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Heterozygous autosomal dominant mutations in the CXCR4 gene cause WHIM

syndrome, a severe combined immunodeficiency disorder. The mutations

primarily affect the C-terminal region of the CXCR4 chemokine receptor,

specifically several potential phosphorylation sites critical for agonist (CXCL12)-

mediated receptor internalization and desensitization. Mutant receptors have a

prolonged residence time on the cell surface, leading to hyperactive signaling

that is responsible for some of the symptoms of WHIM syndrome. Recent studies

have shown that the situation is more complex than originally thought, as mutant

WHIM receptors and CXCR4 exhibit different dynamics at the cell membrane,

which also influences their respective cellular functions. This review examines

the functional mechanisms of CXCR4 and the impact of WHIMmutations in both

physiological and pathological conditions.
KEYWORDS
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CXCR4: a key player in health and disease

The elucidation of the CXCR4 gene and its impact on human immunology followed

several key discoveries in the 1990s and the early 2000s. The CXCR4 gene was first

identified and characterized in the 1990s. Initial efforts mapped the gene to chromosome

2q21 using isotopic in situ hybridization (1, 2). The genomic structure of the CXCR4 gene

was determined byWegner et al. in 1998 (3). Key elements in the CXCR4 promoter include

a TATA box, a nuclear respiratory factor-1 (NRF-1) site, and two GC boxes, which are

critical for the regulation of gene expression.

CXCR4 is a unique polypeptide organized into seven transmembrane a-helices that
interact with heterotrimeric G proteins to activate intracellular signaling pathways.

Originally described as an orphan G protein-coupled receptor (GPCR), CXCR4 was later

found to facilitate HIV-1 fusion with target cells (4). CXCR4 is a homeostatic receptor that
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is widely expressed in both embryonic and adult tissues (5) and has

a unique chemokine ligand, CXCL12 (6), although it can also bind

other ligands including CXCL14 (7), migration inhibitory factor

(MIF) (8) and HMGB1, which forms complexes with CXCL12 (9).

Studies in mice deficient in CXCR4 (Cxcr4-/-) have demonstrated

significant impairments in hematopoiesis, and in the development

of the nervous and cardiovascular systems. The importance of the

CXCR4/CXCL12 axis is underscored not only by the embryonic

lethality of both CXCR4- and CXCL12-deficient mice, but also by

its high degree of conservation throughout evolution (10).

The CXCR4 protein was first crystallized in 2010 and five

independent crystal structures of CXCR4 bound to a small

molecule antagonist and a cyclic peptide were reported (11).

These studies revealed a consistent homodimer interface

involving helices V and VI. Recently, a comparative structural

and phylogenetic analysis of CXCR4 sequences from 30

mammalian species revealed a complex evolutionary history with

multiple gene duplication and loss events, along with the

identification of key functional domains and amino acid residues

conserved across species (12).

Similar to other chemokine receptors, CXCR4 plays a pivotal

role in leukocyte trafficking and arrest in specific anatomical niches

under both homeostatic and pathological conditions (13). Indeed,

the CXCL12/CXCR4 axis is essential for both adaptive and innate

immune responses, as well as for the organization and maintenance

of the bone marrow (BM) (14). Importantly, CXCR4 is critical

for the migration, homing and survival of hematopoietic stem

cells (HSC) in the BM (15–18). CXCL12 is primarily produced

by perivascular mesenchymal stem cells and is essential for

HSC quiescence and retention in the BM (19). During the

establishment of antigen-presenting cell-T cell contacts, CXCR4,

together with other chemokine receptors, is recruited to the

peripheral supramolecular activation cluster where it contributes

to integrin activation, necessary for the formation of a productive

immunological synapse and correct T cell activation (20).

Furthermore, B cell organization in the germinal centers of lymph

nodes is dependent on CXCR4 expression, and CXCR4-deficient B

cells are excluded from the germinal center dark zone (21).

CXCR4 is also expressed in non-hematopoietic tissues

including lung, liver, kidney, gastrointestinal tract, adrenal gland,

ovary and brain. Conditional Cxcr4-/- mouse models have

demonstrated the importance of CXCR4 in regulating the

development of the central nervous system (22), as well as the

development of the vasculature in the gastrointestinal tract (23) and

kidney (24).

Importantly, CXCR4 and CCR5, another chemokine receptor,

serve with CD4 as primary co-receptors for HIV-1 entry into target

cells (25). Data suggest that viral use of CXCR4 correlates with

immunodeficiency and progression to AIDS (26, 27).

Although CXCR4 is primarily considered a homeostatic

receptor, its expression can be modulated in various pathological

situations. For example, CXCR4 is overexpressed in many tumor

types, including breast (28), lung (29) ovarian (30), prostate (31),

colon (32), melanoma (33) and neuroblastoma (34). Increased

CXCR4 expression in metastatic lesions correlates with tumor

progression and with preferential metastatic sites of the primary
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tumor (28, 35, 36). Studies in mice have shown that CXCR4

blockade inhibits cancer cell dissemination and metastasis in

several cancer models (37, 38). The CXCL12/CXCR4 axis is

also involved in tumor growth, tumor cell-microenvironment

interactions (39), vasculogenesis and angiogenesis (40).

