaptive immune system

activation in CHS, recent mechanistic investigations are lacking.

CHS CD4+ T cells had shown decreased infection compared to WT

CD4+ T cells upon HIV-1 exposure, which primarily spreads
FIGURE 1

A Summary of Cell Specific LYST-Deficient Phenotypes. Acronyms (from left to right): Natural killer (NK) cells, Macrophages (MF), Platelets (PLT),
cells of the nervous system, Mast cells (MC), B cells, Cytotoxic T cells, Polymorphonuclear leukocytes (PMN), Fibroblasts (FIB). The size of the cell
reflects the amount of literature available. Created with BioRender.com.
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through cell-to-cell contact involving virion fusion with cell

membrane (70). Further analysis indicated that HIV-1 spread is

restricted by deficient LYST function in CHS T cells.

B cells are dependent on endosomal trafficking pathways to

internalize and process antigens for major histocompatibility

complex class II (MHCII) mediated surface presentation (71). LYST

mutations slow the kinetics of antigen presentation and MHCII

maturation and transport (72, 73). In beige B cells, one study

observed delayed mobilization of the endocytosed antigen-B cell

receptor (Ag-BCR) to lysosomes, which led to the suboptimal

presentation of BCR-targeted antigen to T cells in vitro (73). The

authors describe how a delay in antigen presentation results in

prolonged B cell activation, even in the presence of low antigen

levels (73). Sustained B cell engagement may reinforce pro-

proliferative signaling cascades, and when uncontrolled, lead to a

constant state of lymphoproliferation as demonstrated in the

“accelerated phase” resulting in HLH (74, 75). Indeed, HLH is

caused by defective vesicle trafficking-dependent immune cell

apoptosis, leading to marked overactivation of host defenses, bone

marrow infiltration, pancytopenia, liver dysfunction, and

hepatosplenomegaly often requiring cytotoxic immunosuppression or

stem cell transplant.
4.4 Cells of the nervous system

While CHS is primarily described by severe immunological

defects, neurologic impairments are also commonly observed

among mild to late-onset CHS patients. Patients affected by this

condition may experience developmental impairment (learning

disabilities), dementia, progressive neuronal degeneration

(especially among those surviving to adulthood), seizures, sensory

deficit, and weakness (50).

A case study published in 1994 reported a 39-year-old CHS

patient who developed Parkinsonian features along with dementia.

Single-photon emission computerized tomography (SPECT)

revealed severe neuronal degeneration in the cortex, basal ganglia,

brainstem, and spinal cord (9). Sung et al. reported abnormal

intracytoplasmic inclusions in various CHS patient cells including

neurons, astrocytes, epithelial cells of the choroid plexus, satellite

cells of the dorsal spinal ganglia, and Schwann cells (76). A

comparable phenotype has also been described in mice. As

mentioned in the III. Animal models of LYST mutations section,

the LystIng3618 mouse (Table 1) exhibits a neurodegenerative

phenotype without immunological defects (12). This represents

the only immune-competent Lyst-mutant murine model reported

to date, offering a window into the relatively unexplored biology of

CHS patients with neurological impairments. The effects of the

LYST mutation on the central nervous system requires

further exploration.
4.5 Neutrophils

Neutrophils are a subset of granulocytes critical to the detection

and elimination of microbes and foreign bodies. Neutrophils circulate
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in a quiescent state until activated by cytokines and growth factors

released from sentinel cells such as endothelial cells (77, 78). Once

activated, neutrophils degranulate, or release stored pro-inflammatory

mediators and/or microbicidal proteins, from either: i. primary or

azurophilic, ii. secondary or specific, iii. tertiary, or iv. secretory vesicle

granular subset (79). Neutrophils isolated from CHS patients

demonstrated delayed chemotactic responses, large and irregular

azurophilic granules, and abnormal bactericidal functions (80).

Azurophilic granules contain potent hydrolytic enzymes that allow

the neutrophil to confer bactericidal and cytotoxic properties (81). CHS

patients were deficient in neutrophil elastase and cathepsin G (82). The

deficiency of azurophilic components may be partially responsible for

the microbicidal defect observed in LYST-deficient cells. The presence

of the enlarged, abnormal granules in CHS neutrophils also impaired

cell kinetics and prohibited proper migration (25, 83). While the

observed neutrophil defect does not appear to impact signal

recognition, LYST mutations among CHS patients likely interfere

with vesicular trafficking pathways. Such pathways direct granulocyte

migration including cytokine release by macrophages or signaling by

endothelial cells (83–85). Neutrophils represent a prototypical LYST-

dependent cell type, wherein interrupted antimicrobial function due to

abnormal phagolysosomes renders patients and laboratory animals

alike susceptible to bacterial infections. The disruption of normal

antimicrobial function likely results in recurrent infections of CHS

patients. The correlation between abnormal neutrophil function and

clinical manifestations raises an intriguing possibility that recent

advances in neutrophil biology and therapeutics could yield targeted

immunomodulatory therapies.
4.6 Fibroblasts

Fibroblasts have an essential role in wound healing, tissue

regrowth, and regulating immune responses through secretion

and remodeling of extracellular matrix (ECM) (86).. CHS and

beige fibroblasts contain a relatively reduced quantity of

abnormally enlarged lysosomes (22, 87). With their wide

availability, ease of culture, and well-characterized LRO biology,

experiments in cultured fibroblasts provided much of the literature

surrounding the biogenesis of enlarged lysosomes in LYSTmutants.

