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b2-integrins control HIF1a
activation in human neutrophils
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Anthony Rousselle1, Kai-Uwe Eckardt2, Adrian Schreiber1,2

and Ralph Kettritz1,2
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Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin,
Berlin, Germany, 2Department of Nephrology and Medical Intensive Care, Charité –

Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu
Berlin, Berlin, Germany
During inflammation, human neutrophils engage b2-integrins to migrate from

the blood circulation to inflammatory sites with high cytokine but low oxygen

concentrations. We tested the hypothesis that the inhibition of prolyl hydroxylase

domain-containing enzymes (PHDs), cytokines, and b2-integrins cooperates in

HIF pathway activation in neutrophils. Using either the PHD inhibitor roxadustat

(ROX) (pseudohypoxia) or normobaric hypoxia to stabilize HIF, we observed

HIF1a protein accumulation in adherent neutrophils. Several inflammatory

mediators did not induce HIF1a protein but provided additive or even

synergistic signals (e.g., GM-CSF) under pseudohypoxic and hypoxic

conditions. Importantly, and in contrast to adherent neutrophils, HIF1a protein

expression was not detected in strictly suspended neutrophils despite PHD

enzyme inhibition and the presence of inflammatory mediators. Blocking b2-
integrins in adherent and activating b2-integrins in suspension neutrophils

established the indispensability of b2-integrins for increasing HIF1a protein.

Using GM-CSF as an example, increased HIF1a mRNA transcription via JAK2-

STAT3 was necessary but not sufficient for HIF1a protein upregulation.

Importantly, we found that b2-integrins led to HIF1a mRNA translation through

the phosphorylation of the essential translation initiation factors eIF4E and

4EBP1. Finally, pseudohypoxic and hypoxic conditions inducing HIF1a
consistently delayed apoptosis in adherent neutrophils on fibronectin under

low serum concentrations. Pharmacological HIF1a inhibition reversed delayed

apoptosis, supporting the importance of this pathway for neutrophil survival

under conditions mimicking extravascular sites. We describe a novel b2-integrin-
controlled mechanism of HIF1a stabilization in human neutrophils. Conceivably,

this mechanism restricts HIF1a activation in response to hypoxia and

pharmacological PHD enzyme inhibitors to neutrophils migrating toward

inflammatory sites.
KEYWORDS

neutrophils, myeloid cells, monocytes, hypoxia-inducible factors, integrins,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1406967/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1406967/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1406967/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1406967&domain=pdf&date_stamp=2024-10-14
mailto:lovis.kling@charite.de
https://doi.org/10.3389/fimmu.2024.1406967
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1406967
https://www.frontiersin.org/journals/immunology


Kling et al. 10.3389/fimmu.2024.1406967
1 Introduction

Neutrophils and monocytes circulate in the blood from where

they migrate to inflammatory sites. Once emigrated from the

vasculature, myeloid cells encounter inflammatory mediators,

interact with extracellular matrix proteins employing integrins (1,

2), and are exposed to hypoxic conditions (3, 4). Several cellular

pathways ensure proper functioning under these challenging

conditions, including the activation of hypoxia-inducible factors

(HIFs) (5).

HIFs are ubiquitously expressed heterodimeric transcription

factors consisting of an isoform-specific alpha-subunit and a

common beta-subunit (also termed ARNT) (6, 7). Both the alpha-

and beta-subunits are continuously synthesized, but oxygen-

dependent proteasomal degradation of the alpha-subunit initiated

by prolyl hydroxylase domain-containing enzymes 1–3 (PHD1-3)

regulates heterodimerization (8–10) and thereby the transactivating

activity (11–13). Recently, HIF stabilizers entered clinical practice for

renal anemia treatment (14), including roxadustat (ROX) (15). These

drugs inhibit PHD activity independent of oxygen tension, hence

inducing a condition referred to as pseudohypoxia (16), leading to

HIF pathway activation.

The activation of the HIF pathway and transcriptional

upregulation of HIF target genes enables cellular metabolism and

functioning of several cell types, including myeloid cells (17, 18).

However, most data supporting a role of HIFs in myeloid cells were

derived from animal models (19–23) and isolated murine cells (24,

25). In contrast, mechanistic HIF data obtained from humanmyeloid

cells (18), particularly neutrophils are scarce (26). A recent study in

COVID-19 patients combined peripheral blood single-cell RNA

sequencing with single-cell proteomics. Despite hypoxia, the

investigators observed only a weak HIF1a transcriptomic signature

in one of eight identified blood neutrophil subclusters but this finding

did not translate into detectable HIF protein (27). By contrast,

transcriptomic sequencing of human nasopharyngeal swab samples

(28) and broncho-alveolar fluid neutrophils (29) in COVID-19

showed upregulation of the HIF1a downstream target gene

VEGFA in neutrophils that had transmigrated from the vasculature

into the infected mucosa, suggesting that the HIF transcription factor

had been assembled (28, 29). Inspired by these observations, we

hypothesized that myeloid cells, either resting or exposed to

inflammatory mediators, activate HIFs and that this effect is

controlled by b2-integrin engagement, in addition to PHD

inhibition. We achieved PHD inhibition either pharmacologically

using ROX (pseudohypoxia) or by exposure to low oxygen

concentration mimicking the inflammatory site microenvironment.

Our data establish a novel HIF1a activation mechanism that is under

the control of b2-integrins with relevance for neutrophil survival at

extravascular inflammatory sites. Conceivably, this mechanism could

be relevant to neutrophil-mediated diseases, including inflammatory

bowel disease, pyelonephritis, abscesses, and autoimmune vasculitis.
Abbreviations: PHD, prolyl hydroxylase domain-containing enzyme; ROX,

roxadustat; HIF, hypoxia-inducible factor; FN, fibronectin; mTOR, mammalian

target of rapamycin; RAP, rapamycin; AS, autologous serum.
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2 Materials and methods

2.1 Preparation of neutrophils and
monocytes from human blood samples

The study was approved by the local ethic committee (EA4/025/

18), and healthy blood donors provided written informed consent.

