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Background

Coronary artery disease (CAD) imposes a significant global health burden, necessitating a deeper comprehension of its genetic foundations to uncover innovative therapeutic targets. Employing a comprehensive Mendelian randomization (MR) approach, we aimed to explore the genetic associations between lipid profiles, immune cell phenotypes, and CAD risk.





Methods

Utilizing data from recent large-scale genome-wide association studies (GWAS), we scrutinized 179 lipid and 731 immune cell phenotypes to delineate their genetic contributions to CAD pathogenesis, including coronary artery calcification (CAC). Moreover, specific immune cell phenotypes were examined as potential mediators of the lipid-CAD/CAC causal pathway.





Results

Among the 162 lipid species with qualified instrumental variables (IVs) included in the analysis, we identified 36 lipids that exhibit a genetic causal relationship with CAD, with 29 being risk factors and 7 serving as protective factors. Phosphatidylethanolamine (18:0_20:4) with 8 IVs (OR, 95% CI, P-value: 1.04, 1.02-1.06, 1.50E-04) met the Bonferroni-corrected significance threshold (0.05/162 = 3.09E-04). Notably, all 18 shared lipids were determined to be risk factors for both CAD and CAC, including 16 triacylglycerol traits (15 of which had ≥ 3 IVs), with (50:1) exhibiting the highest risk [OR (95% CI) in CAC: 1.428 (1.129-1.807); OR (95% CI) in CAD: 1.119 (1.046-1.198)], and 2 diacylglycerol traits. Furthermore, we identified HLA DR+ natural killer cells (IVs = 3) as nominally significant with lipids and as potential mediators in the causal pathway between diacylglycerol (16:1_18:1) or various triacylglycerols and CAD (mediated effect: 0.007 to 0.013).





Conclusions

This study provides preliminary insights into the genetic correlations between lipid metabolism, immune cell dynamics, and CAD susceptibility, highlighting the potential involvement of natural killer cells in the lipid-CAD/CAC causal pathway and suggesting new targets for therapy. Further evidence is necessary to substantiate our findings.
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Introduction

Coronary artery disease (CAD) remains a leading cause of global morbidity and mortality, necessitating continuous efforts to elucidate its complex pathogenesis and identify novel therapeutic targets. Dyslipidemia’s pivotal role in CAD development is well-established, but emerging evidence suggests that immune-inflammatory pathways, mediating lipid metabolism cascades, also play crucial roles in disease pathophysiology (1, 2). Understanding the intricate interplay between lipid metabolism and immune regulation may yield new insights into CAD mechanisms and pave the way for innovative therapeutic interventions.

Lipids play a central role in CAD onset and progression, with dyslipidemia recognized as a major risk factor for atherosclerosis and subsequent coronary events. Plasma lipids, typically measured through high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides, and total cholesterol, have been extensively studied (3, 4). Advanced lipidomic techniques have significantly expanded our understanding of circulating lipid variability and breadth (5, 6). Finer lipid classifications, such as cholesterol esters, ceramides, phosphatidylcholines, lysophosphatidylcholines, and diacylglycerols, offer potential improvements in CAD risk assessment (7). Additionally, ongoing advancements in omics technologies provide opportunities to identify genetic variants underlying a broad spectrum of lipid and immune cell phenotype determinants, potentially offering new intervention targets for cardiovascular diseases (8). However, specific lipid species’ potential impacts on CAD risk and the role of immune cells therein remain incompletely investigated.

In this study, we employed Mendelian randomization (MR) analysis to comprehensively investigate a wide array of 179 lipid profiles, assessing their genetic susceptibility to CAD and coronary artery calcification (CAC) (7). Additionally, we integrated genetic data from 731 immune cell phenotypes, utilizing a two-step MR analysis to evaluate their potential mediation in the lipid-CAD/CAC connection (9).

Our findings provide new insights into the complex genetic architecture of CAD and underscore the interdependence between lipid metabolism and immune cell dynamics in disease susceptibility. By revealing the genetic pathways linking lipids, immune cells, and CAD risk, our study offers new avenues for developing targeted therapeutic interventions aimed at mitigating CAD burden and improving patient prognosis. Importantly, this study employs an exploratory MR design, aiming not only to generate hypotheses and provide preliminary insights into the causal relationships between lipids, immune cells, and CAD/CAC but also to leverage genetic instruments to infer causality. This exploratory nature sets the stage for future research to build upon our findings and move toward more definitive conclusions.





Methods




Study overview

Our research aimed to uncover genetic factors associated with CAD by examining an expansive set of 179 lipid profiles, shedding light on deeper disease mechanisms and identifying new avenues for treatment. Drawing from a comprehensive lipidomic study, we extracted the respective genetic instrumental variables (IVs) related to lipid categories from 179 GWAS to evaluate their genetic predisposition to CAD through an MR approach. Additionally, we explored the genetic influence of significantly linked lipids on CAC risk. Our study also integrated recent genetic data on 731 immune cell phenotypes to assess the role of specific immune cells as potential intermediaries in the lipid-CAD/CAC connection, utilizing a two-step MR analysis (Figure 1). This comprehensive analysis aims to enhance our understanding of genetic underpinnings under CAD and pave the way for novel therapeutic interventions.




Figure 1 | Study process overview. The study first conducts MR to assess the association between lipids and CAD/CAC, followed by a Two-Step MR approach. Step 1 identifies immune cell phenotypes associated with CAD/CAC, and Step 2 examines the causal link between these immune cells and lipid profiles, suggesting potential mediation pathways.







Source of genetic information for included phenotypes

Our research utilized lipidomic data from a comprehensive analysis of 179 lipid species in a Finnish cohort, with datasets recorded in the HGRI-EBI Catalog (Study ID: GCST90277238 to GCST90277416) and detailed lipidome data accessible at https://www.ebi.ac.uk/gwas/publications/37907536 (7). GWAS of 179 lipidomes were batch downloaded and formatted in R software. We analyzed CAD using GWAS data from 181,522 cases among 1,165,690 participants, mainly of European descent, available at the Common Metabolic Diseases Knowledge Portal (CVDKP) (https://cvd.hugeamp.org/downloads.html#summary) (10). The latest CAC GWAS data, involving 26,909 Europeans, was also sourced from CVDKP (11). Additionally, we accessed GWAS data for 731 immune cell traits from 3,757 individuals from Sardinia via the IEU open GWAS database (https://gwas.mrcieu.ac.uk/), with access numbers ranging from ebi-a-GCST90001391 to ebi-a-GCST90002121 (9). All datasets comply with ethical guidelines from their respective studies, negating the need for further ethical approval for our secondary analysis.





