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Introduction: Coronavirus disease 2019 (COVID-19) affects the population

unequally, with a greater impact on older and immunosuppressed people.

Methods: Hence, we performed a prospective experimental cohort study to

characterise the effect of severe acute respiratory syndrome coronavirus 2
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(SARS-CoV-2) vaccination in immune-compromised patients (older adults and

oncohaematologic patients), compared with healthy counterparts, based on

deep characterisation of the circulating immune cell subsets.

Results and discussion: While acquired humoral and cellular memory did not

predict subsequent infection 18 months after full vaccination, spectral and

computational cytometry revealed several subsets within the CD8+ T-cells, B-

cells, natural killer (NK) cells, monocytes and TEMRA Tgd cells that were

differentially expressed in individuals who were subsequently infected and not

infected not just following immunisation, but also prior to vaccination. Of note,

we found up to seven clusters within the TEMRA Tgd cell population, with some of

them being expanded and others decreased in subsequently infected individuals.

Moreover, some of these cellular clusters were also related to COVID-19-

induced hospitalisation in oncohaematologic patients. Therefore, we have

identified a cellular signature that even before vaccination is related to COVID-

19 vulnerability as opposed to the acquisition of cellular and/or humoral memory

following vaccination with SARS-CoV-2 messenger RNA (mRNA) vaccines.
KEYWORDS

computational cytometry, vaccine failure, COVID-19, immunome, immunocompromised adult
Introduction

Coronavirus disease 2019 (COVID-19) has been shown to affect the

population very unequally, with one of the main risk factors being a

depressed immune system. In this regard, multiple types of COVID-19

vaccines have been shown to be highly effective not just in preventing

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

infection, but also in reducing post-infection symptoms. Indeed, all of

these vaccines induce systemic immune responses, but little is known

about their induced alterations in different immune cell subsets. Although

the specific mechanisms of acquired humoral and cellular memory have

been largely described, it has not been possible to relate those events to

vaccine failure (1–4).

In this framework, defining the efficacy of SARS-CoV-2 vaccines in

frail populations is of paramount relevance for the design and

implementation of future vaccination strategies. However, little is

known regarding long-term immunity responses triggered by SARS-

CoV-2 vaccines in older people and patients with cancer after repeated

booster doses (5, 6). Researchers have reported that patients with

lymphoid cancers are particularly at risk of an inadequate antibody

response to anti-SARS-CoV-2 vaccines (7), particularly those with non-

Hodgkin lymphoma (NHL) receiving B-cell-depleting agents (8). In a

similar manner, immunosenescence is probably one of the most relevant

determinants of progression to severe COVID-19 (9), as ageing changes

both adaptive and innate immunity, resulting in increased susceptibility

to infections and development of chronic inflammation (10). Overall,

vaccination is one of the most effective tool against COVID-19. Despite
02
the success of COVID-19 vaccines – with their high efficacy in healthy

populations – concerns about the efficacy and safety of these vaccines in

immunocompromised populations remain unresolved (11, 12).

Additionally, it is plausible that the pre-vaccination immune repertoire

in each individual could play a crucial role in shaping the subsequent

immune response towards vaccination, as it has been shown in the case

of SARS-COV-2 viral infection (13).

As a consequence, there is an urgent need to better understand vaccine-

induced immunogenicity in the context of heterogeneous host

characteristics to improve protection for these patients by designing more

efficient personalised vaccination regimes. To that end,we have performed a

deep and unbiased characterisation of the circulating immune system (or

immunome) using state-of-the-art spectral cytometry in immune-

compromised patients (including older adults and oncohaematologic

patients), compared with healthy counterparts. Our results have revealed

that while the acquired humoral and cellular memory cannot prognosticate

subsequent infection, unbiased analysis of the circulating immunome could

predict subsequent infection even before vaccination. These findings pave

the way for improving vaccination regimens for those patients.
Results

Cellular immunome identification

Uniform manifold approximation and projection (UMAP)

analysis of the 27 healthy adults, 20 older adults and 39
frontiersin.org
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oncohaematologic patients at 2 different time points – before and

after vaccination – (with a loss of 10 samples due to insufficient

quality) identified four major continents and three smaller islands

(Figure 1A). The relative expression of each marker from the

UMAP analysis is shown in Figure 1B. The main continent on

the left represents cytotoxic T-cells together with Tgd cells, while the
main continent on the right comprises helper T-cells. The smaller

island on the bottom is mainly composed of B-cells and the two

islands in the middle represent monocytes. Natural killer cells (NK)

cells are in the top island together with innate lymphoid cells (ILCs),

while the small top left island comprises mixed myeloid antigen-

presenting cells.

To refine our analysis, we used the FlowSOM algorithm to find

similar cell clusters and integrate them into metaclusters in an

unsupervised manner (Figure 1C). We identified a total of 48

clusters according to the expression of the surface markers as

shown in the heatmap (Figure 1D). Table 1 shows an in-depth

characterisation of the phenotype of all clusters, which allowed the

identification of 46, because clusters 38 and 39 could not be clearly

identified. In the case of cluster 38, although it is close to monocytes

in the UMAP plot, there is no CD14 or CD16 expression. Hence,

cluster 38 could be conventional dendritic cells (cDCs) as they are

negative for almost every marker except HLA-DR – although they

are also CD11c–, so their true nature remains elusive. Cluster 39

comprises intermediate (CD14+CD16+) and non-classical

(CD14+CD16–) monocytes together with other HLA-DR+CD11c+

that could resemble cDCs.

Of note, the same cell population can be divided into further

subsets as shown in Table 1 based on the expression of several

surface markers. For example, TEMRA Tgd (CD45RA+CCR7–) cells

can be divided into 7 different populations based on the expression

of the surface markers CD56, CD127, CD27 and CD8 together

with NKG2D, FAS and CCR6, among others. Finally, we overlaid

all of clusters onto the UMAP plot (Figure 1E) to determine

not just how the relate one to each other, but also to display

their pseudoevolution.

To validate these findings, we used the hierarchical or classical

gating strategy to identify different immune cell subsets, as shown in

Supplementary Figure S1A, with T-cells shown in Supplementary

Figure S1B. Given that some of the identified clusters can be found

within the same subset (Table 1; Supplementary Figure S1D),

Supplementary Figure S1C displays the required gating strategy to

identify these subsets while Supplementary Figure S1D shows the

identification of the 7 TEMRA Tgd cell subsets.
In-depth immune characterisation of the
cohorts at baseline

Having described the global leucocyte subset composition

(Figure 1), we next examined the differences between the cohorts

at baseline (Figure 2A). The UMAP plot revealed a deficit of

classical monocytes in older adults as well as in lenalidomide-

and ibrutinib-treated oncohaematologic patients (clusters 40 and 41

in Figure 1E). As expected, rituximab-treated patients displayed a

lack of B-cells (clusters 34–36 in Figure 1E), except for plasmablasts
Frontiers in Immunology 03
(cluster 37 in Figure 1E), of which there was a deficit in healthy

adults, older adults and lenalidomide- and rituximab-treated

oncohaematologic patients.

