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Rationale: Kidney inflammation plays a crucial role in the pathogenesis of IgA

nephropathy (IgAN), yet the specific phenotypes of immune cells involved in

disease progression remain incompletely understood. Utilizing joint profiling

through longitudinal single-cell RNA-sequencing (scRNAseq) and single-cell

assay for transposase-accessible chromatin sequencing (scATACseq) can

provide a comprehensive framework for elucidating the development of cell

subset diversity and how chromatin accessibility regulates transcription.

Objective:We aimed to characterize the dynamic immune cellular landscape at a

high resolution in an early IgAN mouse model with acute kidney injury (AKI).

Methods and results: A murine model was utilized to mimic 3 immunological

states –”immune stability (IS), immune activation (IA) and immune remission (IR)”

in early human IgAN-associated glomerulopathy during AKI, achieved through

lipopolysaccharide (LPS) injection. Urinary albumin to creatinine ratio (UACR) was

measured to further validate the exacerbation and resolution of kidney

inflammation during this course. Paired scRNAseq and scATACseq analysis was

performed on CD45+ immune cells isolated from kidney tissues obtained from

CTRL (healthy vehicle), IS, IA and IR (4 or 5 mice each). The analyses revealed 7

major cell types and 24 clusters based on 72304 single-cell transcriptomes,

allowing for the identification and characterization of various immune cell types

within each cluster. Our data offer an impartial depiction of the immunological

characteristics, as the proportions of immune cell types fluctuated throughout

different stages of the disease. Specifically, these analyses also revealed novel

subpopulations, such as a macrophage subset (Nlrp1b Mac) with distinct

epigenetic features and a unique transcription factor motif profile, potentially

exerting immunoregulatory effects, as well as an early subset of Tex distinguished
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by their effector and cytolytic potential (CX3CR1-transTeff). Furthermore, in order

to investigate the potential interaction between immune cells and renal resident

cells, we conducted single-cell RNA sequencing on kidney cells obtained from a

separate cohort of IS and IA mice without isolating immune cells. These findings

underscored the diverse roles played by macrophages and CD8+ T cells in

maintaining homeostasis of endothelial cells (ECs) under stress.

Conclusions: This study presents a comprehensive analysis of the dynamic

changes in immune cell profiles in a model of IgAN, identifying key cell types

and their roles and interactions. These findings significantly contribute to the

understanding of the pathogenesis of IgAN and may provide potential targets for

therapeutic intervention.
KEYWORDS

IgA nephropathy, immune cells, single-cell RNA-seq, single-cell ATAC-seq,
macrophages, CD8+ T cells
1 Introduction

IgAN is the most common primary glomerular disease

worldwide characterized by the deposition of IgA-containing

immune complexes in the mesangium, followed by mesangial

hypercellularity and matrix expansion (1–4). Its glomerular

histopathology also includes infiltration of inflammatory cells,

proliferation of endocapillary, and formation of crescents. IgAN

patients show great heterogeneity in their clinical manifestation,

ranging from asymptomatic microscopic hematuria to rapidly

progressing glomerulonephritis (3, 4). At present, effective

targeted therapies are very limited for this tissue-specific

autoimmune disease, and 30% to 40% of cases progress to uremia

within 20 to 30 years (5).

The infiltration of macrophages and T cells in the glomerulus

and/or interstitial compartments has been corroborated to play an

initiative role in regulating renal inflammation and contribute to

IgAN progression (6, 7). Recently, scRNAseq analyses have

unveiled the complexity of cellular phenotypes in both normal

and injured human and mouse kidneys, thereby revolutionizing our

understanding of kidney disease pathologies from diverse

perspectives (8–19). However, the phenotypes of specific immune

cell types in the IgAN kidney are not well understood.

Integrated analysis of multimodal single-cell omics data is an

emerging tool to describe an unbiased and comprehensive view of

cell atlas. For example, Giles et al. demonstrated that scRNAseq data

obtained from the LCMV model of CD8+ T cell differentiation had

less resolution in defining cell identity whereas the paired

scATACseq data outperformed in determining cell “fates” (20).

Joint profiling by longitudinal scRNAseq and scATACseq can

provide a framework for understanding how development of cell

subset diversity as well as how chromatin accessibility regulates

transcription (16, 21). And immune cells in different pathology
02
contexts may have distinct chromatin accessibility profiles that

change as they differentiate.

In the current study we used an early IgAN model with an extra

LPS injection to mimic disease exacerbation resulting from mucosal

infection and/or a reversible form of AKI, which is frequently

observed in clinical practice among IgAN patients (5). LPS, a

classical endotoxin derived from the outer membrane of Gram-

negative bacteria, serves as an indispensable virulence factor that

triggers Toll-like receptor-4 (TLR-4) inflammatory signaling,

eliciting potent innate and adaptive immune responses (22).

Therefore, we designated the established IgAN model with and

without systemic administration of LPS as “immune activation

(IA)/immune remission (IR)” and “immune stability (IS)”,

respectively (Methods). Accordingly, we generated temporal

scRNAseq data and scATACseq data for CD45-positive immune

cells isolated from kidneys in different immune responses to

delineate population heterogeneity and identify gene expression

as well as accessible chromatin patterns associated with major

branches of immune cell phenotype. To date, this study

represents the first multiomics analysis that characterizes the

dynamic immune cellular landscape at a high resolution in an

early IgAN mouse model.
2 Results

2.1 A murine model with LPS injection to
phenocopy 3 states in early human IgAN-
associated glomerulopathy

Established IgAN model in this study showed prominent

glomerular immune deposits (Figure 1A) with histopathologic

changes (Figure 1B) as observed in early IgAN patients. Despite
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the LPS injection in the IA or IR group not inducing more severe

detectable glomerular abnormalities, physiological measurements

confirmed that the IA group (short for IA) exhibited more severe

proteinuria, compared to the other groups (Figure 1C). Therefore,

these three phases simulate to a certain extent the onset and

resolution of self-limited AKI in early IgAN.
2.2 CD45+ cell transcriptional atlas in
mouse kidneys