Genetic instruments of exposure

To ascertain causal connections between lipid and immune cell profiles (exposure) and CAD and CAC, we utilized exposed IVs as genetic proxies. Data processing was conducted primarily with the TwoSampleMR package (version 0.5.8) in R. We began by aligning the datasets to a common reference genome build (GRCh37) to ensure consistent genomic coordinates. Subsequently, all datasets were standardized, focusing on allele coding and effect size representation. We extracted relevant single nucleotide polymorphisms (SNPs) associated with lipid and immune cell phenotypes from GWAS summary statistics using the extract_instruments function. These SNP as IVs, serving as genetic surrogates, were selected based on their significant genetic correlations (P < 5 × 10-8) and minimal linkage disequilibrium (r² < 0.001) within a 10,000 kb span. Ensuring the ancestry of control and case samples was well-matched was critical to avoid confounding; traits without suitable IVs were excluded from the analysis. We excluded SNPs with F-statistic values under 10 to maintain instrument strength. Only phenotypes with SNPs meeting these criteria for correlation and independence were considered for analysis. True to the exclusion restriction principle for MR, our analysis focused on SNPs linked exclusively to lipid and immune cell levels, excluding empirically inferred potential confounding effects (smoking, alcohol consumption, hypertension, diabetes, BMI, lipid-lowering drugs, antihypertensives, and antidiabetic medications) on CAD/CAC risk using the NCBI’s LDlink tool by significant genetic correlations (P < 5 × 10-8) (12). The corresponding outcome data for the selected SNPs were extracted using the extract_outcome_data function, and the exposure and outcome datasets were harmonized with the harmonise_data function to align effect alleles (e.g., A/T, C/G). During the harmonization process (set the action = 2), palindromic variants with allele frequencies near 0.5 are typically excluded due to the challenge in accurately aligning them. Finally, we performed MR estimation and sensitivity analyses to validate the reliability of our findings.





Statistical analysis




MR estimates of lipidome and CAD、CAC

To evaluate the causal impact of lipid profiles on CAD and CAC, our analysis utilized the TwoSampleMR package in R (version 4.3.1), applying the inverse variance weighting (IVW) method for variables with multiple genetic IVs and the Wald ratio for single-IV traits. The IVW method assumes all IVs are valid and non-interacting, suitable for complex variables. To enhance result reliability and minimize false positives, we employed the MR-Robust adjusted profile score (RAPS) technique from the mr.raps package (version 0.4.1), offering stabilized and accurate causal assessment through offering consistent and asymptotically normal estimators by adjusting the profile score to provide robustness to pleiotropy and weak instruments (13). To address the issue of multiple comparisons given the numerous lipids examined, we utilized the Bonferroni correction, which is a conservative method for reducing the likelihood of false positives. The adjusted significance threshold was set at P < (0.05 divided by the number of trait/SNP) and when the P-value does not reach the adjusted significance threshold but remains below 0.05, it is considered nominally significant. We aim to identify a broad range of potential associations, capturing initial signals that might be missed with stricter thresholds. The exploratory nature of this study is intended to generate genetic causal hypotheses, uncovering interesting patterns and associations for future, more targeted investigations. MR-Egger regression assessed pleiotropy in multi-IV analyses, with intercept P-values > 0.05 supporting result credibility.





Two-step MR estimates for immune cells as mediators in lipid-CAD/CAC association

Our investigation deepened the understanding of how lipid profiles potentially modulate CAD risk by affecting immune cell behaviors. Utilizing a two-step MR strategy (14), we initially pinpointed the direct influence of specific lipids on CAD, and CAC, and we derived common lipid types that potentially affect CAD and CAC. In the first step of MR, we determined which immune cell phenotypes were statistically significantly associated with CAD. In the second step, we can analyze the causal relationship between the lipids co-associated with CAC, CAD, and these specific immune cell phenotypes, shedding light on how lipid variations may predispose to CAD through immune modulation (Figure 1). Mediating candidates are recognized as logically consistent based on the direction of the MR effect. This dual-phase analysis underscored the interplay between lipid metabolism and immune cell dynamics, offering insights into novel genetic pathways that may underlie the lipid-immune influence on CAD risk. Significance thresholds were similarly corrected using 0.05 divided by the number of traits being compared.







Results




Lipids significantly causally associated with CAD

The causal association between lipids and CAD was investigated in our study. Initially, we identified the IVs for 179 lipid species, ensuring strong correlation and independence criteria were met. IVs for 162 lipids were successfully identified, with computed F-statistic values ranging from 29.79 to 1946.15, indicating no weak instrumental bias (Supplementary Table 1). Utilizing the IVW/Wald ratio for MR, we found that 36 lipids were genetically causally associated with CAD, with 29 acting as risk factors and 7 as protective factors (Figure 2A, Supplementary Table 2). This preliminary observation highlights a significant subset of lipid groups potentially influencing CAD risk. Specifically, Phosphatidylcholine (O-18:0_16:1) (OR, 95% CI, P-value: 0.85, 0.80-0.91, 3.21E-06), Phosphatidylethanolamine (18:0_20:4) (OR, 95% CI, P-value: 1.04, 1.02-1.06, 1.50E-04), Triacylglycerol (50:1) (OR, 95% CI, P-value: 1.12, 1.05-1.19, 2.65E-04), and Phosphatidylcholine (16:0_18:1) (OR, 95% CI, P-value: 1.12, 1.05-1.19, 2.70E-04) all met the Bonferroni-corrected significance threshold (0.05/162 = 3.09E-04) (Supplementary Table 2).




Figure 2 | MR results for lipidomes, immune cell phenotypes, and CAD. (A) Volcano plot showing IVW/Wald ratio effect estimates between lipidomes and CAD, with significant lipid species highlighted in red; (B) Bubble plot displaying MR-RAPS estimates of significant lipids associated with CAD through IVW/Wald ratio estimation; (C) Volcano plot illustrating IVW/Wald ratio effect estimates between immune cells and CAD; (D) Bubble plot illustrating MR-RAPS estimates of significant immune cell phenotypes associated with CAD through IVW/Wald ratio estimation. Two immune cell types with horizontal pleiotropic bias are highlighted in red.



To corroborate the MR findings, robust RAPS analysis was conducted on the 36 lipids, revealing that 32 lipids passed the nominal significance threshold, including 26 risk factors (17 triacylglycerols, 4 Phosphatidylcholines, 2 Diacylglycerols, Sterol ester (27:1/20:2), Phosphatidylethanolamine (18:0_20:4) and Phosphatidylinositol (16:0_20:4)) and 6 protective factors (5 Phosphatidylcholines and Ceramide (d40:2)) (Figure 2B, Table 1, Supplementary Table 3). Elevated levels of 17 triacylglycerols were positively correlated with increased CAD risk (Odds Ratio, OR > 1). Importantly, the findings regarding finely categorized phosphatidylcholine traits, with 5 specific phosphatidylcholines exhibiting protective association against CAD (OR < 1). Conversely, 4 specific phosphatidylcholines were identified as strongly associated with elevated CAD risk, with phosphatidylcholine (16:1_18:0) demonstrating the highest risk (OR: 1.138, 95% CI: 1.036-1.251, P = 0.007) (Figure 2B, Table 1, Supplementary Table 3). To address potential directional horizontal pleiotropy bias in the MR results, Egger’s intercept test was performed for phenotypes with more than three IVs. The P values of the five MR estimate consistently exceeded 0.05, indicating an absence of bias by pleiotropy and thus enhancing the validity of our causal inferences (Table 2, Supplementary Table 4).