Differences according to surface marker expression within the

cohorts are shown in the heatmap (Figure 2B). Older patients are

closer to lenalidomide- and rituximab-treated oncohaematologic

patients, while untreated and ibrutinib-treated oncohaematologic

patients are closer to healthy adults. To validate and quantify these

differences, we performed a paired comparison of each cohort

relative to the healthy controls. We found that a third of the total

identified clusters were differentially expressed among older adults

and healthy controls: older adults displayed a significant expansion

of CD4+ and CD8+ effector T-cells and a deficit of monocytes and

immature T-cells (Figure 2C). To further confirm these results, we

employed a classical gating strategy that revealed older adults have

an expansion of mature NK cells together with several subsets of

effector CD4+ and CD8+ T-cells, and a deficit of immature T-cells

(mainly CD4–CD8– T-cells and naïve CD8+ T-cells), CCR7–

CD45RA– Tgd and plasmablasts (Supplementary Figures S2A, B).

Moreover, and given that all clusters identified in Figure 1 and

Table 1 do not always resemble a whole population as they can be

further divided into subsets, we validated the specific clusters

identified in Figure 2C by following the gating strategy displayed

in Supplementary Figures S1C, D. Interestingly, even though early

effector CD4+ T-cells did not differ between healthy and older

adults, subset 1 of this population (cluster 2 in Table 1) was

expanded in older adults, whereas its second subset (cluster 3 in

Table 1) was reduced in older adults (Supplementary Figure S2C).

Mature NK cell expansion in older adults (Supplementary Figure

S2A) was specifically due to an expansion of subset 1 of mature NK

(cluster 44 in Table 1), while the second subset of this population

(cluster 45 in Table 1) remained unchanged. Therefore, this

approach confirms the relevance of validating differences between

as well as within different subsets.

We performed analyses for oncohaematologic patients based on

their treatment status. Untreated oncohaematologic patients had 14

differentially expressed clusters compared with healthy adults

(Figure 2D). Further analysis of this cohort revealed that these

patients had a deficit of non-classical monocytes, TEMRA Tgd cells,
CD45RA–CD39+ regulatory T-cells (Tregs) and early-like effector

CD4+ T-cells, together with an expansion of terminal effector CD4+

T-cells and CD4–CD8– T-cells (Supplementary Figure S2D).

Moreover, when we performed this analysis based on the specific

clusters (Supplementary Figure S2E), we found that subset 2 of

early-like effector CD4+ T-cells (cluster 3 in Table 1) was reduced,

while cluster 2 of the terminal effector CD4+ T-cells (cluster 7 in

Table 1) was expanded. Further analysis also revealed a deficit of

subset 1 of non-memory B-cells (cluster 35 in Table 1) in this

population together with subset 2 of CD4– ILCs (cluster 47 in

Table 1). Finally, analysis of TEMRA Tgd cells revealed that subset 2
of this population (cluster 24 in Table 1) was decreased while subset

5 (cluster 27 in Table 1) was expanded.

The lenalidomide-treated oncohaematologic patients displayed

specific differences in half of the analysed clusters compared with

the healthy controls (Figure 2E). Using the classical gating strategy,

we found a loss in several CD4+ and CD8+ T-cell populations,
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FIGURE 1

Immunome characterisation following UMAP analysis. (A) UMAP analysis was performed within total singlet viable CD45+ cells from all samples
(n = 162). Subsequent down-sampling to a total of 4 × 106 events was performed so that each cohort was equally represented. Surface expression
intensities of the remaining 36 analysed markers are shown in (B). The colour code is based on the intensity, where red represents higher expression
and blue represents lower expression. (C) FlowSOM analysis of total singlet viable CD45+ cells identified the main metaclusters of the dataset:
B-cells, NK cells, ILCs, Tgd cells, Tregs, CD4

+ T-cells, CD8+ T-cells, CD4+CD8+ T-cells and CD4–CD8– T-cells. (D) Heatmap displaying the intensity
levels of each marker within the 48 identified clusters. The colour code is based on the expression intensity, where green represents higher
expression and the transition to red represents lower expression. A dendrogram was generated by unsupervised hierarchical clustering. (E) All 48
identified clusters were overlaid on the UMAP projection (n = 162). Each identified cluster is tagged with a specific colour and number as shown in
the legend.
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TABLE 1 Cell cluster identification.