Dissociated kidney cells from CTRL, IS, IA and IR (4 or 5 mice

each) were processed and enriched for CD45-positive immune cells

(Methods and Supplementary Figure S1). Isolated CD45+ cells were

then pooled into a single sample per experimental condition for

scRNAseq and scATACseq analysis respectively using the 10×

Genomics platform. After quality control and filtering (Methods

and Supplementary Figure S2), we obtained 72304 CD45+ single-

cell transcriptomes from vehicle and IgAN mice.
Frontiers in Immunology 03
Seven major cell types were identified on the basis of the

canonical marker expressions as B cells, plasma cells, T and NK

cells (TandNK), neutrophils, basophils, mononuclear phagocytes

(MPs), and plasmacytoid dendritic cells (pDCs) (Methods and

Figure 1D). MPs could be further divided into macrophages,

monocytes, conventional type 1 dendritic cells (cDC1), and

conventional type 2 dendritic cells (cDC2) (Supplementary Figure

S4). The proportion of immune cell types showed difference in

disease phases, and we detected a prominent dynamic change of the

myeloid cells and the lymphoid cells (Figure 1E).

To investigate the distinctive immune profiles of different

disease phases, we performed Gene Ontology (GO) pathway

analysis of DEGs for IA, IR and IS. We found increased

expression of genes that regulate leukocyte migration and

chemotaxis, especially mononuclear cells and granulocytes in IA

compared to IR (Figure 1F), indicating that circulatory myeloid

activation altered the kidney myeloid compartments during the

early onset of AKI. While in IR and IS, DEGs were more enriched in

leukocyte differentiation, cell-cell adhesion and T cell activation
frontiersin.or
FIGURE 1

Single cell transcriptional immune landscape of acute exacerbation in an early IgAN model. (A) Representative analysis of IgA glomerular deposits in
IgAN groups (upper left) and CTRL groups (upper right) using immunofluorescence. Representative analysis of IgA glomerular deposits (red arrow) in
IgAN groups using transmission electron microscope (bottom). (B) Representative histologic images of periodic acid-Schiff (PAS) staining across IgAN
groups(upper: IA, middle: IR, bottom: IS). Mild increased cellularity of mesangial cells can be widely observed, while immune cell infiltration,
adhesion of Bowman’s capsule, and renal tubule atrophy can be detected in some samples. (C) Urinary albumin-to-creatinine ratios (UACRs) in
CTRL, IS, IA and IR. (D) UMAP showing the distribution of CD45+ cells from the scRNAseq data. Each point represents one cell. The cells are marked
by color code based on the cell type. (E) Histogram depicting the proportion of CD45+ cells per cell type. (F) Barplots showing enriched pathways of
upregulated DEGs for IAvsIR. (G) Barplots showing enriched pathways of down-regulated DEGs for IAvsIR. (H) Barplots showing enriched pathways
of up-regulated DEGs for IAvsIS. (I) Barplots showing enriched pathways of down-regulated DEGs for IAvsIS.
g
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than in IA (Figures 1G, I). When compared with IS, IA was

characterized by elevated levels of cellular metabolism, including

generation of metabolites and cellular respiration (Figure 1H),

consistent with the activated state of immune cells.
2.3 Temporal scRNAseq reveals
transcriptional heterogeneity in
macrophage subsets

To examine the kidney macrophage heterogeneity, we

performed the unsupervised clustering of macrophages from

vehicle and IgAN immune cells, which identified 8 subclusters,

including infiltrating macrophages (infiltrating Mac, highly

expressing infiltrating macrophages genes e.g., Plac8, Msrb1,

Anxa2, Gngt2, Ear2), resident Mac, inflammatory Mac (highly

expressing inflammatory macrophages genes e.g., Ccl3, Ccl4, Il1b),

2 subsets of interferon (IFN) gene signature high Mac (IFN Mac),

proliferating Mac (highly expressing proliferating macrophages

genes e.g., Stmn1, Hist1h1b, Hist1h2ae, Birc5, and Mki67), NLR

family, pyrin domain containing 1B (Nlrp1b)-high expressing Mac

(Nlrp1b Mac) and Mediterranean fever (Mefv) -high expressing

Mac (Mefv Mac) (Figures 2A, B) (23). The annotations were

identified based on previously defined marker genes by Fu et al.

(23). The cell types in the current study were largely similar with

that in the mouse model of early diabetic kidney disease (DKD),

implicating that IgAN and DKD might share conserved phenotypic

spectrum in local macrophage transcriptome, despite of different

mouse model from different background (23). Mannose receptor C-
Frontiers in Immunology 04
type 1 (Mrc1)-high expressing (Mrc1hi) Mac, one of resident

macrophage subsets as Fu et al. have reported, showed relatively

higher expression of resident marker genes (e.g., C1q, Cd81 and

Mgl2) than other subclusters in our study, thus we annotated them

as resident Mac (Figure 2B). Although we did not detect any

populations with a relatively high expression of Trem2

(Supplementary Figure S4), we distinguished 2 subsets Nlrp1b

Mac and Mefv Mac that have not been previously described and

might be specific to IgAN. And we observed notable changes in the

proportions of Nlrp1b Mac and Mefv Mac in IA (Figure 2C),

suggesting their potential role in the acute phase of IgAN or kidney

injury. Besides, we split IFN Mac into 2 subsets as it clustered

“apart” in the scRNAseq UMAP space and they displayed different

IFN-stimulated gene (ISG) expression patterns that IFN Mac Cxcl9

with a high expression of Gbp2, Gbp2b and Cxcl9, while IFN Mac

Ifit3 with a high expression of Isg15, Ccl12, Ifit3 and Ifit2

(Figures 2A, B).

We first examined the macrophage subsets for the expression of

canonical M1 markers and M2 markers, which showed an

increasing trend for both M1- and M2-like macrophage subtypes,

rather than having discrete M1 or M2 phenotypes (Supplementary

Figure S5). Recent evidence from scRNAseq analysis has pointed to

a more dynamic and continuous spectrum of macrophage

polarization phenotypes of tissue macrophages under various

conditions (23, 24).