Table 1 | Robust adjusted profile score (RAPS) estimates for lipidomes found to be significantly causally associated with coronary artery disease (CAD) by the IVW/Wald ratio methods.




Table 2 | Directional horizontal pleiotropy in the causal association of lipid and immune cell groups with CAD as assessed by MR-Egger regression.







Immune cell phenotypes genetically associated with CAD

Given the well-established role of immune cells in CAD, we aimed to assess the causal association of 731 immune cell phenotype groups with CAD. Utilizing similar criteria as for lipid species, we identified IVs for these immune cell phenotypes. Out of 731 phenotypes, 614 species with eligible IVs were successfully identified, with calculated F-statistic values greater than 10 (29.85 to 5062.70) (Supplementary Table 5). MR results revealed that 38 immune cell phenotypes with nominal significance were genetically causally associated with CAD, with 9 showing positive correlations and 29 showing negative correlations (Figure 2C, Supplementary Table 6). Robust RAPS analysis of these 38 correlated immune cells confirmed significant associations for 33 phenotypes, including 25 negative and 8 positive correlations (Figure 2D, Supplementary Table 7). Assessment of pleiotropy using MR-Egger’s method identified 2 immune cell phenotypes (CD64 on monocyte and CD64 on CD14+ CD16- monocyte) with potential bias due to pleiotropy in their estimates of CAD (Figure 2D, Table 2, Supplementary Table 8). Consequently, 31 immune cell phenotypes (9 phenotypes with ≥3 IVs and CD24+ CD27+ B cell %B cell passed significance threshold correction) were ultimately identified as having a significant causal association with CAD, comprising 23 protective factors and 8 risk factors.





Lipidome and immune cell phenotypes associated with CAC

CAC serves as a prominent pathological hallmark of CAD (11). Here we utilized the recently released CAC GWAS data to characterize potentially genetically associated lipid profiles and immune cell phenotypes. Initially, employing the IVW/Wald ratio, we identified 39 lipid types significantly associated with CAC (Supplementary Table 9). Subsequent robust RAPS analyses excluded 5 potentially non-significant lipids, leaving 34 lipids confirmed to have a robust causal relationship with CAC. Notably, 18 of these lipids also exhibited a causal relationship with CAD, underscoring their importance in CAD pathology. Importantly, all 18 shared lipids were identified as risk factors for both CAD and CAC, comprising 16 triacylglycerol traits (15 species with ≥ 3 IVs) with (50:1) representing the highest risk [OR (95% CI) in CAC: 1.428 (1.129-1.807); OR (95% CI) in CAD: 1.119 (1.046-1.198); P <0.05/3] and 2 diacylglycerol traits, including (18:1_18:2) [OR (95% CI): 1.212 (1.058-1.388), P<0.05/5] and (16:1_18:1) [OR (95% CI): 1.370 (1.055-1.780), P<0.05/2] (Table 3, Supplementary Table 10). Assessment of pleiotropy did not invalidate the aforementioned causal assessment (P > 0.05) (Table 4, Supplementary Table 11).


Table 3 | RAPS estimation for lipidomes significantly causally associated with coronary artery calcification (CAC) by the IVW/Wald ratio methods.




Table 4 | Directional horizontal pleiotropy in the causal relationship of lipid and immune cell groups with CAC as assessed by MR-Egger regression.



Regarding immune cells, MR results suggested that 23 immune cells were causally related to CAC (Supplementary Table 12), and RAPS estimates further confirmed the robustness of causality for 19 immune cells, including 9 negative and 10 positive correlations (Supplementary Table 13). MR-Egger estimation did not reveal the presence of horizontal pleiotropy (Table 4, Supplementary Table 14). Interestingly, the analysis of immune cells with CAC yielded only one duplicate finding that passed corrected significance, CD24+ CD27+ B cell %B cell, compared to the CAD analysis.





Immune cell-mediated lipid-CAD/CAC causal pathway

In light of the potential for lipids to influence CAD through modulation of immune cell phenotypes, we employed a two-step MR approach to evaluate immune cell types as potential mediators of the lipid-CAD/CAC causal pathway. We specifically focused on the 18 immune cell phenotypes that are co-associated with both CAD and CAC, and MR-estimated them against the 31 immune cell phenotypes robustly associated with CAD.

Our analysis revealed that 14 lipid levels, comprising 13 triglycerides and 1 diacylglycerol, were inversely genetically correlated with SSC-A on HLA DR+ Natural Killer cells (IVs = 3, βIVW: -0.291 to -0.526) at a nominal significant level (Corrected standard: P < 0.05/14 = 0.004). The RAPS analysis consistently confirmed the direction of causality estimation, bolstering the robustness of this mediation analysis (Figure 3, Supplementary Table 15). Further examination of the causal relationship between SSC-A on HLA DR+ Natural Killer cells and CAD demonstrated that lower levels of this immune cell were associated with higher CAD risk [OR (95%) = 0.975 (0.952-0.998), P = 0.034] (Supplementary Table 6). Collectively, these findings suggest that higher diverse triglyceride or diacylglycerol (16:1_18:1) levels are predictive of lower SSC-A on HLA DR+ Natural Killer cell levels, and lower SSC-A on HLA DR+ Natural Killer cells indicate higher CAD risk. Therefore, we identify SSC-A on HLA DR+ Natural Killer cells may play as a genetically predicted potential mediating immune cell in the lipid-CAD/CAC causal association pathway (mediated effect: 0.007 to 0.013).




Figure 3 | Significant mediated MR estimates for specific lipids and immune cell types in CAD. nsnp, number of single nucleotide polymorphism.








Discussion

The immunogenetics perspective underscores the intricate relationship among lipids, genes, and the immune system in atherosclerosis (15). Moreover, the interplay between lipid metabolism and immune function significantly impacts inflammation and immune response, influencing CAD development and progression (16). Benefitting from omics technology advancements and large-scale genetic data, our study explores the intricate interplay between lipid profiles, immune cell phenotypes, and the pathogenesis of CAD, offering fresh insights into potential mechanisms driving cardiovascular pathology. Beyond conventional lipidomics, our key findings not only underscored significant overlaps among lipid species associated with CAD and CAC but also elucidated potential mediating pathways linking lipid levels to CAD risk through the modulation of specific immune cell phenotypes.

Recent bioinformatics analyses identified distinct lipid metabolic patterns in CAD patients, suggesting unique characteristics within subgroups. Specific lipid metabolism-related genes were implicated in atherosclerosis progression, hinting at targeted genetic interventions (17). Our study identified 36 lipid traits causally associated with CAD and 4 passed the Bonferroni correction, comprising both risk and protective factors, underscoring the complexity of lipid metabolism in CAD pathogenesis. This finding is consistent with prior observational studies that emphasize the association of specific lipid species, such as various ceramides and phosphatidylcholines, with increased CAD risk (18–21). Previous research has identified specific ceramide subtypes, such as ceramide (d18:1), as predictors of adverse cardiovascular events in CAD (21). Our study expands this understanding by demonstrating that ceramide (d40:2) levels act as protective factors for both CAD and CAC.

