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Manipulating regulatory
T cells: is it the key to
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ductal adenocarcinoma?
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The five-year survival rates for pancreatic ductal adenocarcinoma (PDAC) have

scarcely improved over the last half-century. It is inherently resistant to FDA-

approved immunotherapies, which have transformed the outlook for patients

with other advanced solid tumours. Accumulating evidence relates this

resistance to its hallmark immunosuppressive milieu, which instils progressive

dysfunction among tumour-infiltrating effector T cells. This milieu is established

at the inception of neoplasia by immunosuppressive cellular populations,

including regulatory T cells (Tregs), which accumulate in parallel with the

progression to malignant PDAC. Thus, the therapeutic manipulation of Tregs
has captured significant scientific and commercial attention, bolstered by the

discovery that an abundance of tumour-infiltrating Tregs correlates with a poor

prognosis in PDAC patients. Herein, we propose a mechanism for the resistance

of PDAC to anti-PD-1 and CTLA-4 immunotherapies and re-assess the rationale

for pursuing Treg-targeted therapies in light of recent studies that profiled the

immune landscape of patient-derived tumour samples. We evaluate strategies

that are emerging to limit Treg-mediated immunosuppression for the treatment

of PDAC, and signpost early-stage trials that provide preliminary evidence of

clinical activity. In this context, we find a compelling argument for investment in

the ongoing development of Treg-targeted immunotherapies for PDAC.
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1 Introduction

Since 1863 – when Rudolf Virchow first observed leukocyte

infiltrates decorating neoplastic tissues – research has uncovered a

dynamic interplay between the immune system and pre-malignant

cells, which governs their progressive transformation to invasive

derivatives (1). In parallel, efforts to leverage the immune system to

treat malignancy have a long history; in 1868, Wilhelm Busch

reported tumour regression after intentionally infecting patients

with Streptococcus pyogenes (2). Today, immunotherapy has

revolutionised clinical oncology: immune checkpoint inhibitors

(ICIs; specifically anti-PD-1, -CTLA-4, and -PD-L1 antibodies)

provide unprecedented rates of durable anti-tumour responses in

patients with several types of cancer (3). However, ICIs, including

the combination of anti-CTLA-4 and anti-PD-L1 antibodies, have

yielded limited responses in pancreatic ductal adenocarcinoma

(PDAC); a malignancy of the exocrine pancreas that constitutes

95% of pancreatic cancer cases (4, 5). Accordingly, PDAC carries a

bleak prognosis: globally, the 5-year survival rate at the time of

diagnosis is 9% (6).

Substantial research has sought to identify immunological

mechanisms that render PDAC resistant to ICIs. Concomitantly,

these studies have unearthed therapeutic targets that could feasibly

be exploited to induce anti-tumour immunity in PDAC; indeed,

strategies to restrain immunosuppressive regulatory T cells (Tregs),

myeloid cells, and cancer-associated fibroblasts are currently under

development (7, 8). The manipulation of CD4+ Tregs has gained

considerable traction, stemming from the discovery that an

abundance of intratumoral Tregs correlates with a poor prognosis

in PDAC patients (9). Herein, we propose a mechanism for the

intrinsic resistance of PDAC to ICIs; discuss the rationale for

pursuing Treg-targeted therapies in the context of PDAC; and

eva luate emerg ing s tra teg ies to l imi t Tr e g -media ted

immunosuppression. Overall, we argue that Treg-targeted

immunotherapies offer a valuable opportunity to improve clinical

outcomes in PDAC.
2 Why have ICIs proved ineffective in
the context of PDAC?

Any effective immunotherapy must induce lasting anti-tumour

immunity, typically mediated by CD4+ and CD8+ effector T (Teff)

cells and directed against tumour-associated antigens acquired

during malignant progression (10, 11). Researchers have sought

to identify immunological mechanisms that render PDAC resistant

to ICIs. Initial efforts utilised autochthonous murine models of

PDAC: KrasLSL-G12D/+;Pdx-1-Cre (KC) and KrasLSL-G12D/+;

Trp53LSL-R172H/+;Pdx-1-Cre (KPC), which recapitulate features of

the human disease (12, 13). More recent analyses have profiled the

immune landscape of patient-derived tumour samples, facilitated

by advances in single-cell multi-omic technologies (14–16).

It is well established that the baseline density of tumour-

infiltrating Teff cells is a critical determinant of therapeutic

responses to ICIs (17, 18). Thus, the immunologically ‘cold’
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phenotype that characterises PDAC has often been attributed to

the physical exclusion of Teff cel ls from the tumour

microenvironment (TME) (19, 20). However, recent studies have

challenged this paradigm, identifying heterogenous baseline

infiltrates of CD4+ and CD8+ Teff cells that correlate with

prolonged overall survival in PDAC patients (14, 15, 21–26).

There is also evidence for ongoing anti-tumour immunity; Freed-

Pastor et al. identified a population of HLA-DR+Ki67+CD57-CD8+

T cells – indicative of an activated, proliferative phenotype – that

are present in the majority of patients (27). Altogether, these studies

suggest that inducing Teff cell-mediated anti-tumour immunity in

PDAC may not be as intractable as is widely considered (23).