Other defining features characteristic of LYST-deficient fibroblasts

include reduced exocytosis capacity and viability in response to

membrane injury (64). Restoring LYST expression in beige

fibroblasts reverses the enlarged lysosomal phenotype and rescues

exocytosis, suggesting a possible link between lysosome size and cell

function in fibroblasts (64). The baseline hyperactive inflammatory

gene transcription was observed in CHS fibroblasts. However, the

cells failed to initiate an appropriate immune response following

lipopolysaccharide (LPS) challenge, indicating an inability to

respond to an inflammatory stimulus. This defect was attributed

to abnormal expression of toll-like-receptors 2 (TLR2) and TLR4 or

aberrant intracellular processing or membrane localization of these

receptors (88). This observation is similar to findings in innate and

adaptive immune cell types, specifically NK cells, neutrophils,

macrophages, and T cells. However, Westphal et al. noted that

LYST-mutant dendritic cells and macrophages exhibit normal
frontiersin.org
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activation of MAPKs upon TLR4 stimulation, demonstrating that

LYST likely does not interact with the MyD88 pathway (89). This

observed dysfunction correlates with impaired TLR3- and TLR4-

induced IRF3 phosphorylation, suggesting that TRIF pathway

dysregulation is responsible for abnormal trafficking in LYST-

mutant innate immune cells (89). This finding does not discredit

Wang et al., but rather suggests that LYST likely exerts cell-type

specific effects. Fibroblasts also provided the foundation for

investigating LYST in conditions beyond CHS. Cutaneous wound

healing studies showed that LYST is an important regulator of

secretory exocytosis by fibroblasts, which confer deficits in MCP-1,

IGF-1, and IGFBP-2 secretion when LYST is mutated (40). Such

insights into fibroblast behavior underscore the complexity of

LYST’s impact, paving the way for broader implications in

various physiological processes and pathological conditions.
4.7 Monocytes and macrophages

Monocytes, macrophages, and their products comprise the

population of cells responsible for debris clearance, tissue

remodeling, and aspects of host defense. These cells exhibit

diverse functions by undergoing differential polarization into

various tissue-specific phenotypes, ranging from resident

macrophages to recruited pro-inflammatory monocytic precursors

(90). Differential activation of macrophages into classical M1 or

alternative M2 types occurs via Th1/PAMP and Th2 signaling,

respectively. These prototypical phagocytes, similar to neutrophils

discussed above, exhibit marked functional deficiencies due to their

reliance upon the endolysosomal network and LRO’s in the context

of LYST mutations.

Recent insights reveal that macrophage phagocytosis relies on

lysosomal degradation and recycling (91). Furthermore, there is a

newfound understanding of the dependence of monocyte/

macrophage signal transduction on intracellular membrane and

endosomal trafficking events. Despite normal monocyte

phagocytosis in both CHS patients and beige mice (92, 93), Lyst-

mutant monocyte-derived granulocytes are still at an increased risk

of bacterial infection (92).

Interestingly, studies indicate a delayed antitumor cytostatic

and cytotoxic activity of beige macrophages against lung carcinoma

during the initial 24-48 hours of exposure (93). These findings

corroborate the notion that Lyst mutations interrupt, rather than

prevent, trafficking of the phagolysosome. Recent findings suggest

that Lyst mediates phagosome maturation and pro-inflammatory

pathways in a Trif (TLR3 and TLR4)- dependent manner (89).

Specifically, beige-J cells are not able to recruit Rab7 during late

stage endolysosomal maturation, subsequently interrupting Trif-

mediated pro-inflammatory signaling pathways (89).
4.8 Platelets

Platelets are important homeostatic and thrombotic regulatory

cells. Following vascular insult, these cells often mark the first step

of the wound healing cascade (94). Platelets contain LROs such as
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dense, alpha, and lysosomal granules. The LROs store effector

molecules required for platelet aggregation, activation, paracrine

signaling, and protein degradation (95). CHS patients classically

present with platelet storage pool deficiencies resulting in bleeding

tendency (96, 97). Though circulating platelet levels are normal,

LYST mutations inhibit exocytosis of platelet dense granules.