Furthermore, 18 lipid types including 16 triacylglycerol traits (15 of which had ≥3 IVs) and 2 diacylglycerol traits were identified as shared risk factors for CAD and CAC, particularly emphasizing various triacylglycerols and diacylglycerols, supporting common underlying mechanisms driving arterial plaque calcification and underscoring the potential utility of CAC as a surrogate marker for stratifying CAD risk. For instance, triacylglycerol (50:1) exhibited the highest risk for both conditions, which is consistent with studies showing higher levels of triacylglycerols and diacylglycerols in myocardial infarction-prone rabbits compared to normal rabbits (19). In a gender-stratified lipidomic comparison study of CAD patients, women with CAD had lower diacylglycerols (18:1_22:4) and higher triacylglycerols (52:3) compared to those without CAD. In men with CAD, diacylglycerols (18:0_22:6), (16:0_16:0), (14:0_16:0), (16:0_18:0), and (16:1_18:0) were lower, while diacylglycerol (20:0_20:0) was higher compared to those without CAD (22). Our results identified nearly all diacylglycerols and triacylglycerols as risk factors for CAD or CAC. These discrepancies may be due to our focus on diacylglycerol (18:1), differences in lipid function based on fatty acid composition, methodological variations, and population heterogeneity. Interestingly, lipidomic analysis of patients with coronary microvascular dysfunction (MVD) showed lower concentrations of long-chain triacylglycerols and diacylglycerols, and higher concentrations of short-chain triacylglycerols. This contrasts with their traditional role as CAD risk factors and our findings, indicating specific pathobiological mechanisms in distinct diseases (23).

Emerging evidence suggests lipids profoundly influence immune cell function within atherosclerotic plaques, further shaping the inflammatory milieu (24–26). Our analysis elucidated the active involvement of immune cells in CAD pathogenesis, with 31 distinct phenotypes demonstrating significant causal relationships, indicating their integral role. We also identified immune cell phenotypes as potential mediators in the lipid-CAD/CAC pathogenic pathway. Through a two-step Mendelian randomization approach, we identified SSC-A on HLA DR+ Natural Killer cells as a potential mediator linking lipid levels to CAD risk, suggesting that lipid-induced alterations in NK cell activation status may contribute to CAD pathogenesis. We established a negative causal association of NK cells with CAD, consistent with reports of reduced NK cell levels in patients with CAD (27, 28). The expression of HLA-DR on NK cells suggests a more active and mature phenotype, and these cells may also have the ability to present antigens and interact with other components of the immune system (29). The interactions between NK cells and other immune cells, and their potential to present antigens due to the expression of HLA-DR, may imply that they play a more complex role in the immune response associated with CAD. These findings suggest that dysregulated lipid metabolism may not only directly lead to atherosclerosis but also indirectly influence CAD risk through NK cell dysregulation, opening avenues for exploring immune-targeted interventions as adjunct therapies in CAD management.

Our study contributes to understanding CAD pathophysiology by revealing complex interactions between lipid metabolism and immune cell function, emphasizing a potential CAD management approach. While the MR method offers advantages in establishing causal relationships and enhancing CAD risk prediction, several limitations may affect our results. Firstly, we applied a correction for multiple testing due to the large number of traits analyzed. This correction was necessary to reduce the risk of false positives, particularly given the exploratory nature of our study. The corrected significance thresholds resulted in some findings not meeting the adjusted criteria, underscoring the need for caution in interpreting these results. Secondly, given the exploratory nature of our analysis, we included all traits regardless of the number of IVs, taken to explore as many correlations as possible. Using a single IV in statistical analysis ensures consistency across different estimation methods, such as ratio and 2SLS, and allows valid testing of causal effects, even with a weak instrument. However, it faces challenges like the finite mean issue and potential bias from weak instruments, necessitating a P-value threshold of less than 0.03 for practical use (30). Therefore, caution should be exercised in interpreting these results and future GWAS with larger samples have more qualified IVs needed to support these results. Directional horizontal pleiotropy may confound causal inference, although MR-Egger regression tests indicate minimal bias (14, 31, 32). Furthermore, we addressed the genetic background of population stratification by mitigating weak instrumental bias using instrumental variables with high F-statistics and robust RAPS analyses for higher sensitivity validation of multicollinearity, as well as by focusing the dataset on participants of European descent only and applying genomic control methods (13, 33). It is important to acknowledge that while LDlink provided robust support for phenotype association screening of each IV, the exclusion restriction assumption based on the empirical exclusion of potential pleiotropic pathways has an element of subjectivity. This subjectivity may result in some unforeseen confounding factors not being entirely excluded, thereby impacting the precision of our findings. Although we employed various sensitivity analyses and rigorous statistical methods to enhance the robustness of our results, these inherent limitations could still influence our conclusions. Most GWAS including the studies we adopted have predominantly included individuals of European descent. This focus can limit the applicability of the results to other ethnic groups due to variations in genetic architecture and allele frequencies (32). Trans-ethnic GWAS are being conducted to incorporate a broader range of populations. Furthermore, considering the limitations of data selection is also necessary, such as potential discrepancies inherent to different datasets could influence our findings and the relatively small sample size of immune cells, a larger sample size may reveal more important associations that may not be detected in the current dataset, and thus further studies on larger immune cell datasets are needed to validate and extend our findings. Future research efforts should focus on elucidating the underlying mechanisms driving the observed associations, exploring potential therapeutic targets within the lipid-immune cell axis, and conducting clinical trials to assess the efficacy of immune-modulating therapies in CAD prevention and treatment. Integrating insights from lipidomics, immunology, and cardiovascular biology can deepen our understanding of CAD pathogenesis and facilitate personalized treatment strategies.





Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.





Author contributions

DQ: Data curation, Software, Writing – original draft, Writing – review & editing. HZ: Data curation, Software, Writing – original draft, Writing – review & editing. RL: Data curation, Investigation, Methodology, Validation, Writing – original draft. HY: Conceptualization, Investigation, Project administration, Supervision, Writing – review & editing.





Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the Key Specialized Construction Project in the Cardiology Department of Zhejiang Province (Grant number: 2023-SZZ), Ningbo Key Research and Development Program (Grant number: 2024Z232), and Ningbo Key Research and Development Program (Grant number: 2024Z210).




Acknowledgments

We express our gratitude to the researchers who generously provided the shared data, without which this study would not have been possible!