To understand the potential developmental transitions of

macrophage clusters, we applied RNA velocity analysis to

construct the developmental trajectories of 8 macrophage clusters.

Two major trajectories were observed that started from infiltrating
FIGURE 2

Immunological features of macrophage subsets. (A) UMAP of macrophages from scRNA-seq colored by cell type. (B) Dot plot of selected average
gene expression values (log scale) and percentage of macrophages expressing these genes within each cluster. (C) Histogram depicting the
proportion of macrophages per cluster. (D) PAGA pseudo-time network and embedding celltype showing the transition trajectories among
macrophage subsets. Heatmap of genes that are differentially expressed along the trajectories elicited by RNA velocity. (E) Boxplot showing the
indicated functional scores of macrophage subsets. (F) Barplots showing enriched pathways of upregulated DEGs of indicated macrophage subset.
(G) Violinplot showing the expression of Cd274 in macrophage subsets. (H) Predicted cluster identity of proliferating cells shown as the number of
cells per cluster and colored by sample.
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Mac, then bifurcated and ended up as Nlrp1b Mac and resident Mac

respectively, demonstrating that there might be a constant flow of

infiltrated macrophages entering these clusters and terminally

differentiating as them (Figure 2D). In line with previous

publications, resident macrophages or other subclusters are both

locally proliferating and partially replenished by the circulation

especially when space in the resident macrophage pool is created

under inflammatory conditions (24, 25). Figure 2D shows examples

of genes that are highly expressed along the trajectories (e.g., pro-

inflammatory gene S100a6 and ISG ifi205 in infiltrating Mac,

complement activation gene Cd5l and phagocytosis-associated

gene Myo1g in Mefv Mac).

By examining signature genes defined by prior data (Methods and

Supplementary Table S1), we observed distinct functional status for

each macrophage subset as follows: infiltrating Mac with the highest

lipid metabolism score and a high monocyte-derived macrophage

(MoMF) score (Figure 2E). And GO analysis revealed that many

pathways specifically enriched in infiltrating Mac were related to

energy metabolic process and respiration (Figure 2F). Macrophages

augmenting lipogenesis and the utilization of glucose upon the

stimulation of TLR4 by LPS has been linked to enhanced

phagocytosis and cytokine production (26–28). We also observed

high pro-inflammatory scores in resident Mac, inflammatory Mac

and IFN Mac Ifit3, the highest resident score for resident Mac, as well

as the highest interferon-responsed score for IFN Mac (Figure 2E).

Consistent with its pro-inflammatory potential, IFN Mac Ifit3 DEGs

were enriched in pathways related to defense response to virus and

cytokine production, whereas IFN Mac Cxcl9 in pathways associated

with nucleotide metabolic process (Figure 2F). Next, we asked whether

IFN Mac Cxcl9 had anti-inflammatory potential by examining the

Cd274 (encoding PD-L1) expression of macrophages. IFN Mac Cxcl9

was found to show a marked expression (Figure 2G). Together, these

results further confirmed the bifurcation of IFN Mac. Of interest,

research has shown that tumor T cells cocultured with the PD-L1+

macrophages exhibited an impaired production of IFN-g (29). In other

words, IFN Mac Cxcl9 might inhibit T cell activity and suppress the

overexpression of IFN. Furthermore, IFN Mac Cxcl9 displayed a

relatively high score of immune regulation and high expression of

immuneregulatory gene Sod1 (Figure 2E; Supplementary Figure S5).

Altogether, these observations indicated a key role for this subset in the

ability to attenuate and resolve the inflammation. There was also a

proliferating cluster characterized by the expression of genes consistent

with DNA replication and repair, as well as cell division, such as

Hist1h1b, Hist1h2ae, Birc5, and Mki67 (Figures 2B, F). Because cell

cycle genes can obscure underlying transcriptional identity, we

projected these cells back onto the remaining clusters as described in

previous publications (Methods) (20). Most proliferating cells belonged

to the IA Mefv cluster, with part of cells derived from inflammatory

Mac and Nlrp1b Mac present at IS (Figure 2H). Thus, these clusters

shared transcriptional features of proliferative activity that might drive

colocalization in scRNAseq space.

GO pathway analysis of Nlrp1b Mac DEGs disclosed their

various regulatory effects on immune response and apoptotic
Frontiers in Immunology 05
signaling pathway, together with the upregulation of genes linked

to leukocyte migration, chemotaxis and cell-cell adhesion, whereas

Mefv Mac DEGs were positively correlated with the regulation of

leukocyte differentiation and GTPase activity (Supplementary

Figure S6). However, these “regulatory-alike” clusters did not

belong to the canonical immunoregulatory cells due to their low

immune-regulatory score as shown in Supplementary Figure S6.

They did not acquire anti-inflammatory functions that contributed

to tissue fibrosis, angiogenesis or inhibition of T cell responses

either (Supplementary Figure S6). Further looking at other

immunoregulatory genes defined by Zhang et al. revealed a

significant upregulation of Lyn, Mtss1 and Pecam1 (30). These

analyses unveiled a previously unappreciated macrophage

population with potent immunoregulatory effects.

To gain more molecular insights into these clusters, next we used

gene activity, a metric of local gene accessibility, to approximate gene

expression and avoid the interferences caused by overexpression of

mitochondrial genes or ribosomal genes. First we compared Nlrp1b

Mac and Mefv Mac to resident Mac, the representative populations of

the two trajectories. Nlrp1b Mac and Mefv Mac were distinguished by

another immunoregulatory gene Ptprd, genes associated with cell

adhesion (Nrxn3, Tenm2 and Grid2) and transcription factor (TF)

ESRRG (Supplementary Figure S7). Of note, the largest number of

genes with differential activity found in this comparison were down-

regulated genes of Nlrp1b Mac and Mefv Mac, including Rab7b

(expression involved in response to IFN), Cd52 (expression involved

in response to bacterium), Cd83 (expression involved in positive

regulation of CD4+ T cell differentiation), C1qc and H2-Eb1

(expression involved in phagocytosis and antigen presentation), and

migration-related genes Ccl3 and Ccl4 (Supplementary Figure S7).