MC Population Subset Phenotypic expression Functional expression

1 CD4+ Naive CD3, CD4, CD27, CD28, CD127, CD45RA CCR7

2 CD4+ Early effector (1) CD3, CD4, CD27, CD28, CD2dim, CD25dim

3 CD4+ Early effector (2) CD3, CD4, CD27, CD28, CD2dim, CD127 CXCR3, FASdim

4 CD4+ Early like effector (1) CD3, CD4, CD28, CD2 HLADRdim

5 CD4+ Early like effector (2) CD3, CD4, CD28, CD2, CD127 Fasdim

6 CD4+ Terminal effector (1) CD3, CD4, CD2 HNK1dim, FASdim

7 CD4+ Terminal effector (2) CD3, CD4, CD2 CCR5dim

8 CD4+ Central memory (1)
CD3, CD4, CD27dim, CD28, CCR7dim, CD2dim,
CD39, CD25dim, CD14dim, CD38 NKG2C, HLADRdim

9 CD4+ Central memory (2) CD3, CD4, CD27, CD28, CCR7dim, CD127

10 CD4+ Central memory (3) CD3, CD4, CD27, CD28, CCR7dim, CD127 CXCR3

11 CD8+ Naive CD3, CD8, CD27, CD127, CD45RA, CCR7 CXCR3, NKG2Ddim

12 CD8+ Early effector CD3, CD8, CD27dim, CD28, CD2, CD127 FASdim

13 CD8+ Early like effector CD3, CD8, CD28, CD2, CD127

14 CD8+ Intermediate effector CD3, CD8, CD27dim, CD2, CD127 NKG2Ddim, CXCR3, FASdim

15 CD8+ Terminal effector (1) CD3, CD8,CD2dim NKG2Ddim

16 CD8+ Terminal effector (2) CD3, CD8, CD2 NKG2Ddim, HNK1dim

17 CD8+ TEMRA (1) CD3, CD8, CD2dim, CD45RA NKG2D

18 CD8+ TEMRA (2) CD3, CD8, CD2, CD45RA NKG2Ddim, HNK1dim

19 CD8+
CD45RA llike
Terminal effector CD3, CD8, CD2dim, CD45RAdim NKG2A, NKG2Ddim, HNK1dim

20 CD4+/CD8+ T cells CD3, CD4, CD8, CD27dim, CD28, CD2, CD127 FASdim

21 CD4-/CD8- T cells (1) CD3, CD27dim, CD28dim, CD127 CCR5dim, CXCR3dim

22 CD4-/CD8- T cells (2) CD3, CD27, CD28dim, CD38, CD2dim CCR5dim, FAS, HLADRdim

23 Tgd TEMRA (1) CD3, TCRgd, CD45RA

24 Tgd TEMRA (2) CD3, TCRgd, CD45RA, CD2dim, CD8 NKG2D, FAS, PD1dim

25 Tgd TEMRA (3) CD3, TCRgddim, CD45RA, CD2dim HNK1dim

26 Tgd TEMRA (4) CD3, TCRgd++, CD45RA, CD2dim, CD56 NKG2D, NKG2A

27 Tgd TEMRA (5) CD3, TCRgd++, CD45RA, CD2dim, CD56 NKG2D, NKG2A, CXCR3dim, HNK1

28 Tgd TEMRA (6)
CD3, TCRgd, CD45RA, CD2dim,
CD127, CD27dim CXCR3, NKG2D, NKG2A

29 Tgd TEMRA (7)
CD3, TCRgddim, CD45RA, CD2dim,
CD127, CD27dim CXCR3

30 Tgd CD45RAdim/CCR7- CD3, TCRgd, CD45RAdim, CD2dim NKG2A, NKG2D, HNK1dim

31 Tgd Effector memory (1) CD3, TCRgddim, CD27, CD127, CD28, CD2 CXCR3, NKG2Ddim, CCR5dim, NKG2A

32 Tgd Effector memory (2) CD3, TCRgddim, CD27, CD127, CD2dim CXCR3, NKG2Ddim, CCR5dim

33 Treg CD45RA-/CD39+ CD3, CD4, CD27, CD28, CD25, CD39, CD2
FAS, NKG2C, HLADRdim, CXCR3,
NKp30, CCR5

34 B cells Memory
CD19, CD20, CD27, CD39, CD24, CD25, CD2,
CD45RA, CCR7

CXCR3dim, NKG2C, CCR6, CXCR5, NKp30,
HLA-DR

35 B cells No memory (1)
CD20dim, CD28dim, CD39dim, CD2dim, IgD,
CD45RA, HLA-DR NKG2C, CXCR5, HLA-DRdim

(Continued)
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together with non-classical memory B-cells, memory B-cells and

CD45RA–CCR7– Tgd cells. On the contrary, these patients had an

expansion of CD39+CD45RA– Tregs, TEMRA Tgd cells, and CD4–

ILCs (Supplementary Figures S2F, G). Further analyses revealed the

specific clusters responsible for these differences (Supplementary

Figure S2H).

For ibrutinib-treated oncohaematologic patients, 44% of the

clusters were differentially expressed compared with healthy adults

(Figure 2F). Following hierarchical gating identification of

populations, it was clear that these patients exhibited a deficit of

memory B-cells, non-classical monocytes, naïve CD8+ T-cells,

CD45RA-CD39+ Tregs, CD45RA
–CCR7– Tgd cells and total ILCs

as well as CD4– ILCs (Supplementary Figure S2I). On the other

hand, they displayed an expansion of terminal effector CD4+ and

CD8+ T-cells, early-like effector CD8+ T-cells, CD4-CD8- T-cells

and TEMRA Tgd cells. The specific clusters responsible for these

differences are shown in Supplementary Figure S2J.

Moreover, we examined differences between rituximab-treated

oncohaematologic patients and healthy adults at baseline. The

volcano plot shows a 29% difference in the total identified clusters

including, as expected, total B-cell depletion (Figure 2G;

Supplementary Figure S2K). In addition, these patients had a

deficit of CD8+ naïve T-cells and an expansion of CD8+ early-like

and terminal effector T-cells, together with CD45RA–CD39+ Tregs.

Further analysis revealed that although the CD4+ T-cell populations

were not altered in this cohort, several of their specific clusters did

show changes (Supplementary Figure S2M).
Frontiers in Immunology 06
Acquired humoral and cellular memory

Having described the cohorts at baseline, we next studied the

acquired humoral and cellular immunity 3 months after full

vaccination with messenger RNA (mRNA) vaccines. We assessed

SARS-CoV-2 neutralising spike protein (S) antibodies (anti-S IgG and

IgA) and nucleocapsid protein (N) antibodies (anti-N IgG) in plasma

before and 3 months after full vaccination (two doses of the vaccine)

(Figure 3A). A small fraction of healthy adults (14%), older adults

(5%) and oncohaematologic patients treated with lenalidomide

(11.1%) and ibrutinib (7%) had anti-N IgG antibodies before

vaccination, suggesting an unnoticed previous asymptomatic

infection. Of note, vaccination in healthy adults and older adults

triggered anti-S IgG antibodies, confirming successful vaccination;

however, the percentage was lower in oncohaematologic patients and

virtually absent in rituximab-treated patients (Figure 3A). In addition,

given that vaccination was intramuscular, IgA antibody production

was mostly induced in healthy adults; it was not triggered in older

adults or oncohaematologic patients. It is well known that vaccination

efficiency in elderly individuals is often reduced due to

immunosenescence. For example, the capacity of influenza vaccines

to induce immune protection is age-related, with efficacy ranging from

70% to 90% in young people but decreasing to 30–50% in people over

65 years (14). Finally, we assessed induced cellular memory and found

a strong response in all cohorts (including rituximab-treated patients),

although it was smaller in lenalidomide-treated patients and absent in

ibrutinib-treated patients (Figure 3B).
TABLE 1 Continued

MC Population Subset Phenotypic expression Functional expression

36 B cells No memory (2)

CD19dim, CD20dim, CD28dim, CD39dim,
CD2dim, IgD, CD45RAdim, CD24,
CCR7, CD25dim NKG2C, CXCR5, HLA-DRdim, CXCR3

37 B cells Plasmablasts CD19, CD27, CD39, CD24, CD25, CCR7 NKG2C, CXCR5, HLADR

38

Unknown myeloid
antigen
presenting cells

CD45RA, CD16, CD39, CD11c, CD123, CD141,
TCRgddim, CD127, CD20dim NKG2C, FASdim, HLA-DRdim, CXCR3

39

Mixed myeloid
antigen
presenting cells CD45RA, CD16, CD39, CD11c, CD123, CD141 NKG2C, FASdim, HLA-DRdim

40 Monocytes Classic (1) CD14, CD38, CD39dim FAS, NKG2C, HLA-DRdim, CXCR5

41 Monocytes Classic (2)
CD14, CD38, CD39, CD123, CD141, CD25, CD2,
CD127, CD4dim FAS, NKG2C, HLA-DR, NKp30

42 Monocytes Non-classical
CD16, CD39dim, CD123, CD141, CD25, CD2,
CD11c++, CD1c, CD20dim, CD45RA FAS, NKG2C, HLA-DR, NKp30, NKG2D

43 NK Early NK CD56, CD45RA, CD38

44 NK Mature NK (1) CD56, CD45RA, CD38, CD16, CD2dim HNK1dim, NKG2Ddim, NKG2Adim

45 NK Mature NK (2) CD56, CD45RA, CD38, CD16, CD2dim HNK1dim, NKG2Ddim, NKG2C

46 ILCs Total ILCs CD2- CD56, CD38, CD127, CD45RA CXCR3

47 ILCs CD4- (1) CD56, CD38, CD127, CD39, CD2, CD45RA CXCR3, NKG2A, NKG2Ddim, NKp30dim

48 ILCs CD4- (2) CD56, CD38, CD127, CD39, CD2 CXCR3, NKG2A, NKG2Ddim, NKp30dim
For each of the 48 identified FlowSOM clusters (C), the cell population to which it belongs is shown, alongside the specific subset, phenotype and expression of functional markers. Markers
highlighted in bold denote differential expression within the same population.
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Immunity-induced changes
following vaccination

Having observed the differences before vaccination in all

cohorts, we next analysed the differences before and after full

vaccination (Supplementary Figure S3A). Healthy adults showed

an expansion of the proportion of subset 3 of central memory CD4+

T-cells (cluster 10 in Table 1) and CD45RA–CD39+ Tregs

(Supplementary Figure S3B). However, we could not validate this

change with classical gating approaches.