In further support of this notion, a rare subset (~1.6.%) of

PDAC patients with hypermutated mismatch repair deficient

(dMMR) tumours exhibit marked therapeutic responses to anti-

PD-1 antibodies (28). These tumours present a broad repertoire of

neoantigens, which direct potent anti-tumour immune responses

(29, 30). Indeed, in this patient cohort, sequencing of the TCR Vb
chain revealed that 94% of intratumoral T cell clonotypes were

unique to tumours, implying the existence of a neoantigen-specific

immune response (24). Overall, this highlights the importance of

neoantigens as a substrate for Teff-mediated anti-tumour immunity

– indeed, on the basis of this principle, pembrolizumab and

nivolumab (anti-PD-1) were granted FDA-approval in 2017 for

the treatment of dMMR tumours, irrespective of their tissue of

origin (31). In this context, it is notable that recent studies have

challenged the claim that MMR-proficient PDAC harbours a

limited repertoire of neoantigens. Freed-Pastor et al. investigated

a cohort of 57 advanced PDAC patients and discovered that they all

possessed neoepitopes with predicted ability to bind MHC class-I

molecules (27). Accordingly, studies have consistently identified

intratumoral neoantigen-reactive CD8+ T cells in PDAC patients,

indicating that these neoantigens are capable of directing anti-

tumour immunity (27, 32, 33).

Nevertheless, it is evident that this population of intratumoral

neoantigen-reactive CD8+ T cells is not sufficient to drive

therapeutic responses to FDA-approved ICIs in MMR-proficient

PDAC. Indeed, multi-omic profiling of the PDAC immune

landscape in resectable patients has revealed that ‘dysfunctional’

and ‘senescent’ phenotypes – both hypofunctional states, defined by

the expression of multiple inhibitory receptors: TIGIT, LAG-3,

TIM-3, and CD39 – dominate the intratumoral Teff cell

repertoire, leaving few activated T cells that are thus unable to

control the tumour (15, 25). In addition, a more pronounced

exhaustion signature has been observed in CD8+ T cells from

fine-needle biopsy samples of advanced, unresectable PDAC (14).

This progressive dysfunction of intratumoral Teff cells can be

attributed to the profoundly immunosuppressive TME. It is

established by the progressive infiltration of immunosuppressive

cells: Tregs, myeloid-derived suppressor cells, neutrophils, and

tumour-associated macrophages (34). In the murine KC model,

these populations dominate the immune landscape of pancreatic

intraepithelial neoplasia (PanIN): precursor lesions that culminate

in the development of PDAC (19). Other non-immune cellular

populations also contribute to the immunosuppressive TME. For

example, a subset of cancer-associated fibroblasts present antigenic
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peptides in association with MHC class-II molecules; however, they

lack expression of classical co-stimulatory molecules and thus

command CD4+ T cells to the Treg lineage (35). In summary,

neoantigen-specific Teff responses are dampened by the gradual

accumulation of immunosuppressive cells in the TME, which

dictates the progression from PanIN to PDAC. Hence, the

development of immunomodulatory therapies for PDAC must

focus on surmounting the hallmark immunosuppressive TME

(36). Importantly, the progressive nature of intratumoral Teff cell

dysfunction promises to confer a broad window during which such

therapies might be effective.
3 What is the phenotype of Tregs
in PDAC?

To date, strategies targeting myeloid-derived suppressor cells or

cancer-associated fibroblasts for the treatment of PDAC have

generally failed to demonstrate therapeutic promise in clinical

trials (37–40). However, one promising strategy – which has

gained substantial traction in the context of PDAC – is

combatting Treg-mediated immunosuppression. This originated

from the discovery that an abundance of intratumoral Tregs

correlates with a poorer prognosis in PDAC patients (9).

Accordingly, the depletion of Tregs has been shown to delay

tumour growth in orthotopically transplanted murine PDAC,

albeit with conflicting results from other murine models (41, 42).

However, recent single-cell analyses have uncovered extensive

diversity among intratumoral Tregs; in this context, it is important

to re-evaluate the rationale for the development of Treg-

targeted therapies.
3.1 Effector Tregs are
highly immunosuppressive

Classically, CD4+ Tregs have been defined according to expression

of FOXP3, considered a lineage-specifying transcription factor (TF),

or the interleukin (IL)-2 receptor a chain (CD25). In a seminal study,

Hiraoka et al. discovered that the prevalence of FOXP3+ Tregs

increases during the progression from PanIN to advanced PDAC –

at this latter stage, they constitute 35% (± 11%) of the total

intratumoral CD4+ population (9, 15). Further, it is estimated that

54% (± 19%) of intratumoral Tregs are effector Tregs (eTregs; CD45RA
-

FOXP3hiCD25hi) (15). These cells express high levels of TIGIT,

CTLA-4, ICOS, CD39, and HLA-DR, which are indicative of

functional activation and potent immunosuppressive capacity (14,

15). This activated state has been attributed to sustained TCR

stimulation, provided by the plethora of self- and quasi-self-

antigens present in the inflammatory TME (43). However, a stable

eTreg phenotype is also dependent on the expression of Helios, a

member of the Ikaros TF family. Indeed, intratumoral Helios+ Tregs

exhibit significantly higher expression of FOXP3, compared to

Helios- Tregs (44).
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Intratumoral eTregs potently suppress CD8+ T cell-mediated