Then based on comparison with each other, Nlrp1b Mac had higher

expression of Ptprd, whereas more immunoregulatory genes Tnfrsf1b

and Pik3ap1 were higher in Mefv Mac (Supplementary Figure S7).

These data further confirmed the distinct immunoregulatory effects of

Nlrp1b Mac and Mefv Mac.

In summary, these non-canonical immunoregulatory cells with

high expression of multiple related genes and various biological

effects did not demonstrate a typical pro- or anti-inflammatory

phenotype. Next, we performed ligand-receptor (L-R) analysis to

explore molecular crosstalks between these cells and the rest

macrophages or CD4+ T cells. We found that APP-CD74 showed

the highest interaction potential (Supplementary Figure S8).

Amyloid beta precursor protein, encoded by the App gene, is

involved in negative regulation of blood circulation; positive

regulation of endothelin production; and positive regulation of

tumor necrosis factor (TNF) production, and CD74 is mainly

involved in macrophage migration inhibitory factor signaling

pathway. In addition, it has been recently reported that the APP-

CD74 axis contributes to Treg-exhaustion CD8+ T cells (Tex)

interaction in HBV-infected patients (30). Together, these data

may provide valuable information for functional verification of

these immunoregulatory cells in future studies regarding immune

pathogenesis as well as therapeutic attempts for IgAN.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1405748
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2024.1405748
2.4 Dynamic variances in neutrophil profile
across different phases

Neutrophils were further divided into Ccrl2, Csf3r, Ly6g and

Mmp8 subclusters based on their high expression of the marker

gene Ccrl2, Csf3r, Ly6g and Mmp8 respectively (Figure 3A).

Supplementary Figures S9, S10 show enrichment scores of

neutrophil subsets for specific gene signatures and GO pathways

that are specifically enriched in each neutrophil subset. Ccrl2

neutrophils were characterized by high pro-inflammatory score

and involved in multiple signaling pathways such as NF-kB
Frontiers in Immunology 06
signaling, pattern recognition receptor (PRR) signaling pathway,

and extrinsic apoptotic signaling pathway (Supplementary Figures

S9, S10). Ly6g neutrophils with a high ISG score and the highest

pre-neutrophil score (Supplementary Figure S9), serving as the

starting root of the pseudo-time trajectories (Figure 3B), exhibited

characteristics indicative of both early differentiated and viral

response. Mmp8 neutrophils were distinguished by chemotaxis

and migration-related genes and had more pro-angiogenic

potential (Supplementary Figures S9, S10).

The proportion of neutrophil cell types was largely similar

between CTRL and IS (Figure 3C). However, in IA there was
FIGURE 3

Immunological features of neutrophil subsets. (A) UMAP of neutrophils from scRNA-seq colored by cell type (upper), group (middle) and sample
(bottom). (B) PAGA pseudo-time network and embedding celltype showing the transition trajectories among neutrophil subsets. (C) Bar graph
showing proportions of neutrophil subsets in different groups and samples. (D) Volcano plots showing differential gene activity between neutrophils
from IA and IR.
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skewing away from Csf3r neutrophils and toward the Ly6g subset

(Figure 3C). While in IR, there was a substantial increase in Csf3r

neutrophils with concomitant loss of Ly6g subset (Figure 3C),

suggesting the specific neutrophil response might contribute to

control the acute exacerbation of IgAN. Based on gene activity,

neutrophils in IA highly expressed Il10, Adora2a, Tnip1, Pou2f2,

Clec4a1, Lta, etc., genes mainly involved in positive regulation of

inflammatory response through multiple signaling pathway

(Figure 3D), including MYD88-dependent TLR signaling

pathway, NF-kB signaling, G protein-coupled receptor signaling

pathway, IL17-mediated signaling pathway, type I IFN-mediated

signaling pathway. While looking at neutrophils from IR,

representative genes Il1r2, Il15, Zfp36l2 (negative regulation of

cell differentiation) and Wbp1l (CXCR4 signaling pathway) were

relatively up-regulated (Figure 3D). Taken together, these findings

highlighted the potential roles of neutrophils in the pathogenesis of

IgAN that have rarely been explored.
2.5 The integrated immune landscape
distinguishes Nlrp1b Mac as a distinct
macrophage subset

Distinct cell type is the result of an epigenetically distinct

developmental path driven in part by specific TF (31). Next, we

proceeded to explore the epigenetic and transcriptomic landscape of

immune cells to identify the regulatory elements that define the

biological states among the four groups based on parallel scRNAseq

and scATACseq on the same samples. As shown in the UMAP,

following the integration of scATAC- and scRNA-seq datasets, 2

major clusters and 7 celltypes were identified (Figure 4A;

Supplementary Figure S11), validating that scATACseq reveals

fewer cell “fates” underlying multiple transcriptional states (20).

Unexpectedly, Nlrp1b Mac stood out as a distinct population

outside of other clusters (Figure 4A). Given the epigenetic

divergence of Nlrp1b Mac versus other macrophage clusters, we

next compared chromatin accessibility changes between them.

Among regions with increased or lost accessibility, only a finite

number of them were shared (Supplementary Figure S11).

Next, we investigated epigenetic programs used by different

macrophage subsets as described by Giles previously (20). We

visualized all differentially accessible chromatin regions (DACRs)

(Figure 4B), then assessed the number of DACRs in each gene locus

(Figure 4C). This approach revealed four representative global

patterns of distinct ACRs among macrophage clusters, namely

Nlrp1b Mac, infiltrating Mac, inflammatory Mac and resident

Mac (Figures 4B, C). Accordingly, Nlrp1b Mac had a unique

ACR profile and had the most accessible DACRs among

macrophage clusters (Figures 4B, C).

Nlrp1b Mac have a unique TF motif profile characterized by

enrichment in ESRRG, NR4A2, RBPJL, WT1, ZIC1::ZIC2, etc.