In the case of older adults, vaccination induced changes in 15% of

the clusters (Supplementary Figure S3C): it expanded the proportion

of circulating CD4–CD8– T-cells and early-like effector CD4+ T-cells

and decreased classical and non-classical monocytes (Supplementary

Figure S3D). Further analysis revealed that both subsets of classical

monocytes decreased after vaccination while both CD4–CD8– T-cell

subsets, subset 2 of early effector CD4+ T-cells (cluster 3 in Table 1)
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and subset 2 of early-like effector CD4+ T-cells (cluster 5 in Table 1)

were expanded (Supplementary Figure S3E).

For untreated oncohaematologic patients, vaccination

decreased the levels of circulating memory B-cells and

plasmablasts (Supplementary Figure S3F), although we could not

confirm these changes with hierarchical gating approaches. On the

contrary, vaccination induced changes in 4 clusters in the

lenalidomide-treated patients (Supplementary Figure S3G),

revealing a decrease in CD4–CD8– T-cells and CD45RA–CD39+

Tregs after vaccination (Supplementary Figure S3H). The decrease in

the CD4–CD8– T-cells was due to a reduction in the second subset

of this population (cluster 22 in Table 1) while these patients also

expanded subset 5 of TEMRA Tgd cells (cluster 27 in Table 1). For

the ibrutinib-treated patients, vaccination decreased the levels of

circulating monocytes (Supplementary Figure S3J), although we

could not confirm this change with classical gating approaches.

Finally, vaccination induced changes in 4 clusters of the rituximab-
FIGURE 2

Cohort differences before vaccination. (A) The general UMAP plot displays the cohort distribution before vaccination, including healthy adults (n = 24),
older adults (n = 18), untreated oncohaematologic patients (n = 7), lenalidomide-treated oncohaematologic patients (n = 8), ibrutinib-treated
oncohaematologic patients (n = 14) and rituximab-treated oncohaematologic patients (n = 8). (B) The heatmap displays the intensity levels of each of
the 48 identified clusters within the cohorts. The colour code is based on the expression intensity, where green represents higher expression and the
transition to red represents lower expression. The dendrogram was generated by unsupervised hierarchical clustering. Volcano plots comparing the
clusters identified in Table 1 and Figure 1 between healthy adults (n = 24) and (C) older adults (n = 18), (D) untreated patients (n = 7), (E) lenalidomide-
treated oncohaematologic patients (n = 8), (F) ibrutinib-treated oncohaematologic patients (n = 14) and (G) rituximab-treated oncohaematologic
patients (n = 8). The colour code is based on the expression intensity, where red represents higher expression and the transition to green represents
lower expression. For the volcano plots, differentially expressed clusters (p < 0.05) in the comparisons are highlighted in green. Due to the low number
of events, some clusters could not be analysed in (C) (CD45RA–CD39+ Tregs, non-classical monocytes, plasmablasts, CD4–CD8– T-cells [2], TEMRA Tgd
cells [4] and TEMRA Tgd cells [5]), (D) (non-classical monocytes, plasmablasts, TEMRA Tgd cells [4] and TEMRA Tgd cells [5]) and (G) (Tregs CD45RA

–/

CD39+, non-classical monocytes, plasmablasts and TEMRA Tgd cells [4]).
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treated patients (Supplementary Figure S3K), confirming that these

patients had a trend for a decreased level of subset 2 of the non-

memory B-cells (cluster 36 in Table 1) following vaccination

(Supplementary Figure S3L).
Immune variations following vaccination
correlate with SARS-CoV-2 infection

Having assessed the vaccine-induced immunity after

vaccination, we performed a clinical follow-up of all individuals

during an 18-month period. We found that 30.4% of the healthy

adults displayed subsequent SARS-CoV-2 infection as defined by a

positive PCR (Table 2). This percentage, however, was much lower

in the older adults (15%) as they were protected in a nursing home
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environment. Finally, 41.12% of the oncohaematologic patients had

an infection (1 untreated patient, 6 ibrutinib-treated patients, 1

lenalidomide-treated patient and 1 rituximab-treated patient). Of

note, given the low number of infected patients, we considered them

as a single cohort in the subsequent analyses (irrespective of

their treatment).

The acquired humoral and cellular memory following

immunisation did not predict subsequent infection for any of the

analysed cohorts (Table 3). Nevertheless, when we evaluated the

cellular immunome post-vaccination of all individuals in

the context of subsequent infection, we found differences in the

UMAP analysis (Figure 4A), specifically in 5 clusters (Figure 4B).

Infected individuals had lower levels of CD4+CD8+ T-cells and a

trend towards higher levels of TEMRA Tgd cells and terminal

effector CD8+ T-cells (Supplementary Figure S4A), due to an
FIGURE 3

Vaccine-induced humoral and cellular memory. (A) Humoral memory against SARS-CoV-2 before and after vaccination. Anti-S IgG (black) and IgA
(shaded) and anti-N IgG (white) were analysed. The results are based on the number of patients with positive serology. (B) Cellular memory against
SARS-CoV-2 before and after vaccination analysed with an IFN-g ELISpot assay. Each cohort was analysed independently by comparing the SFU
under both basal (black dots) and SARS-CoV-2 peptide-stimulated (blue and red dots) conditions. Fisher’s exact test was applied in (A), while a
paired one-way ANOVA was applied in (B). In all cases, p < 0.05 was considered significant (*p < 0.05; **p < 0.01; ***p < 0.001), while p < 0.10 was
considered not significant (ns) but with a relevant trend (the exact p-value is shown).
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expansion in the second case of subset 1 (cluster 15 in Table 1) of

this population (Supplementary Figure S4B). For a deeper insight

into these observations, we performed additional analysis of healthy

adults and oncohaematologic patients. However, given the low

number of post-vaccinated infected older adults (n = 1), we

excluded this cohort from the analysis.

The UMAP analysis revealed visual differences between the

infected and non-infected healthy adults and oncohaematologic

patients (Figure 4C). Infected healthy adults had higher levels of 3

different TEMRA Tgd cell subsets (Figure 4D), although we could

not confirm these changes with hierarchical gating approaches.