Bleeding tendency is a hallmark of the clinical presentation of

CHS observed across species (17). Beige mice bleed excessively due

to reduced ADP, ATP, and serotonin within platelet dense granules

(98–100). Further study of beige platelets revealed an impaired

ability to aggregate in response to collagen, thrombin, and phorbol-

12-myristate 13-acetate stimulation, which the authors attributed to

platelet storage deficiency (101). These results underscore the

impact of dysregulated platelet granule exocytosis in the

pathophysiology of CHS.
4.9 Melanocytes and pigment
producing cells

Melanocytes are melanin-producing cells primarily located in

the epidermis, cochlea, and iris (102). Melanosomes are specialized

LROs that synthesize and contain the pigment melanin. Following

maturation, melanosomes are anchored and transported to the cell

periphery via microtubules, eventually transferring to adjacent

keratinocytes from melanocyte dendrites (103). Studies reported

enlarged and disorganized melanosomes in CHS melanocytes (104,

105). Tyrosinase catalyzes the production of melanin, and, along

with beta-glucuronidase, is understood to be abnormally trafficked

in cultured CHS melanocytes (105). Additionally, reports indicate

reduced melanin quantity and uneven pigment distribution in the

mouse retinal pigment epithelium, leading to eventual retinal

detachment (106). This phenomenon is attributed to the

accumulation of photoreceptor outer segment phagosomes,

coinciding with elevated levels of cathepsins, MMP-3, and

markers of oxidative stress (106).

Interestingly, pigment granule biogenesis in Drosophila is

paired with machinery of lysosomal protein delivery (107). This

evidence establishes a molecular explanation for commonly

reported oculocutaneous albinism of CHS patients and the LYST-

dependent melanosome/lysosome events required for normal skin,

hair, and eye pigment distribution.
4.10 Mast cells

Mast cells actively mediate innate and adaptive immunity (108)

by releasing histamine and other chemical mediators to modulate

acute allergic inflammation (109). Dysfunction of mast cells is

responsible for chronic allergic and inflammatory disorders,

autoimmune diseases, and cancers (110). Large granules were

observed in the peritoneal, dermal, and bone marrow derived

mast cells of beige mice (11, 111, 112). Other studies

demonstrated that, compared to WT rat mast cells, beige rat mast

cells released relatively greater amounts of histamine, which

appeared to cause granule enlargement (113, 114). In contrast to
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the secretory defect observed in other cell types, subsequent mast

cell investigations demonstrated normal mast cell cytotoxicity in

response to TNF-a stimulation in beige mast cells despite their

enlarged granules (113). Mast cells have received relatively little

attention in the LYST literature, perhaps due to their auxiliary role

in the progression of CHS. However, mast cells represent an

additional model system to study LYST function. The modulation

of Lyst activity in mast cells could provide a promising alternative to

current mast-cell targeted therapies. Specifically, mast cells have

recently been implicated in the progression of inflammation-

mediated neurodegenerat ion (115) and may play an

underappreciated role in the progressive neurodegeneration

observed in CHS survivors.
5 Subcellular morphology of LYST
mutations: enlarged granules

Initial and continued pursuits toward understanding the effect

of LYST mutations focused on the pathognomonic hallmark

described at the initial discovery of CHS: stark changes in the

morphology and function of secretory lysosomes.

Peripheral blood leukocytes from CHS patients underwent

extensive examination using light microscopy and various

staining techniques. Initially, the enlarged bodies in peripheral

blood neutrophils were thought to be giant peroxidase granules,

Döhle bodies, and azurophilic clumps (4, 5, 116). Subsequent

technological advancements in electron microscopy and

immunofluorescence led to the discovery that the enlarged bodies

were, in fact, lysosomes, supported by the morphological

characteristics, localization, and acid phosphatase activity (7–9).

Further investigation extended this understanding to beige and

CHS fibroblasts, revealing acid phosphatase-positive intracellular

inclusions containing the lysosomal markers, alpha-2-

macroglobulin and rhodamine (23, 24, 117, 118). Lysosomal

origin was also confirmed in various cell types including beige

osteoclasts, gastric chief cells, parietal cells, and renal proximal

convoluted tubal cells with enlarged granules (119–121). Recent

studies consistently affirmed the identity of the enlarged inclusions

using specific lysosomal markers including lysosomal-associated

membrane protein-1 (LAMP-1), LAMP-2, and Rab7 (40, 64, 87,

122–124).

Lysosomes are dynamic organelles that operate at the

intersection of the endocytic and secretory pathways. Lysosomes

originate from transport vesicles budded from the trans-Golgi

network, and these vesicles periodically fuse with endosomes to

degrade material. Early endosomes are specialized compartments

that receive material from the extracellular environment through

processes like endocytosis. Early endosomes transition into late

endosomes, marked by a conversion of the small GTPase Rab5 to

Rab7 (125, 126). Late endosomes fuse directly with lysosomes,

forming a hybrid organelle that acts as a site for degradation.

Lysosome populations reform from these hybrid organelles.