Inflammation is another mechanism involved in the modulation

of CXCR4. Transforming growth factor-beta 1 (TGF-b1) (41),

vascular endothelial growth factor (VEGF) (42) and basic fibroblast

growth factor (bFGF) (43) have all been reported to upregulate

CXCR4 expression, whereas cytokines such as IL-5 (44), interferon-

alpha (IFN-a) and interferon-gamma (IFN-g) (45) have the opposite
effect. In addition, activation of CXCR4 in macrophages after LPS

stimulation suppresses the expression of inflammatory cytokines by

blocking MAPK and NF-kB signaling pathways (46). Taken together,

these findings support the involvement of CXCR4 in the

development and progression of immunodeficiency, inflammatory

diseases and cancer and highlight its potential as a therapeutic target.
Altered immune function in patients
with WHIM syndrome

Heterozygous autosomal dominant mutations in the CXCR4

gene cause WHIM syndrome (47, 48) a severe combined

immunodeficiency disorder characterized by increased

susceptibility to human papillomavirus pathogenesis, resulting in

warts, condyloma acuminata and carcinomas. Patients with WHIM

syndrome often present with neutropenia, a common symptom in

several primary immunodeficiencies (Table 1) (49, 50), B cell

lymphopenia, hypogammaglobulinemia, recurrent infections and

myelokathexis characterized by myeloid hyperplasia and an

overabundance of mature senescent neutrophils in the BM (48).

Some patients also have developmental defects of the

cardiovascular, genitourinary and nervous systems (51), although

only the cardiovascular defects appear to be clinically significant

(52–54). Moreover, decreases in bone mineral density and bone

defects leading to osteoporosis have been reported in a WHIM

mouse model (55). Some defects in T cell activation in WHIM

syndrome may also be associated with a compromised stability of

the immunological synapse formed during T cell-APC engagement

(56, 57). While CXCR4 gain-of-function variants are the most

common cause of WHIM syndrome, a proportion of patients

remain undiagnosed. While some patients harboring CXCR2

mutations show myelokathexis or neutropenia, the absence of

other features of WHIM syndrome, indicate that this CXCR2

deficiencies have characteristics distinct from those of WHIM

(58, 59).

Little is known about the contribution of WHIM mutations to

HIV-1 infection, with the exception of one report claiming similar

or even lower susceptibility to infection (48) or about the role of

WHIM expression in inflammation (60). Paradoxically, WHIM

syndrome behaves as a relatively benign immunodeficiency.

Indeed, the majority of infections are usually not invasive or life-

threatening, and patients survive into adulthood, in part due to the

ability of the host response to acute infections to mobilize

leukocytes into the circulation. Patients with WHIM do not show
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a clear genotype-phenotype correlation. In fact, there is

considerable phenotypic variability between patients with the

same genotype, even within the same family (61, 62). However,

they have several unmet needs, such as long-term immunoglobulin

replacement therapy and the management of periodontal disease,

which affects up to 63.6% of patients with moderate or severe

periodontitis (63).

At the molecular level, WHIM syndrome is caused by

heterozygous gain-of-function mutations at the C-terminal end of

CXCR4 that affect key residues involved in receptor phosphorylation

and desensitization (64), explaining the associated hyperactivation of

downstream signaling and the retention of leukocytes in the BM,

causing robust neutropenia (65). Consistent with this, mice with a

myeloid lineage-restricted deletion of CXCR4 also exhibit marked

neutrophilia (66). These data indicate that CXCR4 has a dual role in

neutrophil homeostasis, regulating both neutrophil release from BM

and clearance from blood. CXCR4 expression increases in senescent

neutrophils and blocking anti-CXCR4 antibodies abolish neutrophil

homing to BM (67, 68). In addition, the p.H323fs329X mutation in

CXCR2, the receptor involved in neutrophil egress from BM, is also

associated with a similar reduction in circulating neutrophils (58, 67).

The severe neutropenia, triggered by delayed neutrophil egress into

the circulation and enhanced neutrophil homing to BM, determines

the known susceptibility to bacterial and viral infections associated

with these patients. Several of the mutations described in WHIM

syndrome are also found in patients with Waldenström’s

macroglobulinemia, a rare B-cell lymphoma (69) characterized by

lymphoplasmacytic infiltrates in the BM, lymph nodes and spleen,

often associated with the presence of high IgM titers in the blood (70).