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1408347/full#supplementary-material




References

1. Weber, C, and Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. (2011) 17:1410–22. doi: 10.1038/nm.2538

2. Liu, C, Liu, J, Zhang, Y, Wang, X, and Guan, Y. Immune-related potential biomarkers and therapeutic targets in coronary artery disease. Front Cardiovasc Med. (2022) 9:1055422. doi: 10.3389/fcvm.2022.1055422

3. Tabassum, R, and Ripatti, S. Integrating lipidomics and genomics: emerging tools to understand cardiovascular diseases. Cell Mol Life sciences: CMLS. (2021) 78:2565–84. doi: 10.1007/s00018-020-03715-4

4. Kostara, CE. Expanding the molecular disturbances of lipoproteins in cardiometabolic diseases: lessons from lipidomics. Diagnostics (Basel Switzerland). (2023) 13. doi: 10.3390/diagnostics13040721

5. Mundra, PA, Barlow, CK, Nestel, PJ, Barnes, EH, Kirby, A, Thompson, P, et al. Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight. (2018) 3. doi: 10.1172/jci.insight.121326

6. Dakic, A, Wu, J, Wang, T, Huynh, K, Mellett, N, Duong, T, et al. Imputation of plasma lipid species to facilitate integration of lipidomic datasets. Nat Commun. (2024) 15:1540. doi: 10.1038/s41467-024-45838-3

7. Ottensmann, L, Tabassum, R, Ruotsalainen, SE, Gerl, MJ, Klose, C, Widén, E, et al. Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat Commun. (2023) 14:6934. doi: 10.1038/s41467-023-42532-8

8. Ferreira-Divino, LF, Suvitaival, T, Rotbain Curovic, V, Tofte, N, Trošt, K, Mattila, IM, et al. Circulating metabolites and molecular lipid species are associated with future cardiovascular morbidity and mortality in type 1 diabetes. Cardiovasc diabetology. (2022) 21:135. doi: 10.1186/s12933-022-01568-8

9. Orrù, V, Steri, M, Sidore, C, Marongiu, M, Serra, V, Olla, S, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. (2020) 52:1036–45. doi: 10.1038/s41588-020-0684-4

10. Aragam, KG, Jiang, T, Goel, A, Kanoni, S, Wolford, BN, Atri, DS, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet. (2022) 54:1803–15. doi: 10.1038/s41588-022-01233-6

11. Kavousi, M, Bos, MM, Barnes, HJ, Lino Cardenas, CL, Wong, D, Lu, H, et al. Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification. Nat Genet. (2023) 55:1651–64. doi: 10.1038/s41588-023-01518-4

12. Davey Smith, G, and Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. (2014) 23:R89–98. doi: 10.1093/hmg/ddu328

13. Zhao, Q, Wang, J, Hemani, G, Bowden, J, and Small, DS. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Ann. Statist. (2020) 48(3):1742–69. doi: 10.1214/19-AOS1866

14. Carter, AR, Sanderson, E, Hammerton, G, Richmond, RC, Davey Smith, G, Heron, J, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol. (2021) 36:465–78. doi: 10.1007/s10654-021-00757-1

15. Chyu, KY, Dimayuga, PC, and Shah, PK. Immunogenetics of atherosclerosis-link between lipids, immunity, and genes. Curr Atheroscl Rep. (2020) 22:53. doi: 10.1007/s11883-020-00874-4

16. Andersen, CJ. Lipid metabolism in inflammation and immune function. Nutrients. (2022) 14. doi: 10.3390/nu14071414

17. Liao, Y, Dong, Z, Liao, H, Chen, Y, Hu, L, Yu, Z, et al. Lipid metabolism patterns and relevant clinical and molecular features of coronary artery disease patients: an integrated bioinformatic analysis. Lipids Health disease. (2022) 21:87. doi: 10.1186/s12944-022-01696-w

18. Meikle, PJ, Wong, G, Tsorotes, D, Barlow, CK, Weir, JM, Christopher, MJ, et al. Plasma lipidomic analysis of stable and unstable coronary artery disease. Arteriosclerosis thrombosis Vasc Biol. (2011) 31:2723–32. doi: 10.1161/ATVBAHA.111.234096

19. Takeda, H, Koike, T, Izumi, Y, Yamada, T, Yoshida, M, Shiomi, M, et al. Lipidomic analysis of plasma lipoprotein fractions in myocardial infarction-prone rabbits. J bioscience bioengineering. (2015) 120:476–82. doi: 10.1016/j.jbiosc.2015.02.015

20. Meeusen, JW, Donato, LJ, Bryant, SC, Baudhuin, LM, Berger, PB, and Jaffe, AS. Plasma ceramides. Arteriosclerosis thrombosis Vasc Biol. (2018) 38:1933–9. doi: 10.1161/ATVBAHA.118.311199

21. Laaksonen, R, Ekroos, K, Sysi-Aho, M, Hilvo, M, Vihervaara, T, Kauhanen, D, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J. (2016) 37:1967–76. doi: 10.1093/eurheartj/ehw148

22. Bay, B, Fuh, MM, Rohde, J, Worthmann, A, Goßling, A, Arnold, N, et al. Sex differences in lipidomic and bile acid plasma profiles in patients with and without coronary artery disease. Lipids Health disease. (2024) 23:197. doi: 10.1186/s12944-024-02184-z

23. Lindner, JR, Davidson, BP, Song, Z, Maier, CS, Minnier, J, Stevens, JF, et al. Plasma lipidomic patterns in patients with symptomatic coronary microvascular dysfunction. Metabolites. (2021) 11. doi: 10.3390/metabo11100648

24. Hinkley, H, Counts, DA, VonCanon, E, and Lacy, M. T cells in atherosclerosis: key players in the pathogenesis of vascular disease. Cells. (2023) 12. doi: 10.3390/cells12172152

25. Muhammad, K, Ayoub, MA, and Iratni, R. Vascular inflammation in cardiovascular disease: is immune system protective or bystander? Curr Pharm design. (2021) 27:2141–50. doi: 10.2174/1381612827666210118121952

26. Gisterå, A, and Hansson, GK. The immunology of atherosclerosis. Nat Rev Nephrol. (2017) 13:368–80. doi: 10.1038/nrneph.2017.51

27. Backteman, K, Ernerudh, J, and Jonasson, L. Natural killer (NK) cell deficit in coronary artery disease: no aberrations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation. Clin Exp Immunol. (2014) 175:104–12. doi: 10.1111/cei.12210

28. He, T, Muhetaer, M, Wu, J, Wan, J, Hu, Y, Zhang, T, et al. Immune cell infiltration analysis based on bioinformatics reveals novel biomarkers of coronary artery disease. J Inflammation Res. (2023) 16:3169–84. doi: 10.2147/JIR.S416329

29. Zhou, Y, He, Y, Chang, Y, Peng, X, Zhao, R, Peng, M, et al. The characteristics of natural killer cells and T cells vary with the natural history of chronic hepatitis B in children. Front Pediatr. (2021) 9:736023. doi: 10.3389/fped.2021.736023

30. Burgess, S, Small, DS, and Thompson, SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. (2017) 26:2333–55. doi: 10.1177/0962280215597579

31. Hemani, G, Bowden, J, and Davey Smith, G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. (2018) 27:R195–r208. doi: 10.1093/hmg/ddy163

32. Larsson, SC, Butterworth, AS, and Burgess, S. Mendelian randomization for cardiovascular diseases: principles and applications. Eur Heart J. (2023) 44:4913–24. doi: 10.1093/eurheartj/ehad736

33. Burgess, S, and Thompson, SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. (2011) 40:755–64. doi: 10.1093/ije/dyr036




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.