Infected oncohaematologic patients had differences in 15% of the

total clusters (Figure 4E). Similarly to healthy adults, they showed

an expansion of TEMRA Tgd cells (Supplementary Figure S4C),

specifically subsets 1, 2 and 7 (clusters 23, 24 and 29 in Table 1) of

this population (Supplementary Figure S4D).
The pre-vaccine immunome signature
drives subsequent SARS-CoV-2 infection

Although vaccine-induce humoral and cellular immunity does

predict subsequent infection, the circulating levels of the different

TEMRA Tgd cell subsets seem to anticipate it. Having said that, we
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cannot discard the possibility that these individuals were more

exposed to the virus and thus were infected more often. Therefore,

for a deeper insight into these mechanisms, we addressed whether

these immune differences could be also observed before vaccination.

Indeed, we found differences in the immunome composition

between subsequently infected and not-infected individuals, even

before vaccination (Figure 5A) since 21% of the total clusters were

differentially expressed between them (Figure 5B). Subsequently

infected individuals had higher levels of circulating terminal effector

CD8+ T-cells and plasmablasts, coupled with a trend towards higher

levels of TEMRA Tgd cells, and lower levels of early NK and total

ILCs before vaccination (Supplementary Figure S5A). Further

analysis confirmed that subset 3 of TEMRA Tgd cells (cluster 25

in Table 1) was expanded in infected individuals even before

vaccination (Supplementary Figure S5B).

After noting these differences, we performed additional analysis

within the 3 cohorts (Figure 5C). Although healthy adults only had a

difference in 1 cluster based on subsequent infection (Figure 5D),

hierarchical gating revealed a trend towards higher levels of circulating

plasmablasts and non-classical monocytes (Supplementary Figure

S5C), with a deficit of subset 1 of CD4–CD8– T-cells (cluster 21 in

Table 1) and a trend towards lower levels of subset 4 of TEMRA Tgd
cells (cluster 26 in Table 1) in subsequently infected individuals

(Supplementary Figure S5D). For older adults, only 2 clusters were
TABLE 2 Patient demographics.

Healthy
adults (HA)

Older
adults
(OA)

Oncohematologic patients

Untreated
(UP)

Lenalidomide-
treated (LP)

Ibrutinib-
treated (IP)

Rituximab-
treated (RP)

n 27 20 7 8 14 10

Age 59 (50–63) 89 (86-94) 66 (62-70) 63.5 (56.25-74.75) 66 (59-71) 64 (60-73)

Sex (female) 15 (55.55%) 18 (90%) 5 (71.42%) 5 (62.5%) 5 (45.45%) 2 (20%)

Vaccine

BNT162b2
(Pfizer-BioNTech) 27 20 1 – 2 1

mRNA-1273
(Moderna) – – 6 8 12 9

Oncohematologic
disease

Chronic lymphocytic
leukemia (CLL) – – 5 – 14 –

Follicular
Lymphoma (FL) – – 2 – – –

non-Hodgkin’s
Lymphoma – – – – – 10

Myeloma – – – 8 – –

Treatment

No treatment – – 7 – – –

Lenalidomide – – – 8 – –

Ibrutinib – – – – 14 –

Rituximab – – – – – 10

SARS-CoV-2 PCR+ 7 out of 23 3 out of 20 1 out of 7 2 out of 7 9 out of 13 2 out of 7

COVID-19 Disease (Severe) 0 out of 7 0 out of 3 0 out of 1 0 out of 2 3 out of 9 0 out of 1
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differentially expressed before vaccination between subsequently

infected and non-infected individuals (Figure 5E). For this cohort,

there was a trend towards lower levels of subset 5 of TEMRA

Tgd cells (cluster 27 in Table 1) in subsequently infected

individuals (Supplementary Figure S5E). Finally, it is clear that

immunocompromised patients are more likely to get infected due to

an overall reduced immune response. Indeed, 17% of the clusters were

differentially expressed in the oncohaematologic patients (Figure 5F):

these patients had higher levels of TEMRA Tgd cells and a trend

towards lower levels of early NK cells (Supplementary Figure S5F).

Moreover, there was a specific expansion before vaccination of 1 of the

TEMRA Tgd cell subsets (cluster 23 in Table 1) in subsequently

infected patients (Supplementary Figure S5G).
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Pre-vaccine immunome analysis in
oncohaematologic patients could predict
COVID-19-induced hospitalisation

We found that 3 of the 13 infected oncohaematologic patients

had vaccine failure as defined by SARS-CoV-2-induced

hospitalisation (Table 2). Thus, considering that the immunome

composition before vaccination could predict subsequent infection,

we addressed whether the same could be true within the

oncohaematologic cohort to predict vaccine failure. The UMAP

immunome analysis of this cohort divided into mild disease (no

hospitalisation) and severe disease (required hospitalisation)

displayed evident differences between them (Figure 6A). A total
TABLE 3 Infection based on humoral and cellular memory.

anti-N IgG Number not infected Number infected p-value

Healthy adults
Negative serology 16 7 >0.9999

Positive serology 0 0

Older adults
Negative serology 14 3 >0.9999

Positive serology 1 0

Oncohaematologic patients
Negative serology 18 14 >0.9999

Positive serology 1 0

anti-S IgG Number not infected Number infected p-value

Healthy adults
Negative serology 0 0 >0.9999

Positive serology 16 7

Older adults
Negative serology 0 0 >0.9999

Positive serology 15 3

Oncohaematologic patients
Negative serology 8 8 0.4905

Positive serology 11 6

anti-S IgA Number not infected Number infected p-value

Healthy adults
Negative serology 5 1 0.6214

Positive serology 11 6

Older adults
Negative serology 12 3 >0.9999

Positive serology 3 0

Oncohaematologic patients
Negative serology 12 9 >0.9999

Positive serology 7 5

IFN-g production Mean
Standard error of

the mean p-value

Healthy adults
Not infected 5.125 0.936 0.4346

Infected 7.071 3.087

Older adults
Not infected 5.429 1.666 0.2258

Infected 11.33 7.126

Oncohaematologic patients
Not infected 7.211 1.175 0.2313

Infected 11.13 4.142
For each cohort, the absolute number of infected and non-infected individuals based on their serology status is shown for anti-N IgG and anti-S IgG and IgA. The mean and standard error for
IFN-g production following ELISpot assay towards S is also shown based on subsequent infection. The data were analysed with Fisher’s exact test (humoral memory) or a t-test (cellular memory).
A p-value < 0.05 was considered statistically significant.
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of 8 clusters were differentially expressed in these patients even

before vaccination (Figure 6B). Patients with a severe outcome

displayed an expansion of Tregs, non-classical monocytes and CD8+

effector T-cells. However, we could not confirm these findings with

classical gating approaches, likely due to the low number of patients

with a severe outcome (data not shown). Nevertheless, patients with

a severe outcome displayed a trend towards a deficit of classical

monocytes (Figure 6C) due to a deficit of subset 1 (cluster 40 in

Table 1) (Figure 6D), confirming the relevance of this cell type to

control subsequent infection.
Discussion

For the past 3 years of the COVID-19 pandemic, the immune

system of the vast majority of humans has come into contact with

SARS-CoV-2 through vaccination, infection or both. Vaccination

has been crucial to contain the impact of the COVID-19 pandemic

(15). New evidence suggests that ‘hybrid’ immunity, as a result of

both vaccination and natural infection, can provide partial

protection against reinfection for at least 8 months (16).