(Figure 4D; Supplementary Figure S12). In this case, we observed

a specific TF regulation activity pattern in these clusters with low

deviation score of NFE2L2 in Nlrp1b Mac and proliferating Mac,
Frontiers in Immunology 07
and high score in IFNMac Cxcl9, infiltrating Mac and resident Mac

(Figure 4E). Since most DEGs of Nlrp1b Mac were shared with

other Mac (Supplementary Figure S13), these underscore the

potential of chromatin accessibility to provide additional

information beyond transcriptional data (20).
2.6 Tex/CX3CR1-transTeff is the major CD8
+ effector during the acute phase

Further clustering of scRNAseq T and NK cells yielded 12

clusters, mainly including type 2 innate lymphoid cells (ILC2), gd T
cells (GDT), naïve T cells, CD4+ T-follicular helper cells (Tfh),

regulatory CD4+ T cells (Treg), effector memory CD8+ T cells

(Tem), 2 effector CD8+ T cells (Teff_Jun and Teff_Stat4 with their

high expression of the marker gene Jun and Stat4 respectively) and

exhaustion CD8+ T cells (Tex) (Figures 5A-C). These clusters were

similar to those resolved and annotated from the integrated data

(Supplementary Figure S14). This further validated the accuracy of

the cell type annotation, and demonstrated that unlike the Mac

subpopulation, which has a common lineage “fate”, the

heterogeneity of T cell subpopulations is relatively stable and

conserved from both transcriptomic and epigenetic perspective.

Therefore, subsequent analyses are mostly based on the integrated

scRNAseq and scATACseq data to reduce potential errors and

improve the reliability of the results.

Although Tex herein displayed a typical exhausted state, which

was featured by high expression of inhibitory markers (Tox, Havcr2,

Lag3, Pdcd1 and Tigit) and low expression of effector markers (Tbx21

and Ifng), their high expression of Gzmk and intermediate expression

of Lag3 among other genes could term them in a different way as

predysfunctional cells identified in a melanoma cohort (32)

(Figure 5C). Distinguished from the “authentic” progenitor Tex or

Tex precursor (Tpex) with naïve-associated genes (Lef1, Sell, Ccr7 and

Il7r) expression, Tex or predysfunctional cells herein with expression

of Teff genes Tbx21 and Zeb2 more resemble transitory Teff

(transTeff) (Tpex→transTeff→termTex), the latter were previously

described as Tpex-derived effector-like CX3CR1+ T cells during

mouse lymphocytic choriomeningitis virus (LCMV) infection (20,

33, 34) (Figure 5C; Supplementary Figure S15). Despite transTeff in

our study with loss of CX3CR1 (Supplementary Figure S15), their

effector pattern was defined by high cytotoxic score and effector score

as shown in Figure 5D. Given the observed increase in the proportion

and exhaustion score of Tex in IR (Figures 5B, D), we have deduced

that CX3CR1-transTeff represents the predominant CD8+ effector

population during IA, which subsequently evolves towards termTex

from IA to IR.

We next asked how key changes in chromatin accessibility

identified by scATACseq were associated with developmental

trajectories. We identified distinct epigenetic patterns associated

with expression of key genes (Gzmk, Pdcd1 and Tigit) across time

points using scATACseq (Figure 5E). The increased accessibility of

the Gzmk locus in IA and the Pdcd1 locus in IR was observed as

anticipated (Figure 5E). Interestingly, we observed increased
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accessibility at the promoter and enhancers regions of Gzmk in

IS (Figure 5E).

Lastly, we noted a unique feature of heat-shock protein (HSP)

genes (Hspa8 , Hspa1b , Hspa1a , Dnajb1 , Hspd1 , Hspe1)
Frontiers in Immunology 08
overexpression in Teff_Jun (Figure 5F; Supplementary Figure

S14). A CD8+ T cell population with HSP genes upregulated was

previously reported in Tex isolated from the mouse spleen during

LCMV infection, but their biological function remained
FIGURE 4

The integrated immune landscape distinguishes Nlrp1b Mac as a distinct macrophage subset. (A) UMAP showing the distribution of macrophages
using the scATACseq and scRNAseq data in the LSI space. Each point represents one cell. The cells are marked by color code based on the different
clusters. (B) Average accessibility of DACRs per scATAC-seq macrophage cluster. (C) Number of DACRs per gene loci for 4 representative scATAC-
seq cluster: infiltrating Mac (blue), inflammatory Mac (yellow), resident Mac (red) and Nlrp1b Mac (brown). (D) Heatmap of TF motif deviation scores
of macrophage subsets. (E) Ridge plot showing NFE2L2 deviation scores of macrophage subsets (upper) and UMAP showing the distribution of
NFE2L2 using the scATACseq and scRNAseq data in the LSI space (bottom).
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unelucidated (20). Further studies are needed to clarify the

significance of Teff_Jun in IgAN.

Similarly, to observe distinct functional status for each T-cell

and NK-cell subset, we examined signature genes defined previously

on the integrated scRNAseq data (Methods and Supplementary

Table S1). As expected, the highest regulatory score for Treg and the

highest exhaustion score for Tex confirmed their transcriptomic

signature (Figure 5D). We also observed the highest cytotoxic score

for Tem (Figure 5D). As for NK subsets, NK_Gzma (with high

expression of marker gene Gzma) had a significantly higher

cytotoxic score, while NK_Xcl (with high expression of marker

gene Xcl) had a relatively higher expression of general stress-related

genes, a pattern reminiscent of CD8+ Tem and Teff_Jun (Figure 5G;

Supplementary Figure S14). Tem and NK_Gzma might belong to

one epigenetic group that featured by accessibility at As3mt, Dagla,

NK-associated gene Fcgr2b and cytotoxic gene Gzma (Figure 5F).