Lysosomes undergo fusion with one another, other intracellular

compartments, or target membranes facilitated by docking proteins,

including SNAREs, Rab GTPases, and Rab effector proteins (127).
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Lysosomes are critical for macromolecular degradation and

recycling, intracellular protein and vesicle trafficking, and cellular

signaling (127). Lysosome related organelles (LROs) are similar to

lysosomes, and some cells utilize LROs for lysosomal functions

(128). While the LROs originate from the endolysosomal system,

certain cells including neutrophils and melanocytes harbor

specialized LROs such as azurophilic granules and melanosomes.

While the mechanisms of lysosome biogenesis are well-defined,

the role of LYST in these processes remains incompletely

understood. Lysosome numbers and size are maintained by a

steady state of fission and fusion events (129). Dysregulation of

fusion and fission manifests as morphological changes to lysosomes

and LROs. Fusion with endosomes increases lysosome size by

incorporating vesicle content and membrane material (28), while

fission leads to fragmentation and size reduction. LYST is

hypothesized to affect lysosomes and LROs by either i. limiting

the fusion or ii. promoting the fission of endolysosomal organelles

(23, 24, 26).

The first hypothesis is that the enlarged lysosomes arise from

excessive fusion events (8, 22–26). Time course tracking of

lysosomes in cultured CHS cytotoxic T lymphocytes

demonstrated that over the course of 9 days, normal-sized

lysosomes clustered around the nucleus and aggregated to form

the characteristic enlarged structures found in LYST mutant cells

(68). The greatest support for LYST’s potential inhibitory effect on

lysosome fusion came from investigations into the Dictyostelium

ortholog of LYST: large volume sphere B (lvsB). In lvsB-null cells,

the endolysosomal fusion and phagosome-phagosome fusion events

were significantly increased as measured using a fusion assay (130).

Further investigation found that lvsB antagonized the activity of the

DdRab14 protein, a GTPase with pro-fusion activity (124). While

the lvsB-mutant cells could not prevent the fusion of lysosomes with

post-lysosomes, they did not affect the fusion of post-lysosomes

with early endosomes (124). Post-lysosomes are secretory vesicles

destined for exocytosis, indicating that the role of lsvB in inhibiting

lysosome fusion is specific to certain cellular compartments and

does not affect the fusion events involving early endosomes. This

suggests a nuanced and targeted regulatory mechanism where lsvB

selectively modulates lysosomal fusion processes, highlighting the

complexity of intracellular trafficking and secretion pathways in the

context of lvsB and DdRab14 protein activity. LYST-related fusion/

fission dynamics were further explored by comparing lsvB null cells

with two well characterized fission defect mutants, µ3-null and

WASH-null cells. lsvB-null cells exhibited increased multi-

particulate phagosomes compared to the fission defect mutants

and WT cells. Tracking lysosome maturation with latex beads also

showed a deceleration in particle transfer in the IvsB null cells.

Ultimately, only lysosome fusion with post-lysosomes was impacted

by absence of lsvB (124). In a follow-up examination, IvsB mutant

revealed significantly enlarged lysosomes and decreased post-

lysosomes. However, the authors were unable to claim whether

fusion dysregulation caused the enlarged lysosomes (15, 131).

A competing model establishes LYST and its homologs as a

positive regulator offission events, the second hypothesis for LYST’s

effects on lysosomes. Experiments in murine fibroblasts

demonstrated that Lyst overexpression led to the reversal of the
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enlarged lysosomal phenotype, yielding smaller-than-normal

lysosomes with no observed effects on lysosomal fusion (27).

Since fusion was unimpacted, overexpressing murine Lyst may

have corrected the diseased phenotype by promoting fission

events. Beige bone marrow derived macrophages were treated

with acetic acid to fragment lysosomes. Upon withdrawal, beige

lysosomes re-fused with no delay compared to WT cells. Then, CHS

and beige fibroblasts were treated with vacuolin-1 to cause

lysosomal swelling. The swelled lysosomes in beige fibroblasts

recovered slower compared to WT fibroblasts, yet overexpression

of Lyst increased lysosomal size recovery (27). Findings from these

experiments led the authors to conclude that mutations in LYST

impact lysosomal fission, not fusion (28). Similar findings are also

observed in a C. Elegans study, in which disrupting the LYST

ortholog, Lyst-1, resulted in decreased lysosome size. To

determine if this was attributable to defects in lysosome fusion,

the authors created double knockouts for Lyst-1 and Cup-5, which is

a known lysosomal fission regulator necessary for limiting lysosome

size. In Cup-5 mutants, disrupting genes known to be involved in

lysosomal fusion suppressed lysosome enlargement (73). The Lyst-

1/Cup-5 double mutant, however, did not experience a reduction in

lysosome size, leading authors to conclude that Lyst-1 was not

involved in lysosome fusion (14).