However, long-term immune protection has proved to be more

complex than initially suggested. To date, only two systematic

reviews have provided meta-analytical evidence on the duration

of COVID-19 vaccine effectiveness (17, 18). Both reviews revealed a

general decrease in vaccine effectiveness over time against

infections, hospitalisations and mortality. This seems especially
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true for the humoral response elicited by mRNA vaccines, which

can be escaped by variants of concern, rather than for T-cell-

mediated responses (19). The adaptive immune response is

known to play an important role in viral clearance, disease

containment and resolution (20, 21). However, a study of

immunocompromised patients, either due to disease or age, has

not yet been performed. Therefore, in this work we have described

for the first time, to our knowledge, the changes induced in the

circulating immune system following vaccination of these patients

and how that related to subsequent infection.

To get a deeper insight into the shape and status of acquired

immunity in immunocompromised individuals, we performed an

unbiased characterisation of the immune system before and after

immunisation. Although the acquired levels of humoral and cellular

memory could not predict subsequent infection, the immunome

analysis showed differences not just in subsequent PCR-confirmed

infection following immunisation, but also prior to vaccination.

Nevertheless, it is true that PCR was not systemically done on a

regular basis for all the individuals during the entire length of this

study. Therefore, we do not know if the so-called non-infected

patients were actually never infected by SARS-CoV-2 or if they were

infected by the virus, but were more efficient at controlling the

infection and thus did not develop any symptoms and did not

receive a PCR test. Nevertheless, an obvious consequence of vaccine

failure is COVID-19-induced hospitalisation that, in our case, was

restricted to the ibrutinib-treated oncohaematologic patients,

revealing a unique immune fingerprint in these patients even
FIGURE 4

Cellular immunome post-vaccination predicts subsequent SARS-CoV-2 infection. (A) All samples following full vaccination (n = 68) are displayed in
the UMAP density plots based on their subsequent infection (n = 17) defined by a positive PCR test. (B) Volcano plot comparing the clusters
identified in Table 1 and Figure 1 based on subsequent infection (n = 17). (C) UMAP density plots of the infected and non-infected samples are
displayed for healthy adults and oncohaematologic patients. Volcano plots comparing infected versus non-infected (D) healthy adults (n = 7 and n =
16, respectively) and (E) oncohaematologic patients (n = 9 and n = 20, respectively). For the UMAP plots, the colour code is based on the intensity,
where red represents higher expression and blue represents lower expression. For the volcano plots, differentially expressed clusters (p < 0.05) in the
comparisons are highlighted in green. Due to the low number of events, some clusters could not be analysed in (D) (plasmablasts, CD4–CD8– T-
cells [2] and TEMRA Tgd cells [4]).
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before vaccination. Of note, these patients had a complete depletion

of both classical monocytes and subset 1 of these cells (cluster 40 in

Table 1). Hence, monocyte depletion might disrupt the cross-talk

between innate and adaptive immune cells, weakening the overall

immune response. Monocytes also play a role in modulating B-cell

responses, and their absence might affect the quality of antibody

production post-vaccination, thereby compromising humoral

memory. This interaction between the innate (monocyte) and

adaptive (T- and B-cell) immune systems could be a critical

factor in determining vaccine efficacy, particularly in patients

with underlying immunosuppression. Therefore, future studies

should study monocytes in general, and CXCR5+NKp30–

monocytes in particular (as they characterise this specific cluster),

to unravel their specific contribution conferring vaccine protection

even before that.
Frontiers in Immunology 12
We are aware that this is a pilot study with a small sample size

and that further characterisation is required with a larger sample

size. It is important to highlight that while the computational

cytometric analysis pipeline revealed several differentially

expressed clusters in the volcano plots, we could not always

validate these results with hierarchical gating approaches. This

outcome is likely due to low number of available samples because

many of the comparisons displayed a trend for a significant

difference. Therefore, we cannot discard the possibility that most

of the clusters identified in the volcano plots could have been

validated by classical gating approaches if we had enrolled more

individuals in this pilot study. In this context, it is important to note

that in complex immunological studies, particularly those involving

heterogeneous or rare cell populations, classical gating may not

always capture the full spectrum of cellular responses. This
FIGURE 5

The pre-vaccination cellular immunome predicts SARS-CoV-2 infection. (A) All samples before the first vaccine dose (n = 75) are displayed in the UMAP
density plots based on their subsequent infection. (B) A general volcano plot comparing the clusters identified in Table 1 and Figure 1 before vaccination
based on subsequent infection. (C) UMAP density plots of the cohorts before being vaccinated are shown with the following colours: blue (healthy
adults), purple (older adults) and green (oncohaematologic patients), relative to all samples (shown in black). Specific volcano plots of infected versus
non-infected (D) healthy controls (n = 7 and n = 16, respectively), (E) older adults (n = 3 and n = 15, respectively) and (F) oncohaematologic patients (n =
14 and n = 20, respectively) are also shown. For the UMAP plots, the colour code is based on the intensity, where red represents higher expression and
blue represents lower expression. For the volcano plots, differentially expressed clusters (p < 0.05) in the comparisons are highlighted in green. Due to
the low number of events, some clusters could not be analysed in (D) (CD45RA–/CD39+ Tregs, non-classical monocytes, plasmablasts, CD4–/CD8– T-
cells [2] and TEMRA Tgd cells [4]) and (E) (classic monocytes [2], CD45RA–/CD39+ Tregs, non-classical monocytes, plasmablasts, CD4–/CD8– T-cells [2],
TEMRA Tgd cells [4] and TEMRA Tgd cells [5]).
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limitation can result in an incomplete interpretation of immune

response data. To achieve accurate interpretation, it is crucial to

supplement classical gating with more advanced and flexible

analysis techniques, such as computational approaches, which

allow for a more comprehensive exploration of the immune

response. This ensures that the conclusions drawn from the data

accurately reflect the true complexity of immune responses across

all patient cohorts. That said, the cell populations and subsets we

validated using classical hierarchical approaches further strengthen

our findings. In this regard, the use of unsupervised analyses

revealed the presence of several clusters within a given population

that would have otherwise remained undetected. A clear example of

this phenomenon is the TEMRA Tgd cell population, which has up

to 7 subsets based on the differential expression of several surface

markers (Table 1; Supplementary Figure S1D). It is important to

highlight that several of its subsets could predict subsequent PCR-

confirmed infection in the different cohorts, not just following

vaccination but also before it. For example, subset 1 of this

population (cluster 23 in Table 1) was expanded in subsequently

infected oncohaematologic patients both before and following
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vaccination. Similarly, subsets 2 (cluster 24 in Table 1) and 7