For decades, G-CSF was the only drug available to increase

neutrophil and lymphocyte counts in patients with WHIM

syndrome. Initial results from phase 1 trials of plerixafor, a

selective CXCR4 inhibitor, were reported in 2014 and 2019 in
Frontiers in Immunology 03
open-label studies (71). Recently, results of a phase 3 crossover

randomized controlled trials (RCT) of 19 patients treated with

either plerixafor or G-CSF over 12 months became available. While

plerixafor was not superior to G-CSF in reducing the overall

infection severity score (the primary endpoint), it did result in

wart regression and hematological improvement (72).

By contrast, patients with WHIM syndrome participating in a

phase 2 trial of mavorixafor (400 mg quaque die, administered orally,

a more convenient option than subcutaneous infusion) not only had

increased total white blood cell, neutrophil and lymphocyte counts,

but also showed reduced annualized infection rates and reduced wart

numbers in those treated for six months or more. Results from the

phase 3 trial confirmed positive outcomes in terms of the primary

endpoints: time (hours) above the absolute neutrophil count (ANC)

threshold ≥500/mL, time (hours) above the lymphocyte threshold,

and reduced infection frequency, severity and duration (73).

A functional cure of WHIM syndrome has been reported in a

patient following chromothriptic deletion of the abnormal CXCR4 gene

in hematopoietic stem cells, suggesting the potential of gene editing as a

future therapeutic approach (74). Novel CRISPR-Cas9 base editing

techniques, including cytosine base editors (CBEs) and adenine base

editors (ABEs), along with prime editing, might offer curative treatment

without the known risks of hematopoietic stem cell transplantation

(HSCT). In a global cohort of 66 patients, the only patient who died had

undergone HSCT. Notably, the CRISPR-Cas9 approach successfully

corrected the disease in a WHIM mouse model (75).
WHIM mutations shape CXCR4
downstream signaling

CXCR4 signaling is finely coordinated by physical receptor

interactions with multiple proteins (G proteins, G protein receptor
TABLE 1 Differential diagnosis of WHIM syndrome.

NON-SYNDROMIC
NEUTROPENIA

OCULOCUTANEOUS
ALBINISM

EXOCRINE
PANCREATIC

INSUFFICIENCY

COMBINED
IMMUNODEFICIENCY

BONE
MARROW
FAILURE

OTHER
SYNDROMIC
NEUTROPENIA

SEVERE CONGENITAL
NEUTROPENIA AD:

ELANE, GF11

CHS HPS2 GS2 SCHWACHMAN
DIAMOND
SYNDROME

(SBDS/DNAJC21/EFL1)

WHIM/CXCR2 CONGENITAL
DISKERATOSIS

G6PC3

AR: HAX1, JAGN1,
CSF3R, G6PC3,
WAS, VPS45A

P14/LAMTOR2 SRP54 CD40LG GATA2 COHEN
SYNDROME
(VPS13B)

XL: N-WASP, XLA RETICULAR
DISGENESIS (AK2)

FANCONI
ANEMIA

BARTH
SYNDROME (TAZ)

MOESIN

EZRIN IRF8 POIKILODERMA

CARD11
Type of monogenic neutropenias by subgroup. AD, Autosomal Dominant; AR, Autosomal Recessive; XL, X- Linked; CHS, Chediak-Higashi Syndrome; HPS2, Hermansky-Pudlak Syndrome type
2; GS2, Griscelli Syndrome type 2; SRP54, Signal Recognition Particle 54; CD40LG, CD40 Ligand Deficiency (Hyper-IgM Syndrome); CXCR2, C-X-C Motif Chemokine Receptor 2; G6PC3,
Glucose-6-Phosphatase Catalytic Subunit 3; GATA2, GATA Binding Protein 2; P14/LAMTOR2, Late Endosomal/Lysosomal Adaptor, MAPK and MTOR Activator 2; AK2, Adenylate Kinase 2;
N-WASP, Neural Wiskott-Aldrich Syndrome Protein; XLA, X-linked Agammaglobulinemia; MOESIN, Membrane-Organizing Extension Spike Protein; SAMD9/SAMD9L, Sterile Alpha Motif
Domain-containing 9/9-like; GSD1b, Glycogen Storage Disease type 1b (SLC37A4); EZRIN, Ezrin Protein; IRF8, Interferon Regulatory Factor 8; USB1, U6 SnRNA Biogenesis Phosphodiesterase
1; SMARCD2, SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin Subfamily D Member 2.
Modified from Spoor et al. and Hauck and Klein (49, 50).
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kinases [GRKs] and b-arrestins, filamin A, cofilin, etc) (76, 77).

CXCL12 binding to CXCR4 triggers Gai activation, although

signaling involving Ga12-13 and Gaq has also been described (78,

79). One report has linked the induction of Gaq by the HIV-1 envelope

glycoprotein through CXCR4 to viral entry (80). These initial signaling

events trigger the activation of multiple signaling pathways, including

those associated with Src, PI3K, PLC, PKC and MAPK (81).