Neutrophils and monocytes were isolated from heparinized venous

whole-blood samples using density-gradient centrifugation as

described previously (30, 31). In brief, 1% dextran was added for

red blood cell sedimentation followed by Ficoll-Hypaque density

gradient centrifugation of the resulting supernatant. Monocytes

were isolated from the interphase and remaining erythrocytes in the

pellet containing neutrophils were hypotonically lysed for 15 s

before normal osmolality was achieved through the addition of

3.6% sodium chloride solution. Neutrophils were centrifuged (10

min at 1,050 rpm), and isolated monocytes and neutrophils were

resuspended in HBSS++ (Gibco, Waltham, USA) and counted using

a Beckman Coulter system with a purity of >95%.
2.2 Reagents

Roxadustat (TargetMol, Wellesley Hills, USA), YC1, LPS

serotype O111:B4, Actinomycin D, rapamycin, 4EGI-1, and

cycloheximide (Merck, Darmstadt, Germany) were diluted in

DMSO. Human recombinant TNFa, GM-CSF, IL6, IL8 (Bio-

Techne GmbH, Wiesbaden, Germany), and G-CSF (PeproTech,

Waltham, USA) were diluted in PBS (Gibco, Waltham, USA) with

0.1% bovine serum albumin (BSA, Merck). fMLP (Merck) was

diluted in water. Monoclonal antibodies blocking integrin

activation were mouse anti-human IgG CD11b clone 2LPM19c

(#sc-20050, RRID:AB_626883, Santa Cruz Biotechnology,

Heidelberg, Germany) and mouse anti-human IgG CD18 clone

7E4 (#IM1567, RRID:AB_131640, Beckman Coulter, Krefeld,

Germany). The integrin activating antibodies were mouse anti-

human IgG CD11b clone Bear1 (#IM0190, RRID:AB_3095685,

Beckman Coulter) and mouse anti-human IgG CD18 clone

MEM-148 (#MCA2086XZ, RRID:AB_323901, Bio-Rad,

Feldkirchen, Germany). The murine IgG1 isotype control was

from Sigma-Aldrich (#M5284, RRID:AB_1163685, Merck). The

blocking PECAM-1 antibody was mouse monoclonal anti-human

IgG CD31 clone Gi18 (#ALX-805-003A-C100, RRID:AB_2051038,

Enzo Life Sciences, Lörrach, Germany). The exclusion of reagent

cytotoxic side effects is shown in Supplementary Figure 1.
2.3 Electrophoresis and immunoblotting

For the preparation of whole-cell lysates, 1.25×106 monocytes

or 2.5×106 neutrophils were resuspended in 50 µl of sonication

buffer (150 mM Tris, pH 7.8, 1.5 mM EDTA, and 10 mM KCl)

supplemented with protease inhibitors (Protease Inhibitor Cocktail

III, 2 mM PMSF, 1 mM Na3VO4, 0.5 mM DTT, 2 mM levamisole,

cOmplete™ 25×), sonicated in a Bioruptor® Plus sonication device

(Diagenode, Seraing, Belgium) for 10 min, and centrifuged at 13,000
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g for 10 min at 4°C. Whole-cell lysates in the supernatants were

collected and boiled with the appropriate volume of reducing

loading buffer (4× ROTI® LOAD, Carl Roth GmbH+Co.KG,

Karlsruhe, Germany) at 95°C for 5 min after photometric protein

quantification using ROTI® Nanoquant 5× reagent (Carl Roth

GmbH+Co.KG) and a VERSAmax™ microplate reader

(Molecular Devices, Sunnyvale, USA).

For HIF1a and HIF2a, 10 µg (monocytes) or 30 µg of protein

(neutrophils) per sample were loaded onto 8% SDS-polyacrylamide

gels and transferred to PVDF membranes (pore size 0.2 µM, Thermo

Scientific, Waltham, USA). For other proteins, we used 15% SDS-

polyacrylamide gels for gel electrophoresis. Membranes were blocked

with 5% skimmed milk for 1 h before overnight incubation with the

appropriate dilution of primary antibody in 5% BSA-containing buffer

at 4°C. The following primary antibodies were used: rabbit polyclonal

anti-human IgG HIF1a (1:500, #3716, RRID:AB_2116962, Cell

Signaling Technologies, Leiden, The Netherlands), monoclonal

mouse anti-human IgG HIF2a clone ep190b (1:500, #NB100-132,

RRID:AB_10000898, Novus Biologicals, Wiesbaden, Germany),

polyclonal rabbit anti-human IgG HIF2a (1:500, #NB100-122,

RRID:AB_535687, Novus Biologicals), polyclonal rabbit anti-human

IgG HIF2a (1:500, # PA1-16510, RRID:AB_2098236, Thermo Fisher

Scientific), monoclonal rabbit anti-human IgG b-actin clone 13E5

(1:2000, #4970, RRID:AB_2223172), monoclonal rabbit anti-human

IgG phospho-STAT3 (Tyr705) clone D3A7 (1:1000, #9145, RRID:

AB_2491009), monoclonal mouse anti-human IgG STAT3 clone

124H6 (1:1000, #9139, RRID:AB_331757), polyclonal rabbit anti-

human IgG phospho-eIF4E (Ser209) (1:1000, #9741, RRID:

AB_331677), monoclonal rabbit anti-human IgG phospho-4EBP1

(Ser65) clone D9G1Q (1:1000, #9451, RRID:AB_330947),

monoclonal rabbit anti-human IgG mTOR clone 7C10 (1:1000,

#2983, RRID:AB_2105622), and polyclonal rabbit anti-human IgG

phospho-mTOR (Ser2448) (1:1000, #2971, RRID:AB_330970, all

from Cell Signaling Technologies). The secondary HRP-conjugated

antibodies were diluted in 5% skimmed milk 1:1000-1:5000 (rabbit

anti-mouse IgG from Agilent Technologies Denmark, #P0260, RRID:

AB_2636929, and donkey anti-rabbit IgG from Cytiva, #NA934V,

RRID:AB_772206). Chemiluminescence was detected on a VWR ECL

reader using SuperSignal™ West Dura Extended Duration Substrate

(Thermo Fisher Scientific). All bands presented were at the predicted

molecular weight for the protein of interest. Densitometric analysis

was performed using ImageJ (RRID: SCR_003070). Fold changes of

protein abundance were calculated from optical density ratios of the

target protein and the loading control was normalized to the ROX-

treated sample (or as specified in the figure legends).
2.4 Coating of tissue culture wells

PolyHema (poly 2-hydroxyl-ethyl methacrylate, Merck) was

dissolved in 95% ethanol at 80 mg/ml and 500 µl per well was

pipetted on a 12-well tissue culture plate (TPP Techno Plastic

Products AG, Trasadingen, Switzerland) and left to dry overnight.

Fibronectin (Roche, Mannheim, Germany) was dissolved at 20 µg/

ml in HBSS++ before the wells were coated for 1 h at

room temperature.
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2.5 Neutrophil migration assay

Fibronectin-coated sterile transwells (3 µm pore diameter,

Sarstedt, Germany) were inserted into a tissue culture plate

containing HBSS++, chemoattractant, and ROX in the appropriate

experimental conditions. Neutrophils were pipetted in the transwell

and were allowed to migrate to the lower well at 37°C with 5% CO2.

After 4 h, migrated neutrophils were either collected for protein

extraction (see immunoblotting) or lysed using 0.5% Triton X-100

for the measurement of MPO activity using a 2,2′-Azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid)-based (Merck) colorimetric

assay on a VERSAmax™ microplate reader (Molecular Devices).
2.6 Neutrophil apoptosis

Neutrophils were resuspended in Roswell Park Memorial

Institute (RPMI) medium (Gibco) supplemented with autologous

serum and cultured for 4 h/20 h at 37°C with 5% CO2 with 2.5×106

cells per well. Neutrophil adhesion was induced by fibronectin-

coated wells. Apoptotic neutrophils were washed, transferred to

Annexin binding buffer (BD Biosciences, Heidelberg, Germany),

and co-stained with Annexin V-APC (BD Biosciences) and 7-AAD

(Merck). FACS analysis was performed immediately after staining

on a BD CANTO II cytometer. FACS data were analyzed on FlowJo

version 7 (Treestar, USA).
2.7 Quantitative PCR

For qPCR, RNA was transcribed into cDNA after

deoxyribonuclease I-treatment (Qiagen, Venlo, The Netherlands)

using hexanucleotide primers and the RevertAid First Strand cDNA

Synthesis Kit following the manufacturer’s protocol (Thermo Fisher

Scientific). qPCR was performed with the Fast SYBR Green Master

Mix or the TaqMan Fast Universal PCR Master Mix (Applied

Biosystems, Waltham, USA) and run on a QuantStudio plus

machine (Applied Biosystems). Primers for qPCR were designed

with Primer 3 and were as follows: HIF1a (forward, 5′-CATA
AAGTCTGCAACATG GAAGGT-3’; reverse, 5′-ATTTGATG
GGTGAGGAATGGGTT-3′), 18S (forward, 5′-ACATCCAAGG
AAGGCAGCAG-3′; reverse, 5′-TTTTCGTCACTACCTCCCCG-
3′, 5′-6-FAM-CGCGCAAATTACCCACTCCCGAC-TAMRA-3′),
and VEGFA (forward, 5′-GAGGAGGGCAGA ATCATCAC-3′;
reverse, 5′-ACACAGGATGGCTTGAAGATG-3′). Quantitation

was performed using the DDCT-method using the ROX-treated

sample as the reference sample.
2.8 Statistics

Results are given as means ±standard deviation. Statistical

comparisons were made using the ratio-paired t-test for 2 groups

and one-way ANOVA for experimental groups of >2 using

GraphPad Prism9 software. Multiple testing correction was

performed using Šidák’s method. Differences were considered
frontiersin.org
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significant at p<0.05 (*), p<0.01 (**), p<0.001 (***), or

p<0.0001 (****).
3 Results

3.1 Inflammatory mediators increase HIF1a
protein marginally but some act
synergistically with pseudohypoxia in
upregulating HIF1a protein in neutrophils

We first assessed HIF1a in neutrophils both resting and

exposed to a variety of inflammatory mediators during culture in

test tubes. Under normoxia, we did not detect HIF1a protein in the

former and observed a marginal HIF1a signal at most in the latter

(Figure 1A). Under pseudohypoxia with ROX-dependent PHD

inhibition, HIF1a protein significantly increased in resting

neutrophils. Moreover, IL8 acted additively, and GM-CSF and

LPS even synergistically to pseudohypoxia in HIF1a protein

upregulation. We selected 15 µM of ROX because reported blood

concentrations in patients range from 2.8–28 µM (32–34) and

determined a 4 h incubation period based on a time course study

(Supplementary Figure 2A).

When we investigated isolated human blood monocytes in test

tubes, we found that pseudohypoxia, similar to neutrophils, reliably

led to HIF1a protein accumulation in resting and stimulated cells

but, in contrast to neutrophils, none of the inflammatory mediators

showed additive or synergistic effects with ROX (Figure 1B).

We did not detect HIF2a protein in resting and stimulated

neutrophils as well as monocytes under pseudohypoxia using three

different antibodies that detected HIF2a in appropriate control

lysates (Supplementary Figures 2B, C).

Thus, inflammatory mediators were weak myeloid cell HIF1a
activators at most but acted additively or even synergistically with

PHD inhibition in human neutrophils. Based on these findings, we

focused on HIF1a regulation in neutrophils and selected GM-CSF

as a synergistic inflammatory stimulus for further experiments.
3.2 b2-integrin-mediated adhesion is
indispensable for neutrophil HIF1a
protein induction

Neutrophils encounter their inflammatory challenges either

when circulating in the bloodstream or in inflamed tissues where

they interact with extracellular matrix proteins. We tested the

hypothesis that adhesion provides an essential factor for HIF1a
protein induction limiting HIF1a effects to emigrating neutrophils.