Copyright © 2024 Qian, Zhang, Liu and Ye. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.


OEBPS/Images/fimmu-15-1408347-g003.jpg
id.exposure

GCST90277260
GCST90277260

GCST90277382
GCST90277382

GCST90277383
GCST90277383

GCST90277384
GCST90277384

GCST90277386
GCST90277386

GCST90277388
GCST90277388

GCST90277389
GCST90277389

GCST90277390
GCST90277390

GCST90277391
GCST90277391

GCST90277393
GCST90277393

GCST90277395
GCST90277395

GCST90277399
GCST90277399

GCST90277401
GCST90277401

GCST90277403
GCST90277403

trait.exposure
Diacylglycerol (16:1_18:1) levels
Diacylglycerol (16:1_18:1) levels

Triacylglycerol (48:1) levels
Triacylglycerol (48:1) levels

Triacylglycerol (48:2) levels
Triacylglycerol (48:2) levels

Triacylglycerol (48:3) levels
Triacylglycerol (48:3) levels

Triacylglycerol (49:2) levels
Triacylglycerol (49:2) levels

Triacylglycerol (50:2) levels
Triacylglycerol (50:2) levels

Triacylglycerol (50:3) levels
Triacylglycerol (50:3) levels

Triacylglycerol (50:4) levels
Triacylglycerol (50:4) levels

Triacylglycerol (50:5) levels
Triacylglycerol (50:5) levels

Triacylglycerol (51:2) levels
Triacylglycerol (51:2) levels

Triacylglycerol (51:4) levels
Triacylglycerol (51:4) levels

Triacylglycerol (52:5) levels
Triacylglycerol (52:5) levels

Triacylglycerol (53:2) levels
Triacylglycerol (53:2) levels

Triacylglycerol (53:4) levels
Triacylglycerol (53:4) levels

trait.outcome

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

SSC-A on HLA DR+ Natural Killer
SSC-A on HLA DR+ Natural Killer

Method

Inverse variance weighted
Robust adjusted profile score (RAPS)

Inverse variance weighted
Robust adjusted profile score (RAPS)

Inverse variance weighted
Robust adjusted profile score (RAPS)

Inverse variance weighted

Robust adjusted profile score (RAPS)

Inverse variance weighted
Robust adjusted profile score (RAPS)

Inverse variance weighted

Robust adjusted profile score (RAPS)

Inverse variance weighted

Robust adjusted profile score (RAPS)

Inverse variance weighted

Robust adjusted profile score (RAPS)

Inverse variance weighted

Robust adjusted profile score (RAPS)

Inverse variance weighted

Robust adjusted profile score (RAPS)

Inverse variance weighted
Robust adjusted profile score (RAPS)

Inverse variance weighted

Robust adjusted profile score (RAPS)

Inverse variance weighted

Robust adjusted profile score (RAPS)

Inverse variance weighted
Robust adjusted profile score (RAPS)

-1.0

-0.8

-0.6

P NE—
R N —
—I_ﬁ_hl_l_'ﬁ_ﬁ_;_l—

-04 -0.2
B (95%Cl)

0.0

nsnp

beta
-0.496
-0.495

-0.526
-0.526

-0.459
-0.459

-0.434
-0.433

-0.489
-0.489

-0.418
-0.418

-0.361
-0.360

-0.354
-0.354

-0.382
-0.382

-0.405
-0.405

-0.367
-0.367

-0.317
-0.318

-0.391
-0.391

-0.291
-0.292

P value

0.008
0.014

0.007
0.012

0.007
0.011

0.007
0.011

0.007
0.013

0.007
0.012

0.007
0.011

0.007
0.010

0.007
0.011

0.009
0.013

0.009
0.014

0.005
0.008

0.010
0.015

0.011
0.015





OEBPS/Text/toc.xhtml


  

    Table of Contents



    

		Cover



      		

        Genetically predicted HLA-DR+ natural killer cells as potential mediators in the lipid-coronary artery disease/ calcification (CAD/CAC) causal pathway

      

        		

          Background

        



        		

          Methods

        



        		

          Results

        



        		

          Conclusions

        



        		

          Introduction

        



        		

          Methods

        

          		

            Study overview

          



          		

            Source of genetic information for included phenotypes

          



          		

            Genetic instruments of exposure

          



          		

            Statistical analysis

          

            		

              MR estimates of lipidome and CAD、CAC

            



            		

              Two-step MR estimates for immune cells as mediators in lipid-CAD/CAC association

            



          



          



        



        



        		

          Results

        

          		

            Lipids significantly causally associated with CAD

          



          		

            Immune cell phenotypes genetically associated with CAD

          



          		

            Lipidome and immune cell phenotypes associated with CAC

          



          		

            Immune cell-mediated lipid-CAD/CAC causal pathway

          



        



        



        		

          Discussion

        



        		

          Data availability statement

        



        		

          Author contributions

        



        		

          Funding

        



        		

          Acknowledgments

        



        		

          Conflict of interest

        



        		

          Supplementary material

        



        		

          References

        



      



      



    



  



OEBPS/Images/crossmark.jpg
©

2

i

|





OEBPS/Images/table2.jpg
Standard

Exposure ID.exposure Trait.exposure Egger_intercept e
Diacylglycerol
GCST90277262 0.054 0.020 0220
(18:1_18:2) levels
Phosphatidylcholine
790277312 001 .02 X
GCST902773 (181 203) levels 0.00 0.026 0.987
Lipids GCST90277348 Phosphatidslethanclamine 0.002 0.008 0.849
(18:0_20:4) levels
Phosphatidylinositol
GCST90277360 0.041 0.026 0.360
(16:0_20:4) levels
GCST90277400 Triacylglycerol (52:6) levels -1.77E-04 0.044 0.997

GCST90001987 D6t on CD1A+ 0035 0.012 0025
CD16- monocyte

GCST90002006 CD64 on monocyte 0.032 0.011 0.028
GCST90001417 CD24+ CD27+ B cell %B cell 0.135 0.087 0.365

Unswitched memory B cell

CST90001432
¢ selymphocyte

0.010 0.011 0.468

HLA DR+ Natural Killer %
GCST90001649 . -0.003 0.004 0472
Natural Killer

CD14+ CD16+ monocyte

GCST90001585
%monocyte

-0.006 0.006 0.524
Immune cells

CD25++ CD45RA- CD4 not
GCST90001511 -0.016 0.018 0.543
regulatory T cell %CD4+ T cell

CD14+ CD16+ monocyte

GCST90001580 Absolute Count

-0.006 0.007 0555

HLA DR+ Natural Killer %
GCST90001650 -0.003 0.005 0.582
CD3- lymphocyte

GCST90002077 23¢:Aion JLA DR 0004 0.007 0660
Natural Killer

GCST90001648 HIA DR4Nariral Kilex -0.002 0.009 0.807
Absolute Count





OEBPS/Images/fimmu.2024.1408347_cover.jpg
’ frontiers | Frontiersin Immunology

Genetically predicted HLA-DR+ natural killer
cells as potential mediators in the lipid-
coronary artery disease/ calcification
(CAD/CAC) causal pathway