immunity via the expression of co-inhibitory molecules e.g., CTLA-

4, which prevents the functional maturation of dendritic cells (41);

secretion of immunosuppressive cytokines e.g., IL-10, IL-35, and

TGF-b; sequestration of IL-2, which hampers IL-2-dependent T cell

activation; and the secretion of granzymes to lyse target CD8+ cells

(45). In support of their immunosuppressive capacity in situ, spatial

analyses reveal that 90% of Tregs reside in close proximity to a CD8+

T cell in the PDAC TME (15).
3.2 FOXP3+RORgt+ Tregs provide
mitogenic signalling

FOXP3+ Tregs exhibit extensive heterogeneity in PDAC.

Strikingly, studies have discovered populations of FOXP3+ Tregs

that, in addition to IL-10, secrete high levels of pro-inflammatory

cytokines. For example, Chellappa et al. identified Tregs that co-

express FOXP3 and RORgt: a factor that specifies the type-17 T-

helper cell lineage (TH17) (46). These cells retained markers

associated with FOXP3+ Tregs e.g., CTLA-4, CD39, and ICOS,

indicating an ability to robustly suppress anti-tumour immunity.

However, through the simultaneous production of IL-17, these

FOXP3+RORgt+ cells provide mitogenic signalling to transformed

pancreatic epithelial cells, which upregulate the IL-17 receptor (47).

Moreover, studies have identified populations of FOXP3- Treg-like

cells that share expression of molecules classically associated with

immunosuppressive Treg functions (e.g., IL-10, CCR8, TIGIT,

ICOS, CTLA-4) (48, 49). Barilla et al. demonstrated that the gene

expression profile of one such population, termed Tr1 cells (CD49b,

CD73, and AHR), was associated with decreased overall survival in

PDAC patients (49). Furthermore, Whiteside et al. suggest that

intratumoral Teff cells may adopt this FOXP3- Treg-like phenotype

following the ablation of FOXP3+ cells (48).

This profound heterogeneity likely explains conflicting reports

regarding the overall contribution of Tregs in the pathophysiology of

PDAC. One notable study reported an increased prevalence of Tregs

in tumours of long-term PDAC survivors (24). Moreover, depletion

of Tregs prior to the development of PanIN in KC mice has been

shown to accelerate malignant progression (42). Conceivably, the

use of different experimental systems, including varied methods for

detecting and defining intratumoral Tregs, might accentuate specific

Treg-associated functions and thereby explain these conflicting

reports. Moreover, studies have suggested that, as part of normal

immune homeostasis, intratumoral Tregs accompany CD8+ T cell

infiltrates (21, 42, 49), which may further obscure any relationship

between the prevalence of intratumoral Tregs and a poor prognosis.

Nevertheless, harnessing the therapeutic manipulation of Tregs will

require a targeted approach, based on a detailed understanding of

the heterogeneous functions ascribed to Tregs, and their

spatiotemporal dynamics in the PDAC TME (Figure 1). In

addition, such an approach will reduce the systemic side-effects

associated with Treg-targeted immunotherapies.
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3.3 Apoptotic Tregs are
paradoxically immunosuppressive

This hypothesis is fortified by the discovery that apoptotic Tregs,

defined by increased expression of Ki67 and cleaved caspase-3, exert

immunosuppressive effects in the oxidative TME. They release large

quantities of ATP, which is converted into adenosine via CD39 and

CD73 – ectoenzymes that are expressed by Tregs and remain

catalytically active after cell-death (50). Through the A2A

receptor, accumulating extracellular adenosine inhibits Teff cell

proliferation; induces immunosuppressive dendritic cells; and

stabilises surviving Tregs (51). Thus, CD39 and CD73 expression

correlate with a poor prognosis in patients with various solid

tumours (52, 53). Importantly, this paracrine signalling pathway

is likely to be operating in human PDAC, as intratumoral Tregs

express high levels of CD39.
4 What are the strategies to
manipulate Tregs for the treatment
of PDAC?

The manipulation of Tregs has captured significant attention

from both scientific and commercial communities as a novel

approach to the treatment of PDAC. The earliest attempts

depleted Tregs by targeting CD25 with antibodies, daclizumab, or

the IL-2-diphtheria toxin fusion protein, ONTAK (54, 55).