We applied two distinct conditions, namely neutrophil incubation

on fibronectin (FN)-coated plates to promote extracellular matrix

interactions, and PolyHema-coated plates (S) to prevent adhesion

and reduce cell-cell contacts (35) mimicking bloodstream

neutrophils. We confirmed that the incubation of GM-CSF-

treated neutrophils on FN resulted in cell adhesion and spreading

that was not observed on PolyHema (Figures 2A, B). We then

compared these two biologically relevant conditions with our
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initially used assays in test tubes (T) that explicitly allow for

plastic and cell-cell contact. Culturing neutrophils on FN did not

result in HIF1a protein per se neither in resting nor in GM-CSF-

treated cells. However, we detected HIF1a protein in resting and,

fourfold stronger, in GM-CSF-treated neutrophils on FN under

pseudohypoxia. Notably, the synergistic ROX/GM-CSF HIF1a
effect was even more pronounced on FN than with tubes (T). In

sharp contrast, HIF1a protein was not induced by pseudohypoxia

under stringent suspension conditions on PolyHema (S), neither in

resting nor in GM-CSF-stimulated neutrophils (Figure 2B). Based

on these findings, we explored the role of b2-integrins in HIF1a
induction. Blocking antibodies to CD11b or CD18 prevented

HIF1a induction in GM-CSF-stimulated neutrophils incubated

under pseudohypoxic conditions in tubes (T) and on FN

(Figures 2C, D). Conversely, activating b2-integrin antibodies

enabled HIF1a protein expression in ROX/GM-CSF-treated

suspension neutrophils on PolyHema (S, Figure 2E). Because

VEGFA is a target gene for the HIF1a transcription factor, we

validated the b2-integrin dependent HIF1a pathway activation by

measuring VEGFA mRNA. We observed that transcription of the

HIF1a target gene VEGFA was only upregulated in ROX- and GM-

CSF/ROX-treated adherent neutrophils on FN, whereas no

significant regulation was found in suspended neutrophils on

PolyHema that lacked integrin-elicited HIF1a protein expression

(Supplementary Figure 3).

We next investigated whether normobaric hypoxia produced

similar results as pharmacological PHD inhibition. Culturing

neutrophils in 1% O2 on FN, but not in normoxia (21% O2) on

FN, induced HIF1a protein in resting neutrophils and

approximately 8.5-fold more in GM-CSF-treated neutrophils.

Similar to pseudohypoxia, HIF1a protein in GM-CSF-treated

hypoxia-exposed neutrophils on FN was prevented by blocking

antibodies to b2-integrins, which was not observed in suspension

neutrophils cultured on PolyHema (S), and was strongly induced by

activating b2-integrins on PolyHema (Figures 2F, G). Our data

establish an indispensable role for b2-integrins in neutrophil HIF1a
induction under both pharmacological pseudohypoxic and

normobaric hypoxic conditions.
3.3 Neutrophils migrating toward
pseudohypoxia increase HIF1a protein with
a synergistic GM-CSF effect

During emigration from the blood into hypoxic inflammatory

sites, neutrophils move against a chemotactic gradient and interact

with extracellular matrix proteins in a b2-integrin-dependent
manner. To mimic these conditions, we performed a migration

assay using FN-coated transwells and two chemoattractants

(Figure 3A), namely GM-CSF that had, and fMLP that did not

have, a synergistic HIF1a-increasing effect with ROX (Figure 1A).

Either chemoattractant was pipetted into the lower well together with

buffer control or ROX to mimic hypoxia at the inflammatory site.

Neutrophil migration toward the two chemoattractants was similar

and was not affected by HIF1a activation with ROX (Figure 3B).

However, neutrophils from the lower well that had migrated towards
frontiersin.org
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GM-CSF/ROX increased HIF1a significantly more than those that

had migrated toward fMLP/ROX (Figure 3C). In addition, HIF

inhibition with YC1 (Figure 3D) also did not affect neutrophil

transmigration (Figure 3E) but abrogated HIF1a protein

accumulation in transmigrated neutrophils (Figure 3F). These data
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further support the notion that HIF1a is strongly induced in

neutrophils migrating into inflammatory sites where hypoxia and

specific cytokines synergistically increase HIF1a. Next, we

investigated mechanisms by which GM-CSF and b2-integrins
cooperate in HIF1a protein induction under pseudohypoxia.
FIGURE 1

HIF1a protein expression under pseudohypoxia and inflammatory conditions in human myeloid cells. (A) Freshly isolated human neutrophils were
left unstimulated (US) or treated in parallel with the indicated inflammatory mediators (TNFa 2 ng/ml, GM-CSF 20 ng/ml, IL6 20 ng/ml, IL8 100 nM,
fMLP 10 nM, LPS 1 µg/ml, and G-CSF 100 ng/ml) in the presence of buffer (BU) or 15 µM ROX for 4 h in Eppendorf tubes (n=5). HIF1a was detected
using immunoblotting with a specific antibody followed by an assessment of the optical densities (OD) of the bands. The ROX condition was set as a
reference for the statistical analysis of the HIF1a protein fold change. A representative experiment is shown. (B) Freshly isolated human monocytes
were incubated in the presence of BU or ROX with the indicated stimuli for 4 h in tubes (n=3–5). A representative experiment is depicted. Statistical
analysis was performed by repeated measure one-way ANOVA (neutrophils, A) or mixed-effects analysis (monocytes, B) with Šidák’s multiple
comparison test of the conditions investigated in parallel. ns, not significant. p<0.05 (*), p<0.01 (**), p<0.001 (***).
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FIGURE 2