Similar to recent work, our analyses also identified specific T-cell
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cluster expressing genes associated with NK cells (Klr genes or

Fcgr2b, for example) (20, 35, 36) (Supplementary Figure S1).
2.7 Cell-cell interaction between immune
cells and endothelial cells

To dissect the potential crosstalk of immune cells and renal

resident cells, we performed scRNAseq on kidney cells obtained

from an independent cohort of IS and IA mice without immune-cell

isolation (Figure 6A). Several clusters or subsets were undetected

because of their relatively low overall proportions (Figure 6A). Then

we used Cellphone DB to infer cell–cell interaction between

macrophage or CD8+ T-cell subsets and endothelial cells (ECs),

considering prior findings that ECs have a key role in the activation/

recruitment of leukocytes at the initial stages of IgAN (37)

(Figure 6). We detected a wide range of interaction events among
FIGURE 5

Immunological features of CD8+ T-cell and NK-cell subsets. (A) UMAP of T and NK cells from scRNAseq colored by cell type. (B) Histogram
depicting the proportion of cells per cluster. (C) Dot plot of selected average gene expression values (log scale) and percentage of cells expressing
these genes within each cluster. (D) Boxplot showing the indicated functional scores of T-cell subsets and exhaustion score of Tex across samples
generated on integrated scRNAseq data. (E) Genome accessibility tracks of indicated gene loci with peak-to-gene links identified by ArchR across
samples. The genes are depicted in red when located on the positive strand (TSS on the left) and in blue when situated on the negative strand (TSS
on the right). The grey boxes highlighted the enhancer or promoter regions of the gene of interest. (F) Volcano plot showing DEGs between
Teff_Jun and Teff_Stat4, differential gene activity between Tem and other CD8+ T cells, and differential gene activity between NK_Gzma and NK_Xcl.
(G) Boxplot showing the indicated functional scores of NK-cell subsets generated on integrated data.
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ECs, Teff, Tex, resident Mac, inflammatory Mac and proliferating

Mac, and the most prevalent ones occurred in ECs, resident Mac

and inflammatory Mac (Figure 6B). By examining L-R pair

interactions, several L-R pairs between vascular endothelial

growth factor A (VEGFA) and its receptors (KDR and FLT1)

exhibited strong potential interaction among ECs themselves and

between ECs and proliferating Mac (Figure 6B). This growth factor
Frontiers in Immunology 10
induces proliferation of vascular ECs and angiogenesis. While

FASLG-FAS and integrin a4b1 complex-PLAUR showed higher

interaction potentials between CD8+ T-cell subsets and ECs

(Figure 6B), which are involved in the apoptotic signaling

pathway. These results highlighted the different roles for

macrophages and CD8+ T cells in maintaining homeostasis of

ECs under stress.
FIGURE 6

Cell-cell interaction between immune cells and endothelial cells. (A) UMAP of indicated clusters from scRNAseq colored by cell type and proportion
of cells per cluster. (B) Visualized network graphs showing the cell-type-specific cell-cell interactions. Cell-cell communication network showing
quantified signaling strength from ECs to all cell types. The counts highlight the numbers of L-R pairs between two cell types. Bubble heatmap
showing the potential cytokine-related, grow factor-related and top 30 L-R pairs between indicated cells.
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3 Discussion

In our study, an IgA nephropathy (IgAN) model with an

extra injection of LPS was established to imitate the onset and

resolution of self-limited AKI typically seen in early stages of IgAN.

Through longitudinal use of scATAC- and scRNA-seq, we

generated a comprehensive cellular landscape of renal immune

microenvironment. We obtained a total of 72,304 single-cell

transcriptomes from CTRL, IS, IA and IR mice, enabling us to

perform a high-resolution mapping of all major immune cell types

with an additional detailed analysis of macrophage, neutrophil,

CD8+ T-cell and NK-cell subsets.

Our data provide an unbiased illustration of the immunological

hallmarks as the proportions of immune cell types varied during

disease phases. IS is largely similar to the indolent clinical course seen

in most IgAN patients, exhibiting low-grade inflammation in the

kidney. Although there was a greater shift in the proportion of MPs in

comparison to the control kidneys, we nevertheless detected subtle

alterations in the proportion of cell subtypes of MPs (Figure 1E). In

IA, the initial phase of AKI, there was an increased proportion of

infiltrating Mac, Mefv Mac, Ly6g neutrophils, NK_Gzma and Tem,

together with a relatively decreased proportion of inflammatory Mac,

Nlrp1b Mac, Csf3r Neutrophils and Tex (Figures 2B, 3B, 5B). While

in the later stage, IR was characterized by an increased proportion of

Csf3r Neutrophils and Tex, along with a relatively decreased

proportion of Ly6g neutrophils, contrary to IA (Figures 3B, 5B).

These changes collectively contribute to their distinct immune

profiles. As neutrophils was the ones with the most dramatic

alteration among these cell types, our findings underscore the

potential significance of neutrophils in the pathogenesis of IgAN,

which has been rarely explored.

These analyses also uncovered new subpopulations, including

an epigenetically distinct macrophage subset with potential

immunoregulatory effects (Nlrp1b Mac), and an early subset of

Tex distinguished by effector and cytolytic potential (CX3CR1-

transTeff). Our insights into these cell identities may help identify

specific targets or pathways for future therapeutic manipulation.

However, further investigation incorporating higher-dimensional

profiles in the context of IgAN or kidney disease is imperative to

resolve the different levels of dysfunctionality within the CD8+ T

cell compartment and create a consensus nomenclature (38).

Lastly, our analysis detected a wide range of interaction events

among endothelial cells, Teff, Tex, resident Mac, inflammatory Mac,

and proliferating Mac, emphasizing the different roles for

macrophages and CD8+ T cells in maintaining homeostasis of

endothelial cells under stress. In conclusion, the study provides a

comprehensive analysis of the dynamic changes in immune cell

profiles in a model of IgAN, identifying key cell types and their roles

and interactions. While these findings contribute to the

understanding of IgAN pathogenesis and may provide potential

targets for therapeutic intervention, it is important to acknowledge

the limitations of the study. The injection of LPS alone cannot

replicate the complex renal changes seen in various clinical AKI

cases, therefore further validation of these results in human samples
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or in vivo is necessary once the experimental conditions

are established.
4 Materials and methods

4.1 Mouse model

Male C57BL/6J mice, aged 11 ± 1 weeks and weighting 25 ± 2 g

were obtained from SpePharm (Beijing) Biotechnology Co., Ltd.