OEBPS/Images/table4.jpg
Standard [

Exposure ID.exposure Trait.exposure Egger_intercept e Tor value

GCST90277246 Sterol ester (27:1/18:2) levels -0.009 0.047 0.850

GCST90277261 Diacylglycerol (18:1_18:1) levels -0.005 0.033 0.885

GCST90277262 Diacylglycerol (18:1_18:2) levels -0.005 0.030 0.871

GCST90277362 Phosphatidylinositol (18:0_18:2) levels 0.022 0.030 0.494

GCST90277370 Sphingomyelin (d34:1) levels -0.009 0.040 0.831

GCST90277387 Triacylglycerol (50:1) levels 0.003 0.068 0974

GCST90277394 Triacylglycerol (51:3) levels 0.020 0.034 0.602

GCST90277396 Triacylglycerol (52:2) levels 0.019 0.036 0.646

GCST90277397 Triacylglycerol (52:3) levels 0.002 0.028 0.953

GCST90277398 Triacylglycerol (52:4) levels 0.017 0.029 0.591

s GCST90277399 Triacylglycerol (52:5) levels 0.002 0.042 0.966
GCST90277400 Triacylglycerol (52:6) levels -0.061 0.067 0.534

GCST90277402 Triacylglycerol (53:3) levels -0.017 0.030 0.604

GCST90277403 Triacylglycerol (53:4) levels 0.011 0.034 0.783

GCST90277405 Triacylglycerol (54:4) levels -0.011 0.022 0.660

GCST90277406 Triacylglycerol (54:5) levels -0.006 0.033 0.881

GCST90277407 Triacylglycerol (54:6) levels -0.025 0.038 0.628

GCST90277408 Triacylglycerol (54:7) levels -0.027 0.088 0.814

GCST90277411 Triacylglycerol (56:5) levels -0.058 0.070 0.494

GCST90277413 Triacylglycerol (56:7) levels 0.018 0.048 0.742

GCST90001508 CD254:# CD43RA: CDA siokiregtlatory Ty el 0031 0.018 0.193

9%CD4+ T cell
GCSTO0001509 CD25++ CD45RA+ CD4 not regulatory T cell 0029 0.018 0202
%T cell
GCST90001621 Natural Killer T Absolute Count -0.030 0.031 0.392
Immune cells GCSTO0001558 Terminally Differentiated CD8+ T cell %CD8+ 0015 0.035 0743
T cell
GCST90001562 CD45RA+ CD8+ T cell %T cell -0.003 0.037 0.945
GCST90001665 CD28+ CD45RA+ CD8dim T cell %CD8dim 0,001 0.018 0961

T cell

GCST90001667 CD28+ CD45RA- CD8dim T cell %T cell 0.006 0.128 0.970





OEBPS/Images/table3.jpg
Xposure
GCST90277238
GCST90277244
GCST90277246
GCST90277257
GCST90277258
GCST90277259
GCST90277260
GCST90277261
GCST90277262
GCST90277263
GCST90277362
GCST90277370
GCST90277382
GCST90277383
GCST90277384
GCST90277386
GCST90277387
GCST90277388
GCST90277389
GCST90277390
GCST90277391
GCST90277393
GCST90277394
GCST90277395
GCST90277396
GCST90277397
GCST90277398
GCST90277399
GCST90277400
GCST90277401
GCST90277402
GCST90277403
GCST90277405
GCST90277406
GCST90277407
GCST90277408
GCST90277411
GCST90277413

GCST90277416

Tra

Xposure
Sterol ester (27:1/14:0) levels
Sterol ester (27:1/18:0) levels
Sterol ester (27:1/18:2) levels

Cholesterol levels
Diacylglycerol (16:0_18:1) levels
Diacylglycerol (16:0_18:2) levels
Diacylglycerol (16:1_18:1) levels
Diacylglycerol (18:1_18:1) levels
Diacylglycerol (18:1_18:2) levels
Diacylglycerol (18:1_18:3) levels

Phosphatidylinositol (18:0_18:2) levels

Sphingomyelin (d34:1) levels
Triacylglycerol (48:1) levels
Triacylglycerol (48:2) levels
Triacylglycerol (48:3) levels
Triacylglycerol (49:2) levels
Triacylglycerol (50:1) levels
Triacylglycerol (50:2) levels
Triacylglycerol (50:3) levels
Triacylglycerol (50:4) levels
Triacylglycerol (50:5) levels
Triacylglycerol (51:2) levels
Triacylglycerol (51:3) levels
Triacylglycerol (51:4) levels
Triacylglycerol (52:2) levels
Triacylglycerol (52:3) levels
Triacylglycerol (52:4) levels
Triacylglycerol (52:5) levels
Triacylglycerol (52:6) levels
Triacylglycerol (53:2) levels
Triacylglycerol (53:3) levels
Triacylglycerol (53:4) levels
Triacylglycerol (54:4) levels
Triacylglycerol (54:5) levels
Triacylglycerol (54:6) levels
Triacylglycerol (54:7) levels
Triacylglycerol (56:5) levels
Triacylglycerol (56:7) levels

Triacylglycerol (58:8) levels

nsnp

Beta
0836
0269
0330
0599
0320
0265
0315
0.194
0.192
0349
0.098
0283
0328
0285
0271
0308
0356
0264
0229
0224
0243
0259
0254
0237
0263
0.199
0240
0227
0.191
0254
0175
0237
0.167
0200
0.224
0210
0.152
0204

0347

P value
0.001
0055
0004
0023
0054
0051
0018
0012
0.006
0055
0.047
0.008
0022
0022
0020
0020
0.003
0018
0017
0018
0020
0016
0.001
0016
0.002
0002

3.41E-04
0.005
0033
0015
0015
0.003
0.014
0011
0023
0046
0046
0010

0.055

OR
2308
1309
1391
1.820
1377
1303
1370
1214
1212
1.418
1.103
1328
1.388
1329
1311
1.361
1.428
1302
1.258
1.251
1.275
1.296
1.289
1.267
1300
1.220
1272
1.255
1211
1.289
1191
1.268
1.182
1.222
1.251
1.234
1.164
1.226

1415

OR_LCI
1.380
0.994
1.109
1.086
0.995
0.999
1.055
1.044
1.058
0.993
1.002
1.077
1.048
1.042
1.044
1.051
1.129
1.047
1.042
1.039
1.040
1.050
1110
1.046
1.102
1.075
1115
1.070
1.016
1.050
1.034
1.086
1.035
1.046
1.031
1.003
1.002
1.051

0.993

OR_UCI
3.861
1.723
1.745
3.048
1.905
1.700
1.780
1.412
1.388
2.024
1.215
1.637
1.840
1.696
1.647
1.763
1.807
1.619
1.519
1.506
1.564
1.600
1.495
1.535
1.534
1.385
1.450
1.472
1.443
1.582
1.372
1.480
1.349
1.427
1.519
1.518
1.352
1.431