Integrin-dependent HIF1a protein expression in human neutrophils. (A) Freshly isolated human neutrophils were incubated in fibronectin (FN)-coated
wells (gray bars), either unstimulated (US) or treated with 20 ng/ml GM-CSF in the absence (buffer, BU) or presence of 15 µM ROX for 4 h. Parallel

stimulation was performed in Eppendorf tubes (T, white bars) (n=5). Phase contrast microscopy on an Invitrogen™ EVOS™ Digital Fluorescence
Microscope (with an integrated Sony ICX445 monochrome CCD camera and software) was performed after 60 min, indicating adhesion and spreading
on FN (original magnification 20×, numerical aperture 0.4, bar represents 200 µm). The lower picture section is depicted. HIF1a was detected by
immunoblotting. HIF1a protein fold change was normalized to the ROX condition in tubes (T). (B) Freshly isolated human neutrophils were cultured in
suspension on PolyHema-coated wells (S, hatched bars) and in tubes (T) in parallel (n=3). Treatment and analyses were performed as in (A). Note that
cells on PolyHema-coated wells were mostly isolated from each other and did not spread. (C) 20 µg blocking mAbs to CD11b (11b) and CD18 (18) or
isotype control (Iso) was added to neutrophils on FN (n=5) and in (D) neutrophils stimulated in Eppendorf tubes (T) (n=3). The ROX condition served as
a control for the HIF1a fold change calculations. (E) 10 µg activating mAbs to CD11b (11b), CD18 (18), or isotype control (Iso), respectively, were added
to suspended (S) neutrophils (n=5). The ROX condition served as a control for the HIF1a fold change calculations. (F) Suspended (S) neutrophils and
neutrophils on FN were treated with 20 ng/ml GM-CSF or untreated (US) under normoxia (21% O2, Nx) or normobaric hypoxia (1% O2, HY) for 4 h
(n=3). When indicated, cells were preincubated with 20 µg of isotype control (Iso) or blocking mAb to CD18 (18). (G) Suspended (S) neutrophils were
incubated with 20 ng/ml GM-CSF or untreated (US) under normoxia (21% O2, Nx) or normobaric hypoxia (1% O2, HY) for 4 h. Where indicated, the
cells were preincubated with 10 µg of activating mAbs to CD11b (11b) and CD18 (18). The HY condition served as a control for the HIF1a fold change
calculations. (A–F) Statistical analysis was performed by repeated measure one-way ANOVA with Šidák’s multiple comparison test. Significance was
tested by the ratio-paired t-test in (G). ns, not significant. p<0.05 (*), p<0.01 (**), p<0.001 (***).
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FIGURE 3

Neutrophil migration toward ROX induces HIF1a protein expression that is synergistically increased by GM-CSF. (A) A schematic of the experimental
setting is depicted (created with biorender.com). Neutrophil migration across 3 µM FN-coated transwells and HIF1a protein was studied after 4 h at
37°C. The lower well was prepared with HBSS++ (NC), buffer (BU), 15 µM ROX, 10 nM fMLP, or 20 ng/ml GM-CSF or combinations thereof as
indicated. (B) Migrated neutrophils in the lower well were quantified using a colorimetric MPO assay (n=6). Arbitrary units (AU) were calculated based
on the results of the fMLP+BU condition in each experiment. (C) Migrated lower well neutrophils were assessed for HIF1a by immunoblotting (n=6).
A representative blot and the corresponding statistics are shown. (D) Neutrophils were pre-treated with 10 µM YC1 or buffer (BU) for 1 h at 37°C
prior to neutrophil migration. The lower well was prepared with buffer (BU), 10 µM YC1, 20 ng/ml GM-CSF, or combinations thereof as indicated.
(E) Migrated neutrophils in the lower well were quantified using a colorimetric MPO assay (n=4). Arbitrary units (AU) were calculated based on the
results of the GM-CSF+BU condition in each experiment. (F) Migrated lower well neutrophils were assessed for HIF1a by immunoblotting (n=4). A
representative blot and the corresponding statistics are shown. (B, C, E, F) Statistical analysis was performed by repeated measure one-way ANOVA
with Šidák’s multiple comparison test. ns, not significant. p<0.05 (*), p<0.0001 (****).
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3.4 GM-CSF induces JAK2-STAT3-
mediated HIF1a transcription that is
necessary but not sufficient to increase
HIF1a protein in adherent neutrophils
under pseudohypoxia

We hypothesized that GM-CSF upregulates HIF1a transcription

leading to increased HIF1a protein when PHDs are inhibited. To

evaluate whether neutrophil HIF1a transcription contributes to

neutrophil HIF1a protein expression, we employed the dsDNA

intercalating agent actinomycin D (ActD) to inhibit the

transcription of RNA (36). We detected constitutive HIF1a mRNA

in resting neutrophils on FN that was not affected by ROX but

significantly upregulated by GM-CSF (Figure 4A), resulting in

increased HIF1a protein when PHDs were inhibited by ROX

(Figure 4B). ActD treatment for 4 h inhibited HIF1a transcription

in ROX- and GM-CSF-treated neutrophils (Figure 4A) and decreased

HIF1a protein in GM-CSF/ROX-treated neutrophils, indicating the

need for continuously active HIF1a transcription (Figure 4B).

We used the JAK2 inhibitor AZD1480 to suppress GM-CSF-

induced STAT3 phosphorylation (Figure 4C). AZD1480 abrogated

the synergistic GM-CSF effect on HIF1a protein in neutrophils on FN

(Figure 4D) by inhibiting GM-CSF-enhanced HIF1a transcription

(Figure 4E). These data indicate that GM-CSF increases HIF1a
mRNA, at least in part, using the JAK2-STAT3 pathway.