However, IL-2 signalling via CD25 promotes the survival of
Frontiers in Immunology 04
activated Teff cells, conferring a limited therapeutic window to

CD25-targeted interventions. Nevertheless, these efforts provided

proof-of-concept for the therapeutic manipulation of Tregs. Today,

numerous Treg-targeted therapies are under development for the

treatment of advanced solid tumours, including PDAC (Table 1).
4.1 Re-engineering next-generation ICIs

Allison and colleagues originally attributed the anti-tumour

activity of anti-CTLA-4 monoclonal antibodies (mAbs) to the

reinvigoration of dysfunctional Teff cells (56). However,

accumulating evidence suggests that anti-CTLA-4 mAbs can

preferentially deplete CTLA-4hi Tregs in vivo by antibody-

dependent cellular cytotoxicity (ADCC) (57–60). Thus, in spite of

the failure of prior clinical trials (4, 61), this novel mechanistic

insight provides a rationale for the continued development of anti-

CTLA-4 mAbs to treat PDAC. Clearly, however, this will necessitate

re-engineering of existing anti-CTLA-4 mAbs; specifically, the

fragment crystallisable (Fc) domain to enhance affinity for

activatory Fcg receptors and decrease affinity for inhibitory

receptors, thereby promoting ADCC. This approach can be

optimised with consideration of the relative abundance and

distribution of specific FcgRs on local effector cells; indeed, the

engineering of anti-CTLA-4 mAbs in this manner has been shown

to increase therapeutic activity in tumour-bearing mice (59, 62).

Therefore, it is important that studies have identified intratumoral

populations of FcgRIIIA (CD16)-expressing natural killer and

myeloid cells in human PDAC (14–16). Moreover, Agenus
FIGURE 1

Phenotype of effector Treg cells in human PDAC. Effector Tregs – characterised by the expression of FOXP3, CD25, TIGIT, CTLA-4, ICOS, CD39, and
CCR8 – are activated by sustained TCR stimulation with abundant self- and quasi-self-antigens and stabilised by expression of the Helios
transcription factor. These cells exhibit potent immunosuppressive capacity within the PDAC TME, where they exist in close proximity to CD8+ T
lymphocytes. Specifically, they express co-inhibitory molecules (e.g., CTLA-4, TIGIT, ICOS); convert ATP to immunosuppressive adenosine via
ectoenzymes that remain catalytically active after cell-death (CD39 and CD73); secrete immunosuppressive cytokines (e.g., IL-10, IL-35, TGF-b) and
granzymes that lyse CD8+ Teff cells; and sequester IL-2 that is required for Teff cell activation.
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TABLE 1 Treg-targeted immunotherapies in current development (as of 01/05/2024).

Drug Sponsor Properties Status Reference

CTLA-4

Botensilimab (AGEN1181) Agenus Inc.
Fc-engineered anti-CTLA-4
monoclonal antibody

Phase I/II, in combination
with gemcitabine and nab-
paclitaxel, in patients with

metastatic PDAC

NCT05630183

ONC-392 OncoC4
Fc-engineered anti-CTLA-4
monoclonal antibody

Phase I/II, +/-
pembrolizumab (anti-PD-

1), in patients with
advanced solid tumours,

including PDAC

NCT04140526

XTX101 Xilio Therapeutics
Fc-engineered anti-CTLA-4
monoclonal antibody

Phase I/II, +/- atezolizumab
(anti-PD-L1), in patients

with advanced
solid tumours

NCT04896697

TIGIT

Tiragolumab (MTIG7192A) Roche/Genentech
Anti-TIGIT
monoclonal antibody

Phase I/II, in combination
with atezolizumab (anti-

PD-L1) and chemotherapy,
in patients with
metastatic PDAC

NCT03193190

Domvanalimab (AB154)
Arcus Biosciences/
Gilead Sciences

Fc-silent anti-TIGIT
monoclonal antibody

Phase I/II trial, in
combination with
zimberelimab and

APX005M (agonistic
CD40), in patients with

metastatic PDAC

NCT05419479

AB308
Arcus Biosciences/
Gilead Sciences

Fc-enabled anti-TIGIT
monoclonal antibody

Phase Ib, in combination
with zimberelimab (anti-
PD-1), in patients with
advanced solid tumours

NCT04772989

Vibostolimab (MK-7684) Merck Sharp & Dohme
Anti-TIGIT
monoclonal antibody

Phase I, +/- pembrolizumab
(anti-PD-1) +/-

chemotherapy, in patients
with advanced
solid tumours

NCT02964013

Belrestotug (EOS-448)
GlaxoSmithKline/
iTeos Therapeutics

Anti-TIGIT
monoclonal antibody

Phase I/II, +/-
pembrolizumab or

dostarlimab (anti-PD-1) +/-
inupadenant (selective
A2aR antagonist) +/-

chemotherapy, in patients
with advanced
solid tumours

NCT05060432

Ociperlimab (BGB-A1217) BeiGene
Anti-TIGIT
monoclonal antibody

Phase I, +/- tislelizumab
(anti-PD-1) +/-

chemotherapy, in patients
with advanced
solid tumours

NCT04047862

PM1021 Biotheus
Anti-TIGIT
monoclonal antibody

Phase I, +/- PM8001 (anti-
PDL1-TGFb), in patients

with advanced
solid tumours

NCT05537051

Etigilimab (MPH313) Mereo BioPharma
Anti-TIGIT
monoclonal antibody

Phase I/II, in combination
with nivolumab (anti-PD-

1), in patients with
advanced solid tumours

NCT04761198

(Continued)
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TABLE 1 Continued