(cluster 29 in Table 1) were also expanded in oncohaematologic

patients before vaccination, while subsets 4 (cluster 26 in Table 1)

and 5 (cluster 27 in Table 1) decreased in healthy and older adults,

respectively, before vaccination. These findings confirm the

relevance of the different TEMRA Tgd cell populations to control

SARS-CoV-2 infection. TEMRA gd T cells may therefore

provide early and robust responses to infection, potentially

offering protection even before the full activation of classical

adaptive immunity. This makes them especially relevant for

immunocompromised individuals. The ability of gd T cells to

respond independently of MHC presentation may help

compensate for the weakened T and B cell responses seen in

patients treated with immunosuppressive drugs, such as ibrutinib

and lenalidomide. Given the capacity of TEMRA gd T cells to act

quickly and independently of traditional antigen presentation

mechanisms, we hypothesise that these cells may serve as critical

first responders to vaccination in immunocompromised

individuals. Therefore, these results suggest that this population

and its subsets should be analysed further to understand the specific
FIGURE 6

Cellular immunome before vaccination predicts COVID-19-induced hospitalisation. (A) UMAP plot of pre-vaccination samples of infected
oncohaematologic patients according to the COVID-19 outcome defined as mild (left, no need for hospitalisation, n = 10) or severe (right,
hospitalisation required, n = 3). (B) Volcano plot analysis comparing the clusters identified in Table 1 and Figure 1 for the infected oncohaematologic
patients based on the COVID-19 outcome. (C) Classical validation, following the gating strategy shown in Supplementary Figure S1, of total
monocytes, and (D) the classic monocyte (1) cluster. In (B), green dots represent those clusters that showed significant differences (p < 0.05).
A one-tailed t-test was applied for (C) and (D); the p-values are shown in the figures (ns, not statistically significant).
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mechanisms by which they control SARS-CoV-2 infection. Indeed,

they could also be considered as novel biomarkers to monitor and

predict infection in immune-compromised individuals.

More generally, an important consideration when studying

vaccine responses is whether the individuals had had prior

immunologic encounters. For example, prior mild SARS-CoV-2

infection followed by complete clinical recovery sets up individuals,

particularly men, to mount a more robust response to subsequent

flu vaccination (22). This phenomenon is due to long-lasting

antigen-agnostic trained innate immunity mechanisms (23) and

bystander activation (not SARS-CoV-2 specific) of virtual memory

(VM) and VM-like CD8+ T-cells (24). As such, any immune

challenge may establish new baseline immune statuses with the

potential to impact future responses in both antigen-specific and

antigen-agnostic ways (25). In this regard, our findings provide

additional insights into these mechanisms as we also observed the

potential to predict vaccine failure even before vaccination, opening

the way for specific treatment to those patients.

In addition to the inherent properties of vaccines, other factors

can contribute to their overall effectiveness, such as sex, age, co-

morbidities, pre-existing diseases or socio-economic background

(26–29). Throughout the lifespan, sex and age are fundamental

transformers of immunity to infectious diseases and to the response

to vaccination (30). Nevertheless, we did not have enough data to

segregate based on sex; this issue needs to be addressed in

future studies.

In summary, we have shown that although vaccine-induced

humoral and cellular memory cannot predict subsequent infection

in immune-compromised patients, an unbiased characterisation of

the circulating immunome correlates with vaccine outcome even

before vaccination. Of course, additional research is needed to

establish the robustness and reliability of these predictions. Future

studies should expand this pilot study by focussing on the relevance

of the already identified cell populations that seem to play a pivotal

role controlling SARS-CoV-2 infection, with a particular focus on

the TEMRA Tgd cells. These studies will pave the way for

personalised vaccination in the vulnerable population.
Materials and methods

Patient cohorts

To evaluate whether mRNA vaccines are equally effective in

immune-compromised patients, two cohorts of these patients were

recruited, including older adults and patients with lymphoid cancer

(oncohaematologic patients); these cohorts were subsequently

compared with a control cohort. In all cases, individuals with a

previous PCR-confirmed diagnosis of COVID-19 were excluded

from the study. Older adults (2 males, 18 females) were recruited

from the Orpea residential nursing home (Valladolid, Spain). The

mean age of the older adults was 88.1 years (all over 70 years old).

All of them had been vaccinated with BNT162b2 (Pfizer-

BioNTech). Thirty-nine oncohaematologic patients treated at the

Department of Hematology (Hospital Clıńico Universitario de
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Valladolid, Valladolid, Spain) were also recruited. Seven of them

had chronic lymphocytic leukaemia (CLL) or follicular lymphoma

without active treatment, 10 had NHL treated with rituximab, 14

had CLL treated with ibrutinib and 8 had myeloma treated with

lenalidomide. With the exception of 4 patients vaccinated

with BNT162b2 (Pfizer-BioNTech), the remaining were

vaccinated with mRNA-1273 (Moderna). This cohort showed

homogeneity in terms of sex and had an average age of 63.5

years. Finally, a total of 27 healthy controls with no known

inflammatory, autoimmune or malignant diseases were recruited

from the occupational risk prevention service (Hospital Clıńico

Universitario de Valladolid, Valladolid, Spain). The controls were

age- and sex-matched to the other cohorts. All of them were

vaccinated with BNT162b2 (Pfizer-BioNTech). An 18-month

clinical follow-up was performed in all individuals to further

address (following vaccination) subsequent PCR-confirmed

SARS-Cov-2 infection. Additional information about patient

demographics and subsequent infection can be found in Table 2.

Ethics approval was obtained from the local ethics committee from

Valladolid Este (PI 21-2098).
Biological samples

Blood samples from all individuals were obtained before the

first vaccine dose (between January and April 2021) and 3 months

following full vaccination (i.e., 3 months after the second vaccine

dose). Hence, the SARS-CoV-2 B.1.1.7 strain was predominant in

Spain at the time of the pre-vaccine samples while the B.1.617.2

strain was predominant by the time that the post-vaccination

sample was obtained.

In all cases, blood was collected in LH Lithium Heparin

separator tubes. Subsequently, peripheral blood mononuclear cells

(PBMCs) were isolated using Cytiva Ficoll-Paque™ PLUS (Cytiva

17-1440-03). Blood was slowly poured into a centrifuge tube with

Ficoll-Paque™ without mixing (3 ml of Ficoll for 5 ml of blood) and

centrifuged at 800 g for 30 min at 4°C (Fisherbrand™ GT2) with

acceleration set to maximum and deceleration to minimum.

PBMCs were collected from the interface between the Ficoll-

Paque™ and plasma layers. PBMCs were centrifuged again in

RPMI at 400 g for 5 min at 4°C to wash them. The resulting

pellet was suspended in freezing medium (90% foetal bovine serum

[FBS] + 10% dimethyl sulphoxide [DMSO]) to cryopreserve the

cells in liquid nitrogen until use. Plasma samples were also obtained

and immediately preserved at -80°C until use.
Humoral memory

The determination of specific anti-S IgG and IgA antibodies was

performed by electrochemiluminescence immunoassay (Elecsys

Anti-SARS-CoV-2 S, Roche Diagnostics, Mannheim, Germany).