We then assessed HIF1a transcription in neutrophils incubated in

PolyHema, tube, and FN conditions. GM-CSF caused a similar HIF1a
mRNA increase under all three conditions (Figure 4F) but resulted in

detectable HIF1a protein only when b2-integrins were engaged (see

Figure 4). In addition, blocking b2-integrins in neutrophils on FN did

not decrease, and activating b2-integrins in suspended neutrophils on

PolyHema (S) did not increase, HIF1a transcription (Supplementary

Figure 4). Thus, basal and GM-CSF-upregulated HIF1a transcription

are necessary but not sufficient to explain the corresponding HIF1a
protein expression in adherent neutrophils under pseudohypoxia and

normobaric hypoxia. Consequently, we hypothesized that GM-CSF

increased HIF1a transcription but that b2-integrins are essential for

translation to yield HIF1a protein.
3.5 b2-integrins increase essential HIF1a
translational initiation factor
phosphorylation, explaining the adhesion
dependency of HIF1a protein

To assess the contribution of translation to basal and GM-CSF-

upregulated HIF1a protein in neutrophils on FN, we treated neutrophils

on FNwith the translation elongation inhibitor cycloheximide (CHX, 2.5

µg/ml) (37). CHX prevented HIF1a protein in resting and GM-CSF-

treated neutrophils on FN under pseudohypoxia without affecting

HIF1a transcription (Figure 5A). Together with our findings on

PolyHema, namely substantial HIF1a transcription without

translation into the corresponding protein, we considered b2-integrin-
controlled HIF1a translation in human neutrophils on FN.

Translation initiation factor elF4E and 4EBP1 phosphorylation

(eIF4E: Ser209, 4EBP1: Ser65) and their subsequent dissociation are
Frontiers in Immunology 08
rate-limiting steps for 5′-cap-dependent mRNA translation (38). The

dissociation of phosphorylated 4EBP1 and eIF4E can be specifically

suppressed by the compound 4EGI-1 (39, 40). We found basal

phosphorylation of both co-factors in neutrophils on FN that

increased with GM-CSF treatment over time with a maximum at

approximately 60 min (Figure 5B). Selecting the 60-min timepoint,

GM-CSF-induced 4EBP1 and elF4E phosphorylation was

significantly reduced by the blocking CD18 antibody (Figure 5C).

Preventing eIF4E and 4EBP1 dissociation in neutrophils on FN by 25

µM of 4EGI-1 (39), HIF1a protein levels were completely abrogated

in resting and GM-CSF-stimulated neutrophils under pseudohypoxia

and normobaric hypoxia (Figure 5D).

Next, we explored mammalian target of rapamycin (mTOR)

pathway-dependent HIF1a protein accumulation in adherent

neutrophils, as the mTOR pathway is a canonical regulator of

translation in numerous cell types (41). Using phospho-specific

antibodies, we found basal mTOR phosphorylation (Ser2448) in

freshly isolated neutrophils adhering to FN that was augmented by

GM-CSF treatment and reduced by the mTOR inhibitor rapamycin

(RAP) (Figure 6A), indicating the RAP-mediated inhibition of

mTOR autophosphorylation (42). Consequently, RAP partly

reduced HIF1a protein accumulation in GM-CSF/ROX-

stimulated neutrophils adherent to FN (Figure 6B) without

affecting HIF1a transcription (Figure 6C). Together, these data

support the notion that GM-CSF-induced HIF1a transcription and

b2-integrin-mediated HIF1a mRNA translation as a conditio sine

qua non cooperate in HIF1a protein upregulation. HIF1a
translation but not transcription is, at least in part, controlled by

the mTOR pathway.
3.6 HIF1a activation restriction to
b2-integrin activation prolongs
neutrophil survival

Neutrophils that migrate from the circulation toward the

inflammatory site leave the serum-rich blood, engage b2-
integrins by interacting with extracellular matrix, and encounter

hypoxia. We mimicked these conditions by incubating

neutrophils with high (10% v/v) and low (0.1% v/v) autologous

serum (AS) concentration on FN either under pseudohypoxia

(ROX) or normobaric hypoxia (1% O2). Apoptosis was measured

after 20 h in the absence or presence of the HIF1a inhibitor YC1

to determine whether HIF1a has a role in neutrophil survival

under these conditions (Figures 7A, B). In low serum

concentration (0.1% AS), we observed significantly increased

HIF1a protein (Figure 7C) together with delayed neutrophil

apoptosis under pseudohypoxia (ROX) and hypoxia. The HIF1a
inhibitor YC1 not only abrogated HIF1a protein but also reversed

delayed neutrophil apoptosis under pseudohypoxia and hypoxia.

The apoptosis-delaying effects of pseudohypoxia and hypoxia

were less pronounced in high serum concentration (10% AS)

but were nevertheless counteracted by YC1. Our data suggest that

HIF1a activation promotes neutrophil survival, especially after

the cells left the serum-rich blood circulation migrating to their

destination in the tissue.
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FIGURE 4

Neutrophil HIF1a transcription is necessary but not sufficient for HIF1a protein expression. (A) Total RNA was isolated from neutrophils cultured in
fibronectin-coated wells (FN, gray bars) after 4 h incubation with 20 ng/ml GM-CSF or without (US), buffer (BU), 15 µM ROX, and 5 µg/ml
Actinomycin D (ActD), as indicated. Samples were subjected to HIF1a qPCR (n=4). (B) Neutrophils treated as in (A) were prepared for HIF1a
immunoblotting. A representative blot and the corresponding statistics of five experiments are shown. (C) Neutrophils cultured on FN were treated
with GM-CSF or untreated (US) for 5 min. Samples were assessed by immunoblotting for total and phosphorylated STAT3 (n=3). Pre-incubation with
1 µM JAK2 inhibitor AZD1480 (AZD) for 30 min on ice was used to suppress GM-CSF-induced STAT3 phosphorylation. A representative blot and the
corresponding statistics are shown. (D, E) Neutrophils cultured on FN were stimulated with 20 ng/ml GM-CSF or unstimulated (US) without (BU) or
with 15 µM ROX for 4 h in the absence or presence of 1 µM AZD1480 (n=5). Protein and total RNA were isolated to detect (D) HIF1a protein and (E)
mRNA, respectively. A representative immunoblot and the statistics are depicted. (F) Total RNA was isolated for HIF1a qPCR from neutrophils
cultured for 4 h in suspension (S, hatched bars), Eppendorf tubes (T, white bars), or on FN (gray bars) in the presence of the indicated stimuli (n=3–
4). The ROX condition was set as reference for DDCT calculations and statistical analysis. (A–F) Statistical analysis was performed by repeated
measure one-way ANOVA with Šidák’s multiple comparison test. ns, not significant. p<0.05 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****).
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4 Discussion

Neutrophils and monocytes are exposed to hypoxia during

health (43) and a wide spectrum of diseases ranging from

malignancies (44) to various inflammatory conditions (5, 45).