(Beijing, China) and maintained in a clean-grade room at controlled

stable temperature and humidity. Our study exclusively examined

male mice. It is unknown whether the findings are relevant for

female mice. The IgAN mouse model was induced by “BSA + CCl4

+ LPS” method as previously described (39). BSA (Sigma)

dissolving water (200 mg/kg body weight) was gavaged every

other day for 10 weeks, combined with subcutaneous injection

weekly and intraperitoneal injection biweekly of CCl4 dissolved in

castor oil (1:5; 0.1 ml). Then LPS (Sigma) (50 mg) was injected into

tail vein at week six and eight. For the male weight-matched

littermate controls served as the normal controls (designated as

“CTRL” group), saline was used instead of the above reagents. The

model was established at the end of the 10th week. IgA deposits in

the glomeruli was observed by direct immunofluorescence, and

transmission electron microscopy was also utilized to evaluate

model establishment.
4.2 Experiment design

Twenty-four-hour urine samples were collected the day before

renal tissues collected for subsequent experiments. For the IS group,

IgAN mice were kept for at least 1 month without treatment after

model establishment. For the IA and the IR groups, IgANmice were

subjected to tail intravenous injection of 1 mg/kg LPS the day and

5~7 days before samples and tissues collection, respectively

(Supplementary Figure S1).
4.3 Kidney CD45-positive immune single-
cell isolation and processing

Kidneys from 4 or 5 mice per experimental group (CTRL, IS,

IA, IR) were processed together. Following exsanguination by

perfusion of phosphate-buffered saline (PBS) containing 1 mM

EDTA, mouse kidneys were cut into small pieces and digested on a

rotor at 37 °C in Tissue Dissociation Mix (Singleron), according to

the manufacturer’s instructions. Dissociated cell suspensions were

filtered through a 40-mm cell strainer and further washed with

calcium- and magnesium-free PBS. Leukocytes were enriched

through 36%~72% Percoll (GE Healthcare) density gradient

centrifugation before microbeads (Stem Cell Technologies)

isolation, according to the manufacturer’s recommendations.
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4.4 Histology and immunofluorescence

Fresh renal tissues were fixed in 4% paraformaldehyde and

embedded in OCT separately. Four-mm thick formalin-fixed and

paraffin-embedded sections were cut and subsequently

deparaffinized for periodic acid-Schiff (PAS) staining. Images

were acquired by PreciPoint M8 dual digital microscope &

scanner. 10 mm frozen sections were made and slides were

washed in 0.01M PBS for 20 min. Then the slides were further

blocked with blocking buffer (5% bovine serum albumin with 0.1%

Triton X-100) for 1 h. Fluorescein isothiocyanate (FITC)-labeled

goat anti-mouse IgA (1:400, Abcam) was diluted by blocking buffer

and incubated at 4°C overnight. The next day, slides were washed by

0.01M PBS for three times, 10 min each. Fluorescence images were

acquired by Olympus VS120 Virtual Slide Microscope.
4.5 scRNAseq library generation

scRNAseq library construction was performed using the

GEXSCOPE® Single Cell RNA Library Kit Tissue V2 (Singleron

Biotechnologies) as per the manufacturer’s protocol. Purified

libraries were sequenced on an Illumina Hiseq X sequencer with

150 bp paired-end reads.
4.6 scATACseq library generation

scATACseq library construction was performed using the

Nuclei Isolation for Single Cell ATAC Sequencing (10×

Genomics; CG000169 Rev. E) and Chromium Next GEM Single

Cell ATAC Reagent Kits v2 User Guide (10x Genomics; CG000496

Rev. A) as per the manufacturer’s protocol. Libraries were

sequenced on an Illumina HiSeq X with 50 bp paired-end reads.
4.7 scRNAseq data processing

The gene expression profiles were generated from the raw reads

using CeleScope (v1.5.2, Singleron Biotechnologies) with default

parameters. Briefly, the barcodes and unique molecular identifiers

(UMIs) for each gene-cell combination were extracted and

corrected from R1 reads. Adapter sequences and poly A tails were

trimmed from R2 reads, which were then aligned against the

GRCm38 (mm10) transcriptome using STAR (v2.6.1b). Uniquely

mapped reads were assigned to genes using Feature-Counts (v2.0.1).

Reads with identical cell barcode, UMI, and gene information were

grouped together to create a gene expression matrix for

further analysis.

Quality control (QC) and clustering analyses were performed

using Scanpy (v1.8.1) under Python 3.7 (40). Cells that expressed

less than 200 genes or had fewer than 5 cells expressing a particular

gene were excluded in order to filter out low-quality cells based on

three metrics: 1) genes expressed in less than 5 cells; 2) cells

expressing less than 200 genes; 3) cells with more than 50%
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mitochondrial gene expression. A total of 72,304 high-quality

cells with an average of 1085 genes per cell remained for

downstream analyses after filtering steps.

Raw counts data was normalized and transformed into

logarithmic scales before selecting the top variable genes by

setting flavor = ‘seurat’ among the top-ranked differentially

expressed genes. The first twenty principal components identified

through Principle Component Analysis (PCA), based on scaled

expression profiles, were used for unsupervised clustering utilizing

the Louvain algorithm with a resolution parameter set at 1.2. Cell

clusters obtained from clustering analysis were visualized using

Uniform Manifold Approximation and Projection (UMAP).
4.8 Differentially expressed genes analysis

The differentially expressed genes (DEGs) were identified using

the Scanpy function “sc.tl.rank_genes_group” based on the

Wilcoxon rank sum test with default parameters. Genes with a p-

value of ≤0.05 and a log2 fold change (log2FC) ≥1 or ≤ -1 were

considered significantly up- or down-regulated.
4.9 Cell type annotation

The major cell types were identified based on the expression of

canonical markers obtained from the reference database

SynEcoSysTM (Singleron Biotechnology). SynEcoSysTM

encompasses a comprehensive collection of canonical cell type

markers derived from CellMakerDB, PanglaoDB, and recently

published literature for single-cell sequencing data (41). An

additional round of clustering was conducted within major cell

types, followed by a comparative analysis of their global gene

expression patterns with previously identified murine macrophage

and CD8+ T cell gene signatures from scRNAseq studies (23, 42).
4.10 Pathway enrichment analysis