Drug Sponsor Properties Status Reference

TIGIT

BAT6005 Bio-Thera Solutions
Anti-TIGIT
monoclonal antibody

Phase I in patients with
advanced or metastatic

solid tumours
NCT05116709

HB0030
Shanghai
Huaota Pharmaceuticals

Anti-TIGIT
monoclonal antibody

Phase I in patients with
advanced solid tumours

NCT05706207

JS006 Shanghai Junshi Biosciences
Anti-TIGIT
monoclonal antibody

Phase I, +/- toripalimab
(anti-PD-1), in patients

with advanced
solid tumours

NCT05061628

AK127 Akeso
Anti-TIGIT
monoclonal antibody

Phase I/II, in combination
with AK104 (anti-CTLA4-
PD1 bispecific), in patients
with advanced or metastatic

solid tumours

NCT05021120

COM902 Compugen
Anti-TIGIT
monoclonal antibody

Phase I, +/- COM701 (anti-
PVRIG*), in patients with
advanced solid tumours

NCT04354246

CHS-006 Coherus BioSciences
Anti-TIGIT
monoclonal antibody

Phase I, in combination
with toripalimab (anti-PD-

1), in patients with
advanced solid tumours

NCT05757492

BMS-986442
Bristol Myers Squibb/
Agenus Inc.

Anti-TIGIT bispecific
antibody (other target
is undisclosed)

Phase I/II, in combination
with nivolumab (anti-PD-1)

+/- chemotherapy, in
patients with advanced

solid tumours

NCT05543629

HB0036
Shanghai
Huaota Pharmaceuticals

Anti-TIGIT-PDL1
bispecific antibody

Phase I/II in patients with
advanced solid tumours

NCT05417321

PM1022 Biotheus
Anti-TIGIT-PDL1
bispecific antibody

Phase I/II in patients with
advanced solid tumours

NCT05867771

PM1009 Biotheus
Anti-TIGIT-PVRIG
bispecific antibody

Phase I in patients with
advanced solid tumours

NCT05607563

HLX301 Shanghai Henlius Biotech
Anti-TIGIT-PDL1
bispecific antibody

Phase I/II in patients with
advanced or metastatic

solid tumours
NCT05102214

HLX53 Shanghai Henlius Biotech
Anti-TIGIT Fc
fusion protein

Phase I in patients with
advanced solid tumours

NCT05394168

ICOS

Alomfilimab (KY1044) Kymab/Sanofi
Agonistic ICOS
monoclonal antibody

Phase I/II, +/- atezolizumab
(anti-PD-L1), in patients
with advanced solid

tumours including PDAC

NCT03829501

Vopratelimab (JTX-2011) Jounce Therapeutics
Agonistic ICOS
monoclonal antibody

Phase II, in combination
with pimivalimab (anti-PD-
1), in patients with non-
small cell lung cancer

NCT04549025

Helios

DKY709 Novartis Pharmaceuticals Selective Helios degrader
Phase I, +/- PDR001 (anti-
PD-1), in patients with
advanced solid tumours

NCT03891953

PLX-4545 Plexium Selective Helios degrader Pre-clinical development
https://www.plexium.com/
therapeutic-areas-plexium-

e3-ligase-drugs/

(Continued)
F
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TABLE 1 Continued

Drug Sponsor Properties Status Reference

Helios

Helios CELMoD Bristol Myers Squibb Selective Helios degrader Pre-clinical development
https://www.bms.com/