During inflammation, myeloid cells employ integrins to emigrate

from the blood circulation to inflammatory sites (2), becoming
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exposed to inflammatory mediators and hypoxia (3). Hypoxia leads

to PHD inhibition, allowing HIF pathway activation. Recently,

drugs have been developed that inhibit PHDs independent of

oxygen tension, a condition named pseudohypoxia. Our study

investigated the interplay between hypoxia or pseudohypoxia,

inflammatory mediators, and adhesion in human myeloid cells

and revealed several important findings. First, various inflammatory
FIGURE 5

b2−integrins control HIF1a translation by phosphorylation of translational initiation factors. (A) Neutrophils cultured on FN were treated with or
without (US) 20 ng/ml GM-CSF, buffer (BU), 15 µM ROX, and 2.5 µg/ml cycloheximide (CHX) as indicated. After 4 h, protein and total RNA were
isolated from the samples. A representative HIF1a immunoblot (n=3) and results from HIF1a qPCR (n=4) are shown. The ROX sample was set as a
reference for statistical analysis. (B) Neutrophils on FN were treated with BU or 20 ng/ml GM-CSF for the indicated timepoints. Immunoblotting
for phospho-eIF4E (Ser209) and phospho-4EBP1 (Ser65) was performed. A representative blot of two phosphorylation time courses is presented.
(C) Neutrophils on FN were treated without (US) or with 20 ng/ml GM-CSF, BU, 15 µM ROX, isotype (Iso), and 20 µg CD18 blocking mAb (18), as
indicated. After 60 min, samples were harvested and immunoblotting performed (n=5). A representative blot is presented together with the
corresponding statistical analysis. (D) Neutrophils on FN were incubated with GM-CSF or US, BU, ROX, and 25 µM 4EGI-1 (EGI), as indicated, under
normoxia (21% O2) or normobaric hypoxia (1% O2). After 4 h, samples were harvested and HIF1a immunoblotting was performed (n=5). An exemplary
blot is given together with the corresponding statistics. (A–D) Statistical analysis was performed by repeated measure one-way ANOVA with Šidák’s
multiple comparison test. ns, not significant. p<0.05 (*), p<0.01 (**), p<0.001 (***).
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mediators did not induce HIF proteins but caused additive or

synergistic HIF1a activation under hypoxic and pseudohypoxic

conditions in human neutrophils, an effect not observed in human

monocytes. Second, b2-integrins were indispensable for HIF1a
protein increase restricting this pathway to neutrophils engaging

b2-integrins. Mechanistically, continuous HIF1a transcription was
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necessary but not sufficient for HIF1a protein accumulation unless

b2-integrins initiated mRNA translation. Third, HIF1a activation

consistently delayed apoptosis in neutrophils interacting in low

serum concentrations with extracellular matrix under hypoxia and

pseudohypoxia—factors characteristic for neutrophils at

extravascular inflammatory sites.
FIGURE 6

Adherent neutrophils engage the mTOR pathway in HIF1a translation. (A) Freshly isolated neutrophils cultured on FN were treated with GM-CSF (20
ng/ml) or left untreated (US) for 30 min. Samples were assessed by immunoblotting for total and phosphorylated mTOR at Ser2448 (n=4). Pre-
incubation with 100 nM mTOR inhibitor rapamycin (RAP) for 30 min on ice suppressed mTOR phosphorylation. Representative immunoblots and the
corresponding statistics are given. (B, C) Freshly isolated neutrophils cultured on FN were stimulated with 20 ng/ml GM-CSF or left unstimulated
(US) with buffer control (BU) or 15 µM ROX for 4 h in the absence or presence of 100 nM RAP (n=4). Protein and total RNA were isolated to detect
(B) HIF1a protein and (C) HIF1a mRNA, respectively. A representative immunoblot and the statistics are depicted. The ROX condition was set as a
reference for DDCT calculations and statistical analysis. (A–C) Statistical analysis was performed by repeated measure one-way ANOVA with Šidák’s
multiple comparison test. ns, not significant. p<0.05 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****).
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In contrast to our findings in human cells, HIF1a activation was

reported in murine myeloid cells stimulated with inflammatory

mediators under normoxic conditions, including LPS and bacterial

components that were also used in our experiments (24, 25). Data on

primary human myeloid cells are scarce (26). In agreement with these

data, we found that inflammatory mediators did not induce significant

HIF1a protein under normoxia. However, once human neutrophils
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were exposed to hypoxia or pseudohypoxia, some of these compounds

provided additive or synergistic HIF1a-activating effects. Of note,

despite several positive control experiments, we did not detect HIF2a
protein. In contrast to human neutrophils, no additive or synergistic

signal was provided by the same compounds in human monocytes.