The potential functions of each subcluster were investigated

using Gene Ontology (GO) analysis, implemented with the R

package “clusterProfiler” (v 3.16.1) (43). The significantly

enriched pathways were determined based on a significance level

of p<0.05. Bar plots were generated to visualize the selected

significant pathways. GO gene sets representing biological

processes (BPs) were used as the reference for pathway analysis.
4.11 UCell gene set scoring

To elucidate the functional properties of each subcluster of

macrophages and neutrophils, gene sets curated from relevant

literature were compiled, followed by computation of signature

scores for specific gene sets (30, 32, 44–68). The genes

corresponding to each score are listed in Supplementary Table S1.
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Gene set scoring was performed using the R package UCell (v 1.1.0)

(69). The UCell method is a rank-based scoring approach that is

well-suited for analyzing large datasets with multiple samples

and batches.
4.12 Cell-cell interaction analysis

Cell-cell interactions (CCIs) involving macrophages and CD4+

T cells, macrophages and endothelial cells, as well as CD8+ T cells

and endothelial cells were predicted based on known ligand-

receptor pairs using Cellphone DB (v2.1.0) (70). The permutation

number for calculating the null distribution of average ligand-

receptor pair expression in randomized cell identities was set to

1000. Individual ligand or receptor expression was thresholded

using a cutoff based on the average log gene expression distribution

across each cell type. Predicted interaction pairs with a p-value <

0.05 and an average log expression > 0.1 were considered

statistically significant and visualized using heatmap_plot and

dot_plot in CellphoneDB.
4.13 RNA velocity

The analysis of RNA velocity was performed using velocyto (v

0.2.3) and scVelo (v0.17.17) in python with default parameters,

utilizing BAM files containing macrophages and neutrophils

respectively, along with the reference genome GRCm38 (mm10)

(71, 72). The resulting data was projected onto the UMAP plot

derived from Seurat clustering analysis to ensure visual consistency

in visualization.
4.14 scATACseq data processing
and clustering

Cells with low quality were filtered out based on TSS

enrichment < 4 and nFrag < 1,000, while bin regions overlapping

with ENCODE Blacklist regions were excluded from downstream

analysis. Subsequently, dimensionality reduction was performed

using the iterative latent semantic indexing (LSI) approach

through the ArchR (v1.0.1.) addIterativeLSI function (73, 74).

The ArchR “addClusters()” function was utilized for performing

cell clustering. UMAP projection was conducted following the

aforementioned procedure.
4.15 Integration of scRNA and scATAC data

The integration of scRNAseq data was performed using Seurat’s

integration framework to identify corresponding cell pairs between

two modalities of data. In this step, the scRNAseq data served as the

reference dataset for training the classifier, and each scATAC cell was

assigned a cell type based on its similarity to scRNA cells. Specifically,

the “FindTransferAnchors” function (reduction = ‘pcaproject’) was
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employed to identify shared correlation patterns between scATACseq

gene activity and scRNAseq gene expression. Subsequently, the

“TransferData” function predicted the cell type label for each cell in

the scATACseq data. After filtering, a total of 30,139 cells were

retained. The filtered scATACseq objects underwent reprocessing

with LSI and clustering using SLM algorithm. To assess consistency

between predicted cell identities through label transfer and curated

annotations based on known marker gene activities, we utilized

Jaccard index.
4.16 Peaks calling

The peaks were identified by MACS2 based on the aggregated

insertion sites from all cells of each cell type. A consensus set of

uniform-length non-overlapping peaks was obtained by selecting

the peak with the highest score from each set of overlapping peaks.

In brief, the significance of peaks was ranked and only the most

significant peak was retained for further analysis, while any directly

overlapping peak was excluded. This process was repeated

iteratively until no more peaks remained.
4.17 Motif enrichment analysis

The ArchR “getMarkerFeatures()” function was utilized to

obtain differential peaks between two clusters. Subsequently,

the “addMotifAnnotations()” function followed by the

“peakAnnoEnrichment()” function was employed to calculate

transcription factor (TF) motif enrichment in these differential

peaks. The JASPAR2020 motif dataset was applied in the

“addMotifAnnotations()” function to determine the presence of

motifs in the peak set. Finally, the “addDeviationsMatrix()”

function was used to compute TF activity enrichment on a per-

cell basis across all motif annotations based on chromVAR.
4.18 Venn diagram

Differential peaks between Nlrp1b macrophages (Nlrp1b Mac)

and other macrophages were filtered based on a log2FC threshold of

0.125 and an adjusted P value < 0.05, while overlapping peaks

between the two clusters were calculated using Bedtools (v2.31.0)

and visualized in a Venn diagram as previously described.
4.19 scATAC gene score analysis

The gene scores, which estimate the gene expression and TF

motif activity based on scATACseq data, were computed using the

“addGeneScoreMatrix()” function with gene score models

implemented in ArchR. Subsequently, the gene scores matrix was

employed to identify differentially expressed genes, following a

similar approach utilized in scRNAseq data analysis.
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4.20 Statistics

Statistical tests were described in the Methods section.

Nonparametric tests in bar graphs were analyzed using a two-

sided Student’s t-test with Benjamini-Hochberg correction at

P < 0.05. Differential gene expression analysis used an adjusted

P < 0.05 cutoff and absolute (average log2FC) > 0.25 threshold.

Data distribution was assumed to be normal but not formally

tested, and no data were excluded from analyses. Blinding was

not performed due to cage labeling requirements; data analysis

focused on quantitative rather than qualitative measures. For

scRNAseq and scATACseq, 19,000-26,000 cells per sample were

collected from pools of 4~5 mice as biological replicates.
4.21 Study approval

All mouse experiments were conducted in accordance with the

guidelines of the Institutional Animal Care and Use Committees of

the Third Military Medical University.
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