researchers-and-partners/
in-the-pipeline.html

CD25

Vopikitug (RG6292) Roche/Genentech
Anti-CD25
monoclonal antibody

Phase I, +/- atezolizumab
(anti-PD-L1), in patients

with advanced
solid tumours

NCT04158583

AU-007 Aulos Bioscience Inc.
Anti-IL-2
monoclonal antibody

Phase I/II, +/- aldesleukin
(recombinant IL-2), in
patients with locally

advanced or metastatic
solid tumours

NCT05267626

CCR8

BMS-986340 Bristol Myers Squibb
Non-fucosylated anti-CCR8
monoclonal antibody

Phase I/II, +/- nivolumab
(anti-PD-1) +/- docetaxel,
in patients with advanced

solid tumours
including PDAC

NCT04895709

CHS-114 Coherus BioSciences
Afucosylated anti-CCR8
monoclonal antibody

Phase I/II in patients with
advanced solid tumours

NCT05635643

BAY3375968 Bayer
Afucosylated anti-CCR8
monoclonal antibody

Phase I, +/- pembrolizumab
(anti-PD-1), in patients

with advanced
solid tumours

NCT05537740

GS-1811 Gilead Sciences
Afucosylated anti-CCR8
monoclonal antibody

Phase I, +/- zemberelimab
(anti-PD-1), in patients

with advanced
solid tumours

NCT05007782

LM-108 LaNova Medicines
Fc-optimised anti-CCR8
monoclonal antibody

Phase I/II, +/- toripalimab
(anti-PD-1), in patients

with advanced
solid tumours

NCT05518045

AMG-355 Amgen
Anti-CCR8
monoclonal antibody

Phase I, +/- pembrolizumab
(anti-PD-1), in patients

with advanced
solid tumours

NCT06131398

S-531011 Shionogi
Anti-CCR8
monoclonal antibody

Phase I/II, +/-
pembrolizumab (anti-PD-

1), in patients with
advanced solid tumours

NCT05101070

BGB-3055 BeiGene
Anti-CCR8
monoclonal antibody

Phase I, +/- tislelizumab
(anti-PD-1), in patients

with advanced or metastatic
solid tumours

NCT05935098

Adenosinergic Pathway

TTX-030
Trishula
Therapeutics/AbbVie

Anti-CD39
monoclonal antibody

Phase II, + chemotherapy
+/- budigalimab (anti-PD-

1), in patients with
metastatic PDAC

NCT06119217

ES002023
Elpiscience Biopharma

Anti-CD39
monoclonal antibody

Phase I in patients with
advanced solid tumours,

including PDAC
NCT05075564

(Continued)
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TABLE 1 Continued

Drug Sponsor Properties Status Reference

Adenosinergic Pathway

PUR001
Purinomia Biotech

Anti-CD39
monoclonal antibody

Phase I in patients with
advanced solid tumours

NCT05234853

JS019
Shanghai Junshi Biosciences

Anti-CD39
monoclonal antibody

Phase I in patients with
advanced solid tumours

NCT05508373

AB598 Arcus Biosciences
Anti-CD39
monoclonal antibody

Phase I, +/- zimberelimab
(anti-PD-1) +/-

chemotherapy, in patients
with advanced
solid tumours

NCT05891171

ES014
Elpiscience Biopharma

Anti-CD39-TGFb
bispecific antibody

Phase I in patients with
advanced or metastatic

solid tumours
NCT05717348

Oleclumab (MEDI9447) AstraZeneca
Anti-CD73
monoclonal antibody

Phase II, in combination
with chemotherapy and

durvalumab (anti-PD-L1),
in patients with resectable/
borderline resectable PDAC

NCT04940286

Mupadolimab (CPI-006) Corvus Pharmaceuticals
Anti-CD73
monoclonal antibody

Phase Ib, +/- ciforadenant
(selective A2aR antagonist)
+/- pembrolizumab (anti-
PD-1), in patients with
advanced solid tumours

including PDAC

NCT03454451

PT199 Phanes Therapeutics
Anti-CD73
monoclonal antibody

Phase I, +/- anti-PD-1
immunotherapy, in patients

with advanced solid
tumours including PDAC

NCT05431270

IPH5301 Innate Pharma
Anti-CD73
monoclonal antibody

Phase I, +/- trastuzumab
(anti-HER2†) and paclitaxel,
in patients with advanced
solid tumours including

metastatic PDAC

NCT05143970

HB0045
Shanghai
Huaota Pharmaceuticals

Anti-CD73
monoclonal antibody

Phase I/II in patients with
advanced solid tumours

including PDAC
NCT06056323

INCA00186 Incyte Corporation
Anti-CD73
monoclonal antibody

Phase I, +/- INCB106385
(dual A2aR/A2bR

antagonist) +/- retifanlimab
(anti-PD-1), in patients

with advanced
solid tumours

NCT04989387

SYM024 Symphogen
Anti-CD73
monoclonal antibody

Phase I, +/- Sym021 (anti-
PD-1), in patients with
advanced solid tumours

NCT04672434

Uliledlimab (TJ004309) I-Mab
Anti-CD73
monoclonal antibody

Phase I, in combination
with toripalimab (anti-PD-

1), in patients with
advanced solid tumours

NCT04322006

JAB-BX102 Jacobio Pharmaceuticals
Anti-CD73
monoclonal antibody

Phase I, +/- pembrolizumab
(anti-PD-1), in patients

with advanced
solid tumours

NCT05174585

(Continued)
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recently initiated a phase I/II trial to investigate botensilimab – an

Fc-engineered anti-CTLA-4 mAb with enhanced affinity for

FcgRIIIA – in metastatic PDAC patients (NCT05630183).