While other studies contributed additional insights into LYST-

associated abnormal granules, they have not definitively concluded

whether LYST mediates lysosome morphology through fusion or

fission events. In the context of CHS, cytotoxic T lymphocytes

exhibited abnormal localization of necessary effectors for lytic

granule exocytosis, Muncl3-4, Rab27a, and Slp3, within enlarged

intracellular organelles. Overexpression of these effectors restored

degranulation in the CHS mutant cells, indicating that LYST

mutations impaired the maturation of pre-secretory granules to

secretory granules. However, the specific influence on lysosome

fusion or fission events remained undetermined (123). In a

Drosophila study investigating a LYST ortholog mutation, Mauve,

researchers found that the enlarged lysosomal related organelle in

Mauve-mutants resulted from uncontrolled late phagosome

homotypic fusion prior to fusing with lysosomes. Ultimately, the

data could not distinguish whether this was due to LYST regulation

of fusion or fission events (13).
6 LYST function and cellular dynamics

The story of LYST and its place in cellular biology is enigmatic,

characterized by extended gaps between publications. The

compromised immune system that is characteristic of Chédiak-

Higashi Syndrome is associated with enlarged lysosomes in various

immune cells. While LYST mutations do not prevent activation of

immune cells, the functional defects seem to be caused by impaired

polarization of these enlarged lysosomes or granules to the

immunological synapse (61, 132).

To explain the impaired polarization, some groups detailed

apparent defects in microtubule (MT) organization in LYST-

mutant cells. Oliver and colleagues investigated the formation of

concanavalin caps on polymorphonuclear leukocytes (PMNs) and
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differences in capping behavior in WT and LYST-mutant mice

(133). The study revealed that when various cell types are treated

with concanavalin A (conA), lectin aggregates into one region of the

cell, thereby forming a cap. Colchicine is an anti-mitotic agent that

is known to disrupt microtubule polymerization and assembly,

which is necessary for vesicle trafficking. PMNs from WT mice

only cap with ConA after colchicine treatment, whereas PMNs from

Lyst-mutant mice cap spontaneously. The similarity between LYST-

mutant PMNs to colchicine-treated cells suggests a potential link

between the mutant LYST phenotype and microtubule instability or

dysfunction. Interestingly, this spontaneous surface cap formation

was not unique to mice, as further studies indicated the abnormality

in human peripheral blood PMNs from Chédiak-Higashi patients.

This abnormality is linked to impaired microtubule function, which

could be due to issues in 3’,5’ cyclic guanosine monophosphate

(cGMP) generation. Indeed, treatment with cGMP decreased cap

formation in LYST-mutant cells.

The investigation surrounding the role of LYST in microtubule

function gained momentum with the discovery that beige mice

exhibited an impaired mu-opioid and kappa-opioid receptor-

mediated analgesic response to morphine (134, 135). This was

one of the few studies that explored the role of LYST in

neurological systems. The study discovered that impaired

response to morphine was independent of receptor number or

binding affinity, indicating the strain-dependency of the impaired

response to morphine (136). The authors speculated that this was a

consequence of disrupted membrane-related microtubular function

in beige mice. Beige mice were given cholinergic agonists, which

restored the analgesic response to morphine (137). This serves as

the only evidence that the beige-specific impaired response to

morphine was related to microtubular dysfunction. More recent

studies provided definitive evidence that Mauve was necessary for

microtubule nucleation during cell division (122).

While some studies support that the LYST mutations adversely

affect microtubule function, other groups found intact MT function

in addition to normal number, length, and distribution (138, 139).

Despite normal MT function, both large WT lysosomes and

abnormally enlarged lysosomes in LYST-mutant cells were unable

to migrate through the cytoplasm due to their size (140). Thus, a

new hypothesis emerged postulating that lysosome and granule

dysfunction arose not from microtubule (MT) impairment but

potentially from alterations in lysosomal motility due to

abnormally enlarged size. This thought prompted further

investigations into the intricate molecular mechanisms underlying

LYST muta t ions and the i r broader impl i ca t ions in

cellular processes.

Researchers further explored the role of LYST in lysosomal

membrane dynamics. SNAREs (Soluble N-ethylmaleimide-

Sensitive Factor Attachment Protein Receptors), are key proteins

involved in membrane fusion processes, facilitating the docking and

fusion of vesicles with target membranes. Some studies suggested

that the connection between LYST and SNARE complex assembly

and function could lead to abnormal lysosome morphology and

lysosomal dysfunction observed in LYST-mutants. Yeast two-

hybrid screening revealed several potential LYST binding partners

including calmodulin (CaM), casein kinase II (CK2), 14-3-3, and
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Hepatocyte growth factor regulated tyrosine kinase substrate (HRS)

(29). These proteins are well described members of the SNARE

complex responsible for mediating cellular membrane fusion events

such as exocytosis, vesicle transportation, and signal transduction

(Table 2) (30). It is worth noting that additional experiments are

necessary since the authors were unable to validate the binding

partners in their study.

The leading hypothesis was that LYST acts as a scaffolding

protein facilitating critical interactions between SNARE complex

proteins through regulation of Synaptotagmin and Protein Kinase

C (PKC):
6.1 Regulation of synaptotagmin

Initially discovered in neurons, synaptotagmin is a ubiquitously

expressed calcium sensing protein that mediates exocytosis. There

are 17 different synaptotagmin isoforms in mice and humans (141,

142). Synaptotagmin VII mediates Ca2+-dependent lysosome

exocytosis in fibroblasts, macrophages, and neurons (143–145).