Binding of CXCL12 to CXCR4 triggers rapid phosphorylation

within its 45 amino acid serine/threonine (Ser/Thr)-rich region,

primarily at the distal C-terminus. Phosphorylation is critical for

agonist (CXCL12)-mediated receptor internalization (82, 83) and

degradation (84) and depends on the activity of GRK2 (85, 86),

GRK3 (87) and GRK6 (88). GRK-mediated phosphorylation of

residues along the C-terminus of CXCR4 facilitates the recruitment

and activation of b-arrestins, which mediate receptor

desensitization and internalization. It has also been reported that

CXCR4 and other chemokine receptors show constitutive activity

and internalization in the absence of b-arrestins (89–91), an effect

that is attributed to PKC (82). In addition, b-arrestins have a

scaffolding role (92) linking the activated receptor to the actin

cytoskeleton via several actin-binding proteins (i.e., FLNA and

cofilin) (93, 94). This allows the transmission of the CXCL12-

mediated conformational changes in CXCR4 to drive signal

transduction that triggers the cytoskeletal rearrangements

required for cell polarization and the formation of a leading edge,

and to sustain productive chemokine-directed cell migration (95).

These observations are also consistent with the stabilization of

different b-arrestin conformations on the receptor depending on

the phosphorylation residues present in the C-tail of the

receptors (96).

Previous studies have identified 26 autosomal dominant

mutations in CXCR4 associated with WHIM syndrome (64, 97).

Most of these mutations affect the C-terminal receptor tail and are

unlikely to affect the rest of the quaternary structure, indicating the

importance of the C-terminal region in CXCR4 signaling (Figure 1).

It is therefore not surprising that GRK-mediated phosphorylation of

Ser/Thr residues, b−arrestin coupling and receptor desensitization

and internalization are affected by C-terminal mutations. Indeed,

WHIM mutants show impaired receptor internalization and

degradation, resulting in prolonged receptor residence time at the

cell membrane, which in turn contributes to the gain-of-function

properties of these receptors and their hyperactive signaling nature

compared with wild-type CXCR4 (Figure 2). Further investigation is,

however, required to explore the full impact of WHIM mutations on

G protein recruitment and activation (97). In vitro assays have shown

that CXCL12-induced 35S-GTPgS binding to activated Gai-

containing membranes from cells expressing comparable levels of

wild-type CXCR4, CXCR4S338X or CXCR4R334X, the most common

mutations observed in WHIM patients, results in increased coupling

efficiency and potency of the mutant receptors (98–100). In addition

to the defects in b-arrestin coupling, the stronger association of G

proteins to mutant receptors might also contribute to the heightened

responsiveness of WHIM mutant CXCR4 to CXCL12.

The most common mutation inWHIM syndrome is a truncation

at Arg334 (R334X) (101) which, similar to the CXCR4S338X

truncation, promotes increased CXCL12-mediated signaling, G
Frontiers in Immunology 04
protein interactions and ERK and AKT activation, and decreased

GRK6 associations, b-arrestin2 interactions and impaired receptor

internalization (98–105). Both mutants are also associated with

prolonged CXCL12-mediated F-actin polymerization (99).

Similarly, the E343K point mutation results in increased receptor

signaling, decreased Ser/Thr phosphorylation and impaired receptor

internalization (106, 107), although receptor internalization was only

affected at low CXCL12 concentrations (63). The case of CXCR4E343K

is quite interesting, as this receptor has a full length C-terminus with

complete phosphorylation sites and no change in all potential

phosphorylation sites. However, the negative charge of the 343 site

at the receptor tail is essential for CXCR4 function, and changing

the charge through an amino acid substitution dysregulates the

signaling events downstream of G proteins. Cells overexpressing

CXCR4E343D have no functional changes compared with wild-type

CXCR4, whereas cells overexpressing CXCR4E343K, CXCR4E343R or

CXCR4E343A show increased cell migration, prolonged phosphorylation

of ERK1/2, p38, JNK1/2/3 and increased activation of PI3K/AKT/

NF-kB signal pathway, that is, all these mutants reproduce the in

vitro signaling events associated with WHIM syndrome (108). By

contrast, the CXCR4E343X and CXCR4S341P fs*25 mutants are

partially internalized at high doses of CXCL12 (63). Taken

together, these data suggest that the mutant CXCR4-dependent

changes in signaling may reflect differences in the symptoms

experienced by patients, or may even be involved in the

differential penetrance of this syndrome between patients. Defects

in receptor internalization show a strong correlation with the

severity of neutropenia and lymphopenia in patients with WHIM

syndrome, as well as with their susceptibility to recurrent infections

(64). Some studies also associate AKT hyperactivation with reduced

IgA levels in blood and decreased T cell counts (64), a finding

common in activated PI3K delta syndrome, which is characterized

by constitutively active AKT signaling (109), and a reduction in T

cell numbers has been associated with strong inhibition of cAMP

release (64). These are, nonetheless, expected consequences, as these

CXCR4 variants are gain-off-function receptors due to their lack

of internalization.