Further testament to the widespread interest in strategies to

selectively deplete intratumoral Tregs, there is renewed attention on

the development of anti-CD25 mAbs. For example, Solomon et al.

developed an anti-CD25 mAb (RG6292) that selectively depletes
Frontiers in Immunology 09
CD25hi Tregs, whilst preserving CD25-STAT5 signalling required for

Teff cell-mediated anti-tumour immunity (63). Indeed, a phase I trial

of RG6292, conducted in patients with advanced/metastatic solid

tumours, indicated a manageable safety profile and preliminary anti-

tumour activity (64). However, multi-omic analysis of patient-

derived tumour samples obtained during treatment with RG6292 is

required to confirm this proposed mechanism of action in vivo.
TABLE 1 Continued

Drug Sponsor Properties Status Reference

Adenosinergic Pathway

Drebuxelimab (AK119) Akeso
Anti-CD73
monoclonal antibody

Phase I, in combination
with AK104 (anti-CTLA4-
PD1 bispecific) or AK112

(anti-VEGF-PD1
bispecific‡), in patients with
advanced solid tumours

NCT05559541,
NCT05689853

PM1015 Biotheus
Anti-CD73
monoclonal antibody

Phase I in patients with
advanced solid tumours

NCT05950815

Quemliclustat (AB680)
Arcus Biosciences/
Gilead Sciences

Small-molecule, selective
CD73 antagonist

Phase I, in combination
with nab-paclitaxel and

gemcitabine +/-
zimberelimab (anti-PD-1),

in patients with
advanced PDAC

NCT04104672

ATG-037 Antengene Therapeutics
Small-molecule, selective
CD73 antagonist

Phase I, +/- pembrolizumab
(anti-PD-1), in patients
with locally advanced or
metastatic solid tumours

NCT05205109

Dalutrafusp alfa (AGEN1423) Agenus Inc.
Anti-CD73-TGFb
bispecific antibody

Phase II, in combination
with balstilimab (anti-PD-
1) +/- chemotherapy, in

patients with
advanced PDAC

NCT05632328

Ciforadenant (CPI-444)
Corvus
Pharmaceuticals/Vernalis

Small-molecule, selective
A2aR antagonist

Phase Ib, in combination
with mupadolimab (anti-
CD73), in patients with
advanced solid tumours

including PDAC

NCT03454451

Inupadenant (EOS-850) iTeos Therapeutics
Small-molecule, selective
A2aR antagonist

Phase I in patients with
advanced solid tumours

NCT05060432

TT-10 (PORT-6) Portage Biotech
Small-molecule, selective
A2aR antagonist

Phase I in patients with
advanced solid tumours

NCT04969315

ILB-2109 Innolake Biopharm
Small-molecule, selective
A2aR antagonist

Phase I in patients with
locally advanced or

metastatic solid tumours
NCT05278546

Etrumadenant (AB928) Arcus Biosciences
Small-molecule, dual A2aR/
A2bR antagonist

Phase II, in combination
with chemotherapy and

atezolizumab (anti-PD-L1),
in patients with
metastatic PDAC

NCT03193190

TT-4 (PORT-7) Portage Biotech
Small-molecule, selective
A2bR antagonist

Phase I/II in patients with
advanced solid tumours

including PDAC
NCT04976660
* poliovirus receptor-related immunoglobulin domain-containing; † human epidermal growth factor receptor 2; ‡ vascular endothelial growth factor.
All information was obtained from the NIH clinical trials database (https://clinicaltrials.gov) or from the publicised development pipelines of pharmaceutical companies. The rows highlighted
blue denote drugs that are under evaluation in clinical trials that include PDAC patients.
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4.2 Exploiting novel immune checkpoints

Since the discovery of CTLA-4 and PD-1, studies have identified

a plethora of immune checkpoints – both inhibitory (e.g., TIGIT,

LAG-3, TIM-3) and co-stimulatory (e.g., ICOS, OX40, GITR, 4–1BB)

– that might be exploited therapeutically to augment anti-tumour

immunity. In PDAC, TIGIT and ICOS are expressed at high levels on

intratumoral eTregs (14, 15). TIGIT is also expressed, albeit at lower

levels, by dysfunctional Teff cells, whereas ICOS is induced upon the

activation of intratumoral Teff cells (14, 15, 27). Therefore, anti-TIGIT

and agonistic ICOS mAbs might have a dual mechanism of action:

the re-invigoration of dysfunctional Teff cells and selective depletion

of activated Tregs (65). However, achieving the optimal balance

between these mechanisms will require Fc engineering to effectively

engage specific Fc receptors (66).

Tiragolumab (IgG1k anti-TIGIT) has demonstrated tolerability

and preliminary anti-tumour activity in patients with advanced

solid tumours (67, 68). Consequently, two early-stage trials are

investigating anti-TIGIT mAbs, incorporated into combinatorial

regimens, for the treatment of metastatic PDAC (NCT03193190,

NCT05419479). By contrast, a phase I/II trial, investigating

vopratelimab (IgG1k agonistic ICOS) for the treatment of

advanced solid tumours, including three PDAC patients, reported

limited efficacy (69). However, on-treatment emergence of ICOShi

CD4+ Teff cells was associated with therapeutic responses,

suggesting that vopratelimab might indeed re-invigorate

dysfunctional Teff cells in patients through ICOS activation. More

generally, this illustrates that multi-omic analyses of on-treatment

patient-derived samples during clinical trials may further advance

our understanding of the PDAC immune landscape.
4.3 De-stabilising activated Tregs

The development of strategies for selectively drugging Tregs has

been the subject of considerable research. One potential target is

Helios; in PDAC patients, Helios+ Tregs are significantly enriched in

the TME (70). Moreover, Treg-intrinsic deletion of Helios has been

shown to enhance anti-tumour immunity in tumour-bearing mice

(71). Interestingly, Helios-deficient Tregs acquire a Teff phenotype

including the production of pro-inflammatory cytokines (e.g., IFN-

g), which is attributed to downregulation of FOXP3 and de-

repression of TH1/TH2 lineage determinants (43). In the absence

of the stabilising influence of Helios, it appears that the

inflammatory TME promotes the trans-differentiation of Tregs

into activated Teff cells. Intriguingly, this novel Teff population is

equipped with an inherently self-reactive TCR repertoire, which

might be expected to direct a potent immune response against

‘quasi-self’ tumour antigens.