Phosphorylation of synaptotagmin VII by regulatory proteins

modulates its Ca2+ sensing exocytic activity (146). Notably, CK2

has been shown to phosphorylate Synaptotagmin I at a site that is

highly conserved across isoforms (147). Additionally, CaM seems to

be required by synaptotagmin VII for vesicle trafficking to the

plasma membrane (148) . Beyond ves ic le t ra fficking ,

synaptotagmin-mediated calcium-dependent exocytosis is also

responsible for plasma membrane repair (149) (127). As LYST

may act as a scaffolding protein for synaptotagmin-regulating

proteins, these connections may explain the impaired plasma

membrane repair and defective lysosomal polarization following

plasma membrane injury observed in LYST-mutant cells (64).
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6.2 Regulation of PKC activity

To further explain LYST involvement in vesicle docking and

fusion machinery, it is necessary to consider other vesicle fusion

proteins that interact with LYST’s potential binding partners, 14-3-3

and CK2. PKC is known to promote CK2 function, and PKC function

is facilitated, in part, through interactions with 14-3-3 (150).

Interestingly, beige cells naturally exhibited rapid downregulation of

PKC activity. Beige NK cell cytotoxicity was improved upon treatment

with an agent that prevents PKC breakdown (151). Additionally, this

“PKC protecting” agent reversed the enlarged lysosome phenotype in

beige cells; however, complete inhibition of PKC resulted in an

enlarged lysosome phenotype similar to beige cells. PKC

downregulation is potentially attributable to high levels of ceramide-

a sphingolipid in beige fibroblasts which may cause the formation of

enlarged granules (152). The relation of PKC downregulation to

LYST-mutant phenotypes may loosely corroborate the relationship

between LYST function and microtubules. Inhibiting PKC activity in

WT cells enhanced ConA capping, similar to the abnormal

spontaneous capping observed in beige cells (153). It is possible that

PKC function is tied to cap formation, and that the downregulation of

PKC activity leads to the abnormal capping in LYST-mutant cells.

Despite the compelling case for PKC contributing to LYST-mutant

phenotypes, some studies provide evidence against the link between

PKC activity and enlarged lysosomes in LYST-mutant fibroblasts

(154). Yet, it cannot be ruled out that while the coupling of PKC to

enlarged lysosomes may not be universal, PKC isotypes may affect

lysosome formation in other cell types, including macrophages

and PMNs.
7 Toward a molecular understanding
of LYST

LYST is a member of the class of “BEACH domain-containing

proteins” (BDCPs) (31). The Beige and Chédiak-Higashi (BEACH)

domain is a highly conserved region first identified within the LYST

protein but present in all other BDCPs. BDCPs regulate a variety of

cellular functions, such as synapse formation regulated by

neurobeachin (NBEA) and granule size regulated by beige-like

anchor protein (LBRA) and LYST (31). Other BDCPs are also

involved in vesicle trafficking and membrane dynamics in humans

(31). Mutations in BDCPs cause several complications including

epilepsy (NBEA mutation), grey platelet syndrome (NBEAL2

mutation), and rare autoimmune diseases (LRBA mutation) (155–

157). Current consensus suggests that BDCPs, including LYST, act

as cytosolic scaffolding proteins that facilitate membrane events

involved with vesicular trafficking (31).

Recent advancement in molecular technologies further

promoted understanding of the molecular aspect of LYST. The

LYST protein is comprised of 3801 amino acids (158), but

alternative splicing yields multiple transcript variants

(documented in RefSeq). Generally, LYST contains an ARM/

HEAT domain followed by a ConA-like lectin domain, a

pleckstrin homology-like (PH-like) domain, a highly conserved

BEACH domain, and finally, C-terminal WD40 repeats (31, 159).
TABLE 2 Potential LYST binding partners.

Potential
Binding
Partner

Type Function
Selected
Cellular

Processes

Casein Kinase
II (CK2)

Constitutively
active enzyme

Phosphorylates
acidic proteins

Cell cycle
control,

DNA repair

Calmodulin
(CaM)

Intermediate
calcium-
binding

messenger
protein

Senses calcium and
regulates the activity of

other proteins
including protein

kinases and
ion channels

Cell signaling,
lysosome fusion

Hepatocyte
growth factor
regulated

tyrosine kinase
substrate
(HRS)

Endosomal
protein

Required for trafficking
receptor tyrosine

kinases from the early
endosome to
the lysosome

Vesicular
transport,
lysosome
biogenesis

14-3-3 Regulatory
proteins

expressed in
all

eukaryotic
cells

Bind signaling proteins Mitogenic
signal

transduction,
apoptotic cell
death, cell

cycle control
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Even though current literature lacks studies into the biological

functions of each domain, protein structural analysis revealed

possible functions related to each domain. ARM/HEAT repeats

have been shown to mediate vesicle trafficking and lipid binding

(132, 160, 161). The PH domain has a central fold associated with

membrane binding to specific proteins (162). The crystal structure

of the 130-residue segment N-terminal to the BEACH domain

reveals a backbone fold with a PH domain and an extensive

interface between BEACH and PH domains (31). Consistent

with these structural analyses, protein binding assays

demonstrated that the PH and BEACH domains strongly

interact with one another in vitro and in silico (32). LYST

contains an 8-15 amino acid insertion in the BEACH domain

that differentiates its function from the other BDCPs (31, 163).