The results are expressed in binding antibody units (BAU). In

addition, the presence of anti-N IgG antibodies was evaluated with

an enzyme-linked immunosorbent assay (ELISA) (COVID-19

ELISA IgG, Vircell Microbiologists, Santa Fe, Granada, Spain).
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Cellular memory

The magnitude and kinetics of the cellular response to SARS-

CoV-2 was tested with an ex vivo IFN-g ELISpot assay. PBMCs (both

before vaccination and 3 months following full vaccination) were

thawed in sterile tubes with 10 ml of RPMI 1640 without L-glutamine

(Gibco, Paisley PA49RF, Scotland, United Kingdom) and centrifuged

at 400 g for 5 min at 4°C. After removal of the supernatant, 1 ml of

AIM-V serum-free medium with L-glutamine, 50 mg/ml streptomycin

sulphate and 10 mg/ml gentamycin sulphate (Gibco) was added to

count the cells in a BLAUBRAND® Neubauer counting chamber in

the presence of trypan blue. Cells were cultured in duplicate (100,000

viable cells in 200 ml of AIM-V medium) in 96 U-bottom culture

plates for a total period 48 h in the presence of 2 mg/ml of a pool of

SARS-CoV-2 spicule S1 domain peptides (Mabtech). As a positive

control, total PBMCs were stimulated with a polyclonal stimulus of

anti-CD3 and anti-CD28 (Mabtech), at concentrations of 0.2 and 0.02

mg/ml, respectively; unstimulated cells served as a negative control.

Following culture, secreted interferon gamma (IFN-g) was detected by
adding 1 mg/ml anti-IFN-g monoclonal antibody (7-B6-1-ALP,

Mabtech) and incubating for 2 h in the dark. The plates were

developed using BCIP/NBT-plus, according to the manufacturer’s

instructions. The results were obtained as spot-forming units (SFU).
Antibody staining and spectral
cytometry acquisition

After thawing, and in parallel to determining cellularmemory, 2 × 106

PBMCs were stained with monoclonal antibodies (Supplementary Table

S1) to be subsequently characterised by spectral cytometry (CyTek Aurora

5-laser) following the OMIP-069 protocol and analysis panel, with slight

variations (31).

Briefly, before staining the PBMCs, the Live/Dead Fixable Blue

Dead Cell Stain Kit (Molecular Probes, Thermo Fisher Scientific) was

added to exclude dead cells from the analysis. Brilliant Stain Buffer

and True-Stain Monocyte Blocker were also added prior to staining

with the antibodies to obtain optimal fluorescence of the desired cells.

The PBMCs were washed with fluorescence-activated cell sorting

(FACS) buffer (500 ml phosphate-buffered saline [PBS] + 10 ml

filtered FBS + 0.1 g NaN3 + 2.5 ml sterile ethylenediaminetetraacetic

acid [EDTA]) and incubated in the dark at room temperature during

the staining process. Finally, the cells were fixed with 0.8%

paraformaldehyde in FACS buffer in the dark for 10 min, washed

with FACS buffer and stored at 4°C. Cells were acquired within 48 h

in a 5-laser spectral cytometer (Aurora, Cytek).
Computational cytometric analysis and
statistical analysis

The OMIQ Data Science platform (Omiq, Inc. 2022) was used

following transformation of the data; the scale, parameters and
Frontiers in Immunology 15
cofactors were set as suggested by the platform. The data-cleaning

FlowAI algorithm was applied to remove outlier events in spectral

cytometry data files due to abnormal flow behaviour resulting from

clogs and other common technical problems. Subsequently, a

manual discard was performed to eliminate cell debris and

doublets and to select viable leucocytes (CD45+ cells), which were

used for subsequent analysis. After cleaning, a total of 10 samples

did not fulfil the required quality criteria, so they were excluded

from the analysis (3 pre-vaccine healthy adults, 2 pre-vaccine older

adults, 3 post-vaccine ibrutinib-treated patients and 2 pre-vaccine

rituximab-treated patients).

Due to the large amount of data obtained with this panel, it is

not advisable to examine the results exclusively through traditional

manual identification due to their subjectivity. Therefore, an

unsupervised approach applying the UMAP algorithm was used

for the exploratory analysis. Briefly, this algorithm uses a non-linear

method based on graphs to represent information in multiple

dimensions, and then reconstructs the results into a two-

dimensional map, preserving the multidimensional structure. In

this way, the algorithm finds similarities between cells in all

dimensions. These dimensions are, in this case, the intensity of

the markers that they express. The algorithm returns a two-

dimensional map where the proximity of cells reflects their

distances in multidimensional space, such that cells with similar

patterns of expression are located very close to each other. This

distance/similarity relationship is respected within and between

each group or islet. A prior subsampling or random selection of

events was performed until a total of 4 × 106 events was reached to

ensure that each cohort was equally represented.

Subsequently, the FlowSOM algorithm was used to find similar

cell clusters and to separate them into groups in an unsupervised

manner. This algorithm analyses the expression of all the selected

markers in each of the cells of each sample and then groups them into

metaclusters according to their expression level. In this way, it not

only allows for the visualisation of cells in typical biological

groupings, but also for the detection of new or unexpected clusters.

However, this algorithm only displayed metaclusters that would

represent the large subsets of the immune system present in the

sample. The visual representation of the two algorithms allows one to

further to subdivide these metaclusters into clusters that provide a

more accurate representation of all the phenotypic and functional

subsets of the human immunome. A clustered heatmap was created

using the clusters obtained in the previous point. This heatmap

graphically represents the level of expression of each phenotypic

marker into each cluster. Dendrograms grouped clusters and

phenotypic markers associated by similarity (distance). This

approach permits one to identify the immune cell subsets

represented by each cluster based on the expression levels of their

markers. In this way, if a specific cluster is associated with a condition

under study, its phenotype could be elucidated to identify it using

classical supervised approaches where it would otherwise have gone

undetected. Finally, the refined results of the FlowSOM algorithm

were mapped on the UMAP plot to observe their distribution.
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Statistical analyses

For the computational cytometric data, volcano plots were

constructed with the edgeR algorithm to compare cluster differences.

Once the clusters showing significant differences were identified, the

data were validated with classical hierarchical analysis. Using a

modified gating strategy of the OMIP-69 panel, the percentages

within the total viable leucocyte fraction (CD45+) of those clusters

that stood out in the previous analysis were obtained, and then

GraphPad Prism 9 (GraphPad Software, San Diego, CA, USA) was

used for statistical analysis. Quantitative variables are expressed as

mean and standard deviation (because they followed a normal

distribution). One-Way analysis of variance (ANOVA), Fisher’s exact

test and t-test comparisons were applied as detailed in each figure

legend. In all cases, p < 0.05 was considered statistically significant.
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