Transcription factors are traditionally considered difficult to

drug. However, several recent studies have described small-

molecules that selectively enhance the proteasomal degradation of

Helios (72, 73). Future in vivo studies must determine whether these

small-molecules can selectively destabilise activated intratumoral

eTregs; one clinical trial is currently evaluating this approach in

advanced solid tumours (NCT03891953).
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4.4 Targeting chemokine receptors

The origin of intratumoral FOXP3+ Tregs is unclear – they may

differentiate locally from Teff cells or be recruited from the circulation.

For the latter, targeting chemokine signalling axes (e.g., CCL2-CCR4;

CCL5-CCR5) that can recruit Tregs into the PDAC TME is of interest.

However, this strategy has proved disappointing thus far; clinical

trials investigating mogamulizumab (IgG1 anti-CCR4) reported off-

target depletion of TH2/TH17 cells, reflecting heterogeneous

expression of CCR4 (74, 75).

It is notable, therefore, that intratumoral eTregs uniquely express

CCR8 (76). However, functional blockade of CCR8 does not affect

Treg recruitment; they acquire CCR8 expression in the TME,

perhaps suggesting that this axis mediates retention of

intratumoral Tregs (77). Nevertheless, CCR8 constitutes a target

for the selective depletion of intratumoral eTregs in PDAC. Pre-

clinical studies have demonstrated that anti-CCR8 mAbs

profoundly suppress tumour growth in tumour-bearing mice (76,

78). Further, this response coincided with the expansion of

intratumoral CD4+ Teff cells and the preservation of systemic Treg

populations, which may mitigate the risk of autoimmune-related

adverse events. Currently, eight early-stage trials are investigating

anti-CCR8 mAbs for the treatment of advanced solid tumours

(NCT04895709, NCT06131398, NCT05635643, NCT05537740,

NCT05007782, NCT05518045, NCT05101070, NCT05935098).
4.5 Combatting
immunosuppressive adenosine

Apop to t i c T r e g s conv e r t ATP to adenos in e , an

immunosuppressive metabolite, via ectoenzymes that remain

catalytically active after cell-death. This raises the paradoxical

possibility that the therapeutic depletion of Tregs might not limit

Treg-cell-mediated immunosuppression. This discovery provided

impetus to the development of immunotherapies that target the

adenosinergic pathway: CD39, CD73, and the A2A/A2B receptors. It

is hoped that these therapies will synergise with Treg-targeted

approaches, or other immunotherapeutic modalities, to induce

potent anti-tumour immunity. To date, however, attempts to

target this pathway with anti-CD73 mAbs have demonstrated no

clinical benefit for PDAC patients; a phase-II trial investigating the

combination of anti-CD73, anti-PD-L1, and chemotherapy revealed

comparable efficacy to chemotherapy alone (79).
5 Conclusions and future perspectives

The manipulation of intratumoral Tregs may prove a valuable

addition to our currently limited armamentarium for the treatment

of PDAC. This therapeutic strategy has the potential to re-

invigorate anti-tumour immunity by reprogramming the

immunosuppressive milieu that is first established in pre-

malignant lesions. This notion is supported by promising early-

stage clinical trials of Treg-targeted immunotherapies (68, 80).

Moreover, data from trials investigating anti-CCR8 mAbs and
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selective Helios degraders, strategies to selectively target

intratumoral effector Tregs, are eagerly awaited.

There are several outstanding questions, however, which

threaten to hinder the effective therapeutic manipulation of

intratumoral Tregs:
Fron
1. Given that intratumoral Tregs are present from early

carcinogenesis to the development of metastatic disease,

are Treg-targeted therapies effective in cohorts of patients

from the full spectrum of the natural history of PDAC?

2. With novel Treg-targeted interventions, is there on-

treatment emergence of immunosuppressive FOXP3-

Treg-like cells (e.g., Tr1 cells) or other complementary

immunosuppressive mechanisms?

3. How can we prevent immune-related adverse events, which

so often necessitate treatment discontinuation, when

targeting Tregs for the treatment of PDAC?

4. To what extent do Treg-targeted therapies synergise with

anti-cancer agents from our existing repertoire, including

immunotherapies and conventional chemotherapies?
Importantly, with preliminary clinical evidence for the efficacy

of Treg-targeted therapies, there is a compelling argument for the

allocation of resources to resolve these outstanding questions.
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