Interestingly, a Lyst-specific BEACH function that determines

lysosome and granule size likely exists. In mouse cells, protein

truncation of only the Lyst-BEACH C-terminal fragment, but not

the Nbea-BEACH C-terminal fragment, led to reversible lysosome

enlargement (31, 163).

The parallel advancements in murine reagents and DNA

sequencing contributed much of the genotype and phenotype

correlations reported to date. A comprehensive literature review

was conducted, involving a systematic search of peer-reviewed

articles and case reports associated with “LYST” and “Chédiak-

Higashi Syndrome” through the PubMed database (https://

pubmed.ncbi.nlm.nih.gov/advanced/). We analyzed 29 case

reports related to CHS, involving 61 patients (Figure 2,

Supplementary Table 1) to explore the potential connection

between LYST mutant genotypes and clinical manifestations of

the disease. The genetic investigations suggest a link between the

nature of the mutant LYST gene and the severity of the disease. For

instance, it was observed that nonsense mutations, which typically

result in the production of a truncated LYST protein, are associated

with more severe phenotypes and often lead to infant mortality. In

contrast, missense mutations tend to be linked to milder

phenotypes or a later onset of the disease. A recent study by

Morimoto and colleagues found comparable connections between

the type of mutation and disease severity, providing additional

support for genotype-phenotype correlations (164).

Further analysis indicates that the location of the mutated

nucleotide(s) with respect to protein structure, in addition to

mutation type, more closely correlates with disease phenotype

(Figure 2). For example, mutations occurring within the ARM/

HEAT repeats are associated with albinism, while neurological

disorders are connected to mutations in the ConA-like lectin

domain. Nonsense mutations within the WD40 domain are likely

contributors to severe immune dysfunctions in CHS, leading to the

accelerated phase, as depicted in Figure 2. Notably, ARM/HEAT

mutations have been reported more frequently than mutations in

other domains due to the domain’s larger size. However, a lack of

data regarding the BEACH and WD40 domains may introduce

potential inaccuracies in the interpretation of their functions.

Furthermore, it is important to highlight that the precise

location of the ARM/HEAT repeats has not been definitively

confirmed, despite proposed by Nagle et al. suggesting that these

repeats may extend across a substantial helical region (31).
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8 LYST and cancer

LYST was recently established as a gene of interest in patients

with acute myeloid leukemia (AML), colorectal cancer, epithelial

ovarian cancer, multiple myeloma, pulmonary carcinosarcoma, and

sporadic chordoma (33–39). The association of LYST mutations

with various forms of cancer is a chance discovery stemming from

next generation sequencing analysis. Currently, the trend seems to

be that downregulation or truncation of LYST protein leads to

cancer progression. Downregulation of LYST was associated with

low survival of AML patients, but in calcitonin receptor-like

receptor (CALCRL) knockdown AML cell lines, LYST was

upregulated (33). CALCRL deficient cells have been shown to be

resistant to chemotherapy. The authors postulated that CALCRL

downregulates LYST expression, which enlarges and stabilizes

lysosomes and enhances drug resistance. In patients with sporadic

chordoma, many patients carried truncating mutations in LYST.

The authors explained that lysosomes were recently determined to

be important for notochordal development, which could explain

why defective LYST led to chordoma development. LYST also

localized within copy number aberration regions in patients with

multiple myeloma (39). Silencing LYST expression using anti-LYST

siRNA inhibited proliferation and induced apoptosis in multiple

myeloma cells (34). Both missense and nonsense LYST mutations

were associated with pulmonary carcinosarcoma (38). Currently,

studies are correlative but not mechanistic; authors appear to be

divided on whether the connection of LYST to cancer is a spurious

correlation or if LYST mutations truly drive cancer progression.
9 The future of LYST research

Chédiak-Higashi Syndrome (CHS) is a rare and life-threatening

disorder, particularly affecting children. Despite identifying the

causative gene decades ago, there is no comprehensive

understanding of the cellular and molecular mechanisms

underlying LYST function. The limited therapeutic options,

primarily hematopoietic stem cell transplant, highlight the urgent

need for more effective treatments to halt disease progression and

prevent childhood mortality.