Conceivably, our observations are relevant at hypoxic inflammatory

sites or when patients treated with PHD inhibitors acquire infections.
FIGURE 7

Integrin-dependent HIF1a retards neutrophil apoptosis in extravascular microenvironments. Freshly isolated human neutrophils were cultured in
RPMI medium supplemented with either 0.1% or 10% autologous serum (AS) in fibronectin-coated wells (FN) under normoxia (21% O2, Nx, deep
blue) or normobaric hypoxia (1% O2, HY, pale blue), and treated with 15 µM ROX, 10 µM YC1, or buffer (BU), as indicated. (A) Apoptosis was
measured by Annexin V-APC labeling and 7-AAD staining after 20 h (n=5). Dot plots of a representative experiment are shown. (B) The
corresponding statistics of all apoptosis measurements are given. (C) HIF1a immunoblotting was performed in parallel after a 4h incubation. A
representative blot is depicted together with the corresponding statistics. (B, C) Bars of normoxic (deep blue) and hypoxic (pale blue) experimental
conditions are filled with the same color as the dot plot background in (A). Statistical analysis was performed by repeated measure one-way ANOVA
with Šidák’s multiple comparison test. ns, not significant. p<0.05 (*), p<0.01 (**), p<0.001 (***).
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Our study expands insights into the regulation of HIF pathway

activation in human neutrophils, providing a new HIF-restraining

mechanism in which b2-integrin engagement is indispensable for

HIF1a protein increase. We used fibronectin as a natural ligand (46–

48) as well as activating and blocking antibodies to CD11b/CD18 to

characterize this CD11b/CD18 receptor-dependent mechanism. Our

experiments focused on CD11b/CD18, the most abundant b2-
integrin (49, 50), and did not exclude similar effects of other b2-
integrins on HIF1a protein. PECAM-1, which controls homotypic

neutrophil interactions (51, 52), did not provide the necessary co-

stimulus for HIF1a activation in neutrophils (Supplementary

Figure 5). We propose that suspension neutrophils are not capable

of strong HIF activation even when PHDs are inhibited or in

combination with inflammatory mediators. This observation may

become relevant in sepsis patients with hypoxia and in autoimmune

vasculitis patients with high circulating (53) or kidney GM-CSF (54)

levels. In fact, our findings are consistent with studies that failed to

detect HIF signatures in human peripheral blood neutrophils (55)

despite recurring hypoxia exposure in, for example, dermal,

intestinal, and renal capillaries (43, 56, 57). Moreover, a recent

study in patients with severe COVID-19 combined peripheral

blood single-cell RNA sequencing with single-cell proteomics.

Despite hypoxia, a HIF1a transcriptomic signature in one of eight

identified neutrophil subclusters did not translate into proteomic data

and transcription factor network analysis (27). By contrast,

transcriptomic sequencing of transmigrated human neutrophils

sampled from nasopharyngeal swabs (28) or broncho-alveolar fluid

(29) in COVID-19 revealed upregulation of the HIF1a downstream

target gene VEGFA, indicating successful HIF1a protein translation

(28, 29). Recently, the mechanosensor PIEZO1 was implicated in

neutrophil HIF1a stabilization during transmigration (58). Future

studies investigating the interaction between b2-integrins, HIFs, and

PIEZO1-mediated mechanosensation in human neutrophils

are needed.

Dissecting the synergistic GM-CSF effect, we identified a strong

transcriptional HIF1a response to GM-CSF stimulation via the

JAK2-STAT3 pathway. Other groups also demonstrated that GM-

CSF upregulated HIF1a transcription via STAT3 in myeloid cell

types (59). ActD promptly shut down HIF1a protein, indicating high

HIF1a mRNA turnover with a short half-life in human neutrophils.

Even with PHD inhibition, continuous HIF1a transcription was

necessary to ensure HIF1a protein abundance. Notably, GM-CSF

strongly increased constitutive HIF1a transcription in both

suspended and adherent neutrophils, yet the corresponding protein

was detected only in the latter. Together, these data established that

HIF1a transcription is necessary but not sufficient for HIF1a protein.

Furthermore, our experiments using blocking and activating b2-
integrin antibodies underscored that HIF1a transcription is

independent from integrin signaling. Subsequent experiments

revealed the indispensable mechanistic role of b2-integrins for the

protein translation process mediated by the phosphorylation of

essential initiation factors. In fact, the phosphorylation of 4EBP1

and eIF4E was shown to be essential for the initiation of 5′-cap-
dependent translation (38, 60). As the mTOR pathway is a critical

regulator of protein translation (41, 61, 62), we investigated the

mTOR contribution to HIF1a protein accumulation in human
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neutrophils. We found that GM-CSF-enhanced mTOR activity in

adherent neutrophils contributed to HIF1a protein accumulation.

Thus, both JAK2-STAT3 and mTOR inhibition reduced GM-CSF-

induced HIF1a protein accumulation, but through two distinct

mechanisms. The JAK2-STAT3 pathway targeted HIF1a
transcription, whereas mTOR acted via HIF1a translation. In the

context of HIF activation and human neutrophil survival, we

observed that HIF1a delayed constitutive apoptosis in neutrophils

exposed to a typical extravascular microenvironment where b2-
integrins engage extracellular matrix components, O2 tension is

low, and serum factors are diluted. Thus, our data support the

notion that HIF1a controls the neutrophil fate during recruitment

to tissues. The importance of b2-integrins for the survival of migrated

neutrophils is supported by a study by Haist et al. in which the

investigators detected increased apoptotic rates in transmigrated

CD18-defective neutrophils compared with CD18-competent

neutrophils in a murine model of pulmonary infection (63).

However, the specific role of HIF was not studied. Delayed human

neutrophil apoptosis by HIF1a activation was reported in some (64,

65) but not all (17) previous studies. Conceivably, culturing

neutrophils under strict b2-integrin-engaging and low serum factor

conditions in our study revealed the consistent HIF1a dependency of

the hypoxic and pseudohypoxic anti-apoptotic effect. Whether or not

additional human neutrophil functions are HIF-controlled remains

to be determined.

In summary, we describe complex interactions of hypoxic and

pharmacological PHD inhibition with inflammatory mediators and

b2-integrins cooperating in the HIF1a pathway activation in human

neutrophils. We characterize a novel translation mechanism that

limits HIF1a activation to neutrophils engaging b2-integrins. We

propose that this mechanism is relevant for the cell survival of

neutrophils migrating to extravascular sites, e.g., in inflammatory

bowel disease, abscesses, and pyelonephritis.
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