Interestingly, some CXCR4 mutations associated with the WHIM

phenotype are not consistent with a gain-of-function phenotype. For

example, CXCR4T318P fs*3 mutants show impaired b-arrestin
recruitment with decreased ERK1/2 phosphorylation and calcium

mobilization, resulting in reduced cell migration in response to

CXCL12 (110), whereas CXCR4E343K and CXCR4G336X mutants do

not affect ligand-mediated internalization (97). CXCR4E343K has a full-

length C-terminus and the same number of Ser/Thr phosphorylation

sites as wild-type CXCR4, but still functions as a gain-of-function

mutant (108). CXCR4S338X retains its interaction with b-arrestins, but
is not internalized and induces stronger ERK phosphorylation and cell

chemotaxis than wild-type CXCR4 (97). The S339F fs*6 mutation

enhances agonist-driven signaling, decreases Ser/Thr phosphorylation,

b-arrestin binding and endocytosis and increases basal degradation

(111). While some mutations have been clearly linked to defects in the

phosphorylation of specific residues required for efficient receptor

endocytosis and degradation, others appear to be less essential,

supporting the involvement of additional factors to explain the

phenotype associated with this syndrome.
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During the review process of this manuscript a a novel

heterozygous CXCR4 variant (c.250G>C; D84H) localized at a

highly conserved position in the transmembrane domain of the

receptor outside the C-terminus has been described (112). The

patient-derived peripheral blood mononuclear cells carrying this

mutation, and in vitro cellular assays show decreased CXCR4

internalization and increased chemotaxis in response to CXCL12,

similar to known CXCR4WHIM, but also revealed unique features

of CXCR4D84H signaling as shows impaired cAMP inhibition and

Ca2+ mobilization and does not show enhancement in pAKT or pERK

levels as the other WHIM variants do. These findings are consistent

with molecular dynamics simulations that show disruption of the Na+

binding pocket by D84H, resulting in collapse of the hydrophobic gate

above and destabilization of the inactive state of CXCR4.
Frontiers in Immunology 05
Collectively, these data suggest that WHIM syndrome is

molecularly more complex than originally thought, as different

mutations on receptors and different effects on CXCL12-mediated

functions can lead to similar cellular phenotypes.
Receptor dynamics add complexity to
the chemokine receptors

Until relatively recently, GPCRs were thought to be

monomeric entities that transiently interact with a G protein,

promoting its dissociation into Ga and Gbg subunits. Biophysical
and biochemical studies of rhodopsin, the first purified GPCR,

supported the concept that GPCRs are monomeric (113).
A

B

FIGURE 1

Mutations at the C-terminal end of CXCR4 WHIM receptors lead to different potential changes in the Ser/Thr phosphorylation pattern. (A) Sequence
of CXCR4 residues (318–352) showing the three different types of mutations that occur in WHIM syndrome: frameshift, truncation or nonsense and
missense point mutations. Hydrophobic residues are shown in yellow, bulky hydrophobic residues in green, hydrogen donors in purple, and
positively and negatively charged residues in blue and red, respectively. Residues framed in green show a different sequence from wild-type CXCR4,
resulting from a frameshift or point mutation. (B) Scheme showing the pattern of phosphorylation sites present in helix 8 and in the c-terminal
region of CXCR4, shown as grey colored squares. Changes in the sequence following a frameshift or point mutation (-/+) are shown in orange
boxes following the sequence from (A). Specific residues where the frameshift occurs are shown as ‘x’ in orange boxes.
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Accordingly, a single activated receptor was thought to

sequentially activate multiple G proteins in a simple ternary

model of ligand/receptor/G protein complexes, which was

considered sufficient to explain the functions triggered by ligand

binding under equilibrium conditions (114). The model included
Frontiers in Immunology 06
two receptor populations: an inactive receptor and an active

receptor. Ligand binding and G proteins cooperatively promoted

the transition to the active form, initiating downstream signaling

(115). In addition, both rhodopsin and b2 adrenergic receptors

remained functional when entrapped as monomers in nanolipid
FIGURE 2

Response to CXCL12 of the different WHIM mutants as compared with the wild-type receptor. An increase in the response to CXCL12 compared
with the wild-type receptor is indicated by green boxes (light green indicates a weak but significant response). A decrease in the response is
indicated by red boxes (light red indicates a weak but significant decrease). No effect of the mutation on CXCL12 responses is shown in yellow.
White boxes indicate missing information. Different results depending on the concentration or the cell line used in the study are indicated by an
asterisk (*).
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disks, and were able to bind their corresponding ligands and

activate G proteins (113, 116).