Recent studies employing various LYST-mutant organisms not

only provided opportunities to study CHS, but also contributed to

the understanding of the cell-specific role of LYST in endolysosomal

trafficking and the immune response. Animal and clinical research

highlights how LYST mutations manifest clinically in the setting of

CHS, demonstrating its importance in immunity, neurological

functions, pigmentation, and blood coagulation. Generally, cells

from affected systems exhibit abnormal LRO morphology, impaired

polarization, and decreased intracellular mobility, leading to

reduced exocytosis of granules and protein trafficking.

While existing literature lacks unified theories on how LYST

affects cellular processes, previous research proposes intriguing

mechanisms contributing to the consistently observed enlarged

lysosomes in CHS. This review provides a summary of the

potential role of LYST in microtubule dynamics, granule fusion

and fission events, and membrane docking facilitated by SNARE
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complex proteins. The current body of literature is divided on

whether LYST impacts granule size through fusion or fission. Some

studies suggest upregulated fusion events causing abnormal

morphology, while others argue for insufficient fission as the

culprit. The enlarged lysosomes and LROs do not fulfill their

biological functions, and some studies suggest that the observed

dysfunction involves changes in microtubule dynamics that impair

proper vesicle transportation. Contradictory findings indicate intact

microtubule function and suggest that the abnormally enlarged

lysosomes physically cannot transit the actin cytoskeleton.

Sequencing technology enhanced our comprehension of the

molecular structure and potential biological function of LYST by

identifying genetic mutations. Recently, 11 novel disease-causing

LYST mutations in the BEACH domain were identified using

targeted Sanger sequencing, thereby expanding the scope and

depth of LYST research (164). These findings provided valuable

insight into mutation pathogenicity, laying the groundwork for
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potential CHS therapies and next-generation immuno-

modulatory treatments.

Further investigation into the mRNA and protein sequences of

LYST and lesser-explored members of BDCPs, such as WD repeat

domain 81 (WDR81), is necessary to clarify the sequences and the

precise locations of their domains. LYST and other BDCPs have

diverse cellular functions, including cell cycle control, transcription

regulation, apoptosis, and vesicle trafficking (31).

Knowing how LYST exerts its effects on a cellular and molecular

scale holds significance not only for the development of CHS

therapies but for other diseases involving cell regulation and vesicle

trafficking. LYST mutations appear to be associated with certain

cancer types, yet its potential role in cancer is not yet understood.

Cutaneous wound healing studies revealed LYST’s crucial

involvement in regulating secretory exocytosis by fibroblasts, which

sheds light on the broader impact of LYST function (56, 57).

Moreover, LYST attenuated immunomodulation combined with
A

B

FIGURE 2

LYST Mutation and Correlation with Clinical Phenotypes. (A) The color gradient indicates the relative frequencies of specific disease phenotypes
associated with each domain (e.g. Immune Defects account for 22.22% of cases with BEACH domain mutations). The 19 major phenotypes are
categorized into eight groups and presented alphabetically, including: Abnormal Pigmentation (1. silver gray hair, 2. cutaneous albinism/partial
albinism, 3. ocular albinism), Blood/Coagulation Disorders (4. coagulopathy/platelet dysfunctions, 5. isolated cytopenia, 6. pancytopenia), 7.
Enlarged/Abnormal Granules, Immune Defects (8. fever/rash/lymphadenopathy, 9. oral infection/periodontitis, 10. defective/absent NK cell activity,
11. CMV/EBV seropositive, 12. respiratory infection, 13. recurrent infections), Muscular Dysfunction (14. motor dysfunction/myopathy/hypotonia),
Neurological Disorders (15. GDD/intellectual disability/dementia, 16. neuropathy, 17. atrophic MRI brain), 18. Ocular Symptoms (i.e. myopia), and 19.
Organomegaly (i.e. hepato/splenomegaly). (B) The mutation loci and their associated phenotypes are indicated on a schematic representation of the
LYST protein spanning from exon 1 to exon 53, with a note indicating putative domains. Created with BioRender.com.
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tissue engineeringmay improve transplant performance.While in the

early stage of investigation, the importance of LYST in immune

signaling suggests that LYSTmay influence the foreign body response

to transplanted material. Thus, targeted alteration and temporary

modulation of LYST function could offer immune privilege to

recipients and protect donor tissues from overactive immune

responses and rejection. The SCID/bg mouse model, where the

Lyst beige mutation is introduced in SCID mice, has improved

xenotransplantation compatibility (165). Recent advancements in

tissue engineering, such as Tissue Engineered Vascular Grafts

(TEVG) attracted attention due to the capacity for growth and

remodeling (166). Despite their success, clinical studies have

identified stenosis as a primary limitation. The immunodeficient

SCID/bg mouse model demonstrated a drastic improvement in

TEVGs patency (166). In the realm of regenerative medicine, LYST

immunomodulation emerges as a promising target, aligning with the

evolving paradigm of “immune interactive” strategies over traditional

“immune evasive” approaches.

The discoveries presented herein underscore the potential for

LYST as a tool for understanding the intersection of vesicle

trafficking and cell cycle regulation and harnessing these findings

to inform immune-modulatory strategies.
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