Over the past decade, however, structural and spectroscopic

studies have revealed that GPCRs occupy a continuum of

conformational states that progressively facilitate G protein

activation (117, 118). The receptor is maintained in an inactive

conformation by interhelical ionic locks that act as molecular

switches, and ligand binding increase the conformational

heterogeneity of the receptors, flipping these molecular switches

to facilitate receptor activation (119). This is also true for CXCR4,

where CXCL12 binding induces conformational changes in the

transmembrane domains. A two-step binding site model has been

proposed for the interaction between CXCL12 and CXCR4 (120,

121). In the first step, the central body of the chemokine interacts

with the N-terminal end of CXCR4 in the chemokine recognition

site 1 (CRS1), allowing optimal orientation of CXCL12 on the

receptor. This allows the N-terminus to enter the receptor, which

in a second step facilitates its binding to the CRS2 region (122).

This second interaction occurs between the first two N-terminal

residues of the ligand and a group of residues mainly found in

CRS2 (120). In addition, eight residues in the transmembrane

segments TMVI and TMVII link the conformational changes in

the transmembrane regions of CXCR4 to the residues involved in

signal initiation. This is a critical event for signal transduction, as

the residues are part of the microswitch that allows G protein

coupling. Notably, residues F248 to V242 in TMVI are in contact

with almost all the conserved motifs critical for signaling in

GPCRs, including the CWxP motif in TMVI, NPxxY in TMVII,

DRY in TMIII, and Y(x)5KL in TMV. These residues play a role in

controlling the transition between active and inactive receptor

states by allowing helix and side-chain translation, as described in

studies using mutational strategies of this hydrophobic bridge in

different receptors (123–125). The existence of multiple receptor

conformational states, each capable of differentially binding ligand

and G protein, suggests the need for a continuum model of ternary

complex formation. In addition, several studies have highlighted

the role of G protein nucleotide states in the kinetics of ligand

binding and receptor conformation (126–128), necessitating the

inclusion of G protein activation states in GPCR signaling models.

Using a computational approach, a recent report predicted

receptor self-associations and designed CXCR4 dimers with

different quaternary structures and signaling properties. The

authors designed CXCR4 oligomers that activated Gi, but not all

recruited b-arrestins (129) supporting the presence of multiple

CXCR4 conformations at the cell membrane.

The ability of GPCRs, including chemokine receptors, to homo-

and heterodimerize has been well characterized (130). Evidence from a

variety of experimental approaches, including co-immunoprecipitation,

cross-linking assays, resonance energy transfer technologies, functional

complementation experiments and advanced light microscopy

techniques, confirms that GPCRs form both homo- and heterodimers

(130). These receptor complexes add additional layers of complexity

that also modulate cell responses (131, 132). Crystallographic studies of

CXCR4 confirm the existence of dimeric conformations, with the

implicated residues mainly located at the extracellular portion of
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helices V and VI in the case of the CXCR4:IT1t complex, and at the

base of helices III and IV in the case of CXCR4:CVX15 (11, 133).

However, it is important to note that in these studies, and similarly to

the case of the b2-adrenergic receptor (134, 135) and the A2A adenosine

receptor (136), the strategy used a T4 lysozyme fusion inserted between

TMV and TMVI on the cytoplasmic side of the CXCR4 and a

thermostabilizing L1253.41W mutation to stabilize the receptor

(11, 133). Thus, it was an artifactual strategy to stabilize the

conformations, which could influence the results and conclusions

obtained. The regions involved in these interactions differ from those

previously described in models of GPCR dimerization, where the

contacting residues were assigned to helices I and IV (137, 138). The

functional implications of these differences for the CXCR4 life cycle

remain unclear, but as there is a low sequence identity in the

dimerization region between dimerizing GPCRs the data may

represent a feature specific to CXCR4.

Chemokine receptor complexes, including CXCR4 and CCR5,

appear to form during their synthesis and maturation, and clusters

of CXCR4 and CCR5 can be detected in small trans-Golgi vesicles

(139). While dimerization may not be required for functional

coupling of the GPCR to heterotrimeric G-proteins per se, in

some cases mutant chemokine receptors that cannot dimerize

show a reduced ability to induce cell migration, suggesting that

these complexes might be functionally relevant (140, 141). Homo-

and heterodimerization processes add complexity to the biology of

these receptors and affect their functionality. CXCR4 has been

shown to constitutively dimerize (142, 143) and to form

heterodimers with other GPCRs, including other chemokine

receptors (144–146).

The crystal structure of CXCR4 has shown that the receptor

exists as a homodimer (11), suggesting that both wild-type and

WHIM mutant forms may coexist as independent monomers,

homodimers and/or heterodimers, in cells from patients. In vitro

studies using FRET and BRET have revealed WHIM homodimers

and heterodimerization between some WHIM mutants and

CXCR4, providing a molecular mechanism to explain the

dominant-negative role of these mutants (77). Although CXCR4

andWHIM alleles are likely to be co-expressed, the stoichiometry of

the different complexes could vary between different cell types and

patients, potentially contributing to the observed phenotypic

heterogeneity of the disease (101). Some recent data in

immortalized Jurkat cells expressing CXCR4R334X alone or with

wild-type CXCR4 have shown varying levels of impact on signaling

cascades (63). Furthermore, the contribution of potential

heterodimers between WHIM mutants and other chemokine

receptors, including ACKR3, or even with other GPCRs, as

demonstrated for CXCR4 (144, 147) may also be relevant in

WHIM syndrome and needs to be addressed.

Recent findings using total internal reflection fluorescence

microscopy (TIRF-M) have shown that, in addition to the ligand-

mediated conformational changes that activate G proteins and

influence receptor dimerization, CXCL12 induces CXCR4

nanoclustering. This oligomerization process is associated with

conformational changes on the receptor that are required for full

activation of the signaling cascade (148, 149). G-protein activation,
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ERK1/2 and PI3K phosphorylation occur normally in CXCR4

mutants that are unable to nanocluster in the presence of

CXCL12 (77, 149) but correct cell polarization, leading edge

formation and ligand-mediated directed cell migration (77)

require CXCL12-mediated receptor nanoclustering. These

findings thus add another layer of complexity because chemokine

receptors, like other GPCRs, are dynamic structures embedded

in the lipid bilayer of the cell membrane. Receptor nanoclustering

is a CXCL12-mediated process that is very limited or absent in

unstimulated cells and requires the transduction of conformational

changes through the transmembrane helical domains (122),

ultimately leading to G protein interaction and signaling.

Treatment with pertussis toxin abolishes CXCL12-mediated

receptor nanoclustering, suggesting that the process requires

ligand binding and receptor activation. Furthermore, the

scaffolding role of b-arrestins is critical for proper actin dynamics

and receptor nanoclustering, as cells lacking b-arrestin1 have

defects in actin dynamics, as well as impaired CXCL12-mediated

CXCR4 nanoclustering and weakened cell migration towards

CXCL12 gradients (77, 150). Similarly, treatment of CXCR4-

expressing cells with latrunculin A, an inhibitor of actin

polymerization (149), results in defective CXCL12-mediated

nanoclustering and loss of directed cell migration. This evidence
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thus suggests an active role for the actin cytoskeleton in regulating

receptor nanoclustering.

While data are not available for all WHIM CXCR4 mutants, a

recent TIRF-M evaluation of the conformation and dynamics of

CXCR4R334X at the cell membrane indicates that this mutant is

unable to nanocluster in the presence of CXCL12 and blocks

CXCR4 nanoclustering when both receptors are co-expressed

(heterozygosis). Although CXCR4R334X behaves as a gain-of-

function mutant, increasing MAPK and PI3K activation, and

promoting stronger chemotaxis when compared with wild-type

CXCR4, it fails to promote directed cell migration to CXCL12.

Primary T cells expressing CXCR4R334X show CXCL12-mediated

polarization but exhibit multiple actin-rich protrusions, suggesting

defects in leading edge formation (77). These defects are attributed

to insufficient actin cytoskeleton remodeling due to inadequate

b-arrestin1 activation when CXCR4R334X is co-expressed. As a

consequence, the balance between activated and deactivated

cofilin is disrupted and cells fail to reorganize their actin

cytoskeleton in the presence of CXCL12. In addition, the

receptors exhibit free diffusion at the cell membrane and receptor

nanoclustering is lost, consistent with the inability of cells to

sense CXCL12 gradients despite the presence of CXCR4R334X

homodimers and heterodimers with CXCR4 (77).
FIGURE 3

Alphafold2-generated models of helix 8 and C-terminus of wild-type CXCR4 and WHIM syndrome mutants. Models of wild-type CXCR4 helix 8 and
the C-terminus end of different mutants associated with WHIM syndrome were generated to analyze the theoretical changes in both the helix and
the predicted intrinsically disordered region at the C-terminus. The three different types of mutations present in WHIM syndrome are grouped by
black rectangles. The structures are shown as ribbons, with residues belonging to helix 8 shown as spheres and sticks. Serine residues are colored
red, threonine residues orange, cysteine residues green and lysine residues in the E343K mutant blue.
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Differences in nanoclustering between CXCR4 and

CXCR4R334X are unlikely due to the different internal structures

of the two receptors. Although it remains to be formally evaluated,

we speculate that WHIM mutants and CXCR4 share identical

transmembrane structures and the same residues in the cluster

that mediate chemokine engagement, signal initiation, propagation

and microswitch activation. Differences in the receptors are likely to

involve b-arrestin binding and/or activation, which subsequently

affect actin cytoskeleton dynamics. For example, although the

internal structure of the transmembrane domains is very similar,

the absence of 19 residues in the C-terminal end of CXCR4R334X

dramatically alters the phosphorylation pattern induced by GRK

proteins, which is known to provide a readable barcode for b-
arrestin association and function (Figures 1A, B) (64). Under such

conditions, the association of b-arrestins, as well as the

internalization processes, the proper dynamics of the actin

cytoskeleton and the ability of the cells to sense the chemoattractant

gradient, are altered.

From a structural perspective, WHIM mutations may initially

compromise the integrity and thus the environment of the

intracellular helix 8. This small fragment has been demonstrated

to form an amphipathic helix in numerous GPCRs and is critical for

stabilizing effective intracellular signaling after ligand binding (151).

The generation of helix 8 and C-terminal models for wild-type

CXCR4 and WHIM mutants using Alphafold2 (152) has revealed a

wealth of different possible conformations and newly acquired

secondary structure motifs that may shed light on the impact of a

defective C-terminus on CXCR4 function (Figure 3). The WHIM

mutant models show remarkable differences from the wild-type

structure, particularly after a frameshift, where a new sequence is

added to the C-terminus. Changes in the integrity of helix 8 can

occur, disrupting the folding of the alpha-helix (Figure 3), as in the

T318P fs*3, L319 fs*24, V320E fs*23 mutants. The addition of new

secondary structural motifs may affect both the interaction of the

receptor with other proteins and its own oligomerization. In

addition, in many of the frameshift mutants, residues that were

previously susceptible to phosphorylation either disappeared or

shifted their position, altering the pattern of GRK-mediated

phosphorylation and thus the barcode used for b-arrestin binding

and activation.
Conclusions

Recent years have seen remarkable progress in understanding

the function of chemokine receptors, including receptor

structures, interaction with ligand(s), signaling pathways

activated and interactions with other membrane proteins. These

breakthroughs have defined chemokines as a highly complex

family with multiple possible functions depending on the local

microenvironment. When analyzing the functionality of WHIM

mutants and their association with specific phenotypes in patients,

it is crucial to consider the quaternary conformation of the
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receptors, their interaction with other chemokine receptors

(dimers, oligomers) and with other membrane proteins (CD4,

tetraspanins, other GPCRs, etc), membrane lipids, and with

signaling molecules (G proteins, GRKs, b-arrestins, etc.). Their
dysfunction cannot be attributed solely to their lack of internalization

and/or degradation.
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AC, Mellado M, et al. The chemokine SDF-la triggers CXCR4 receptor dimerization
and activates the JAK/STAT pathway. FASEB J. (1999) 13:1699–710.

143. Babcock GJ, Farzan M, Sodroski J. Ligand-independent dimerization of
CXCR4, a principal HIV-1 coreceptor. J Biol Chem. (2003) 278:3378–85.
doi: 10.1074/jbc.M210140200
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Pina JA, Santiago CA, et al. Separating actin-dependent chemokine receptor
nanoclustering from dimerization indicates a role for clustering in CXCR4
signaling and function. Mol Cell . (2018) 70:106–119.e10. doi: 10.1016/
j.molcel.2018.02.034

150. D’Agostino G, Artinger M, Locati M, Perez L, Legler DF, Bianchi ME, et al. b-
arrestin1 and b-arrestin2 are required to support the activity of the CXCL12/HMGB1
heterocomplex on CXCR4. Front Immunol . (2020) 11. doi : 10.3389/
FIMMU.2020.550824

151. Verzijl D, Pardo L, Van Dijk M, Gruijthuijsen YK, Jongejan A, Timmerman H,
et al. Helix 8 of the viral chemokine receptor ORF74 directs chemokine binding. J Biol
Chem. (2006) 281:35327–35. doi: 10.1074/jbc.M606877200

152. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al.
Highly accurate protein structure prediction with AlphaFold. Nature. (2021) 596:583–
9. doi: 10.1038/s41586-021-03819-2
frontiersin.org

https://doi.org/10.1042/BST0350749
https://doi.org/10.1128/JVI.75.8.3779-3790.2001
https://doi.org/10.1128/JVI.75.8.3779-3790.2001
https://doi.org/10.1093/emboj/20.10.2497
https://doi.org/10.1111/j.1476-5381.2009.00169.x
https://doi.org/10.1111/j.1476-5381.2009.00169.x
https://doi.org/10.1074/jbc.M210140200
https://doi.org/10.1002/eji.200737630
https://doi.org/10.1073/pnas.1322887111
https://doi.org/10.1074/jbc.M705302200
https://doi.org/10.1073/PNAS.0702229104
https://doi.org/10.3389/fimmu.2022.925559
https://doi.org/10.1016/j.molcel.2018.02.034
https://doi.org/10.1016/j.molcel.2018.02.034
https://doi.org/10.3389/FIMMU.2020.550824
https://doi.org/10.3389/FIMMU.2020.550824
https://doi.org/10.1074/jbc.M606877200
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.3389/fimmu.2024.1406532
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	The complex nature of CXCR4 mutations in WHIM syndrome
	CXCR4: a key player in health and disease
	Altered immune function in patients with WHIM syndrome
	WHIM mutations shape CXCR4 downstream signaling
	Receptor dynamics add complexity to the chemokine receptors
	Conclusions
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