2.017





OEBPS/Images/fimmu-15-1408347-g002.jpg
» Phosphatidylcholine (O-18:0_16:1) levels

Phosphatidylethanolamine (18:0_20:4) levels
L]
Triacylglycerol (50:1) levels
o0
Phosphatidylcholine (16:0_18:1) levels

L]
Triacylglycerol (53:4) levels

o
=]
‘>" ° o
& . . . . e ® e
=] Phosphatldylcpohne (18:0_18:3) levels Phosphatidylcholine (14:0_18:1TTevels
o ) iy °
£ Phosphatidylcholine (0-16:0_20:3) levels"ooYldlyoerol (S2:0)ledle | < 0 1120:2) levels
Phosphatidyrcholine (16:0_20:3) levels .
2 Phosphatidylinositol (16:0_20:4) levels
o

Phosphatidylcholine (18:1_20:33 levels )
Triacylglycerol (54:6) levels

Ceramide (d4,0 2) levels Diacylglycerol (18:1_18:2) levels
Phosphatidylcholine (O—16:1_18:~2)\Ieve|s °

_ * Phosphatidylcholine (0-16:2_18:0Y levels ® '\
Phosphatidylcholine (O-16:0_16:1) Ieve.ls-

P ° ®e * °
. o .c ®e . °
o0 . & g
° ° ] ° °
° °..°£' "' '.':' ® e o
® ® e °s .’. L4 °® *
° s&‘o °
0 e
\) QO \o) O ) Q &)
N N N N N WY N

Effect Size (OR)

Diacylglycerol (18:1_18:2) level
Phosphatidylcholine (18:1_20:3) leve
Phosphatidylcholine (18:0_18:3) level

Sterol ester (27:1/20:2) level
Triacylglycerol (52:6) level
Phosphatidylinositol (16:0_20:4) level
Phosphatidylcholine (16:0_20:3) leve
Triacylglycerol (46:2) level
Phosphatidylcholine (16:1_18:0) level
Phosphatidylcholine (O-16:0_20:3) leve

Diacylglycerol (16:1_18:1) level

Phosphatidylcholine (16:0_16:1) leve
Triacylglycerol (54:6) level
Triacylglycerol (49:2) leve
Triacylglycerol (51:4) level

Triacylglycerol (48:1) level
(
(
(

-log10(P value)
3.5

3.0

P 25
@ 2.0
€] 15

Triacylglycerol (53:2) level
Triacylglycerol (51:2) level
Triacylglycerol (48:2) level
Phosphatidylcholine (14:0_18:1) level
Triacylglycerol (48:3) leve
Triacylglycerol (50:2) level

Ceramide (d40:2) leve
Triacylglycerol (50:5) level
Triacylglycerol (52:5) leve
Triacylglycerol (50:3) level
Triacylglycerol (50:4) level
Phosphatidylethanolamine (18:0_20:4) level
Triacylglycerol (53:4) level
Phosphatidylcholine (16:0_18:1) leve
Triacylglycerol (50:1) level
Phosphatidylcholine (O-18:0_16:1) leve

exposure

-log10(P value)

L T T I I N T N I I I N N I N N N I N I 7

0.85 0.90 0.95 1.00 1.05 1.10 1.18
Effect Size (OR)

LA Phospf‘aficn/k‘,holine (0-16:0_18:1) levels
L) e

» CD64 on CD14- CD16+ monocyte CD3 on C.D4+ T cell

CD33- HLA DR+ Absolute Count
L]
CD25++ CD45RA- CD4 not regulatory T cell Absolute Count
L ]

L]
Unswitched memory B cell Absolute Count CD25 on CD45RA+ CD4 not regulatory T cell
CD62L on CD62L+ myeloid Dendritic Cell ®
L

Unswitched memory B cell %B cell CD45 on B cell
L] L]

P TCRgd T cell %lymphocyte
CD24+ CD27+ B cell %B cell
"“HLA DR+ Natural Killer %Natural Killer o 19D+ B cell %8 cell

CD24+ CD27+ B cell Absolute Count o . HLA DR++ monocyte %monocyte
e
°*\ gD+ CD24+ B celPAbsolute eomi. .":
Memory B cell Absolute Count e o . CD45 on CD8+ T cell
®

L]
HLA DR on myelojd Dendritic’Cell o, .
L)

N

-log10(P value)

Effect Size (OR)

HLA DR+ Natural Killer Absolute Count [ ]
Transitional B cell Absolute Count ®
Central Memory CD8+ T cell Absolute Count =
CD25 on CD4+ T cell 4
T cell %lymphocyte ®
SSC-A on HLA DR+ Natural Killer &
CD24+ CD27+ B cell Absolute Count @
Memory B cell Absolute Count @
CD25++ CD4+ T cell Absolute Count [ ]
CD25++ CD4+ T cell %T ce
IgD+ CD24+ B cell Absolute Count ®
CD14+ CD16+ monocyte %monocyte s
CD25++ CD45RA- CD4 not regulatory T cell %CD4+ T ce
Terminally Differentiated CD4-CD8- T cell %CD4-CD8- T cell ® @ 20
TCRgd T cell %lymphocyte ® @ 25
CD14+ CD16+ monocyte Absolute Count
IgD+ B cell %B cel
HLA DR+ Natural Killer %CD3- lymphocyte
HLA DR++ monocyte %monocyte @ 25
HLA DR+ Natural Killer %Natural Killer
CD45 on B cell 3 20
Unswitched memory B cell %B cell ® 15
CD62L on CD62L+ myeloid Dendritic Cell &
CD64 on CD14+ CD16- monocyte
CD64 on monocyte
Unswitched memory B cell %lymphocyte @
CD25 on CD45RA+ CD4 not regulatory T cell (]
CD24+ CD27+ B cell %B cell o
CD33- HLA DR+ Absolute Count e
CD25++ CD45RA- CD4 not regulatory T cell Absolute Count .
Unswitched memory B cell Absolute Count .
CD64 on CD14- CD16+ monocyte @
CD3 on CD4+ T cell S

085 090 095 1.00 1.05 1.10
Effect Size (OR)

-log10(P value)

]
©
n
(2]

®  _iog10(P value)

exposure





OEBPS/Images/logo.jpg
, frontiers | Frontiers in Immunology





OEBPS/Images/fimmu-15-1408347-g001.jpg
731 immune cells

Two-Step MR
Two-Step MR ‘©(.
Step
Step2 Immune cell
Causal relationship '@ associated
between lipids and with CAD/CAC

immune cell associated
with CAD/CAC

MR for causal
association between

lipids and CAD/CAC Outcomes:
Coronary artery disease (CAD)

-

EXxposures:
179 Lipids Coronary artery calcification (CAC)





OEBPS/Images/table1.jpg
ID.exposure Trait.exposure nsnp Beta P value OR OR_LCI OR_UCI

GCST90277248 Sterol ester (27:1/20:2) levels 1 0.106 0.010 L1111 1.026 1.204
GCST90277254 Ceramide (d40:2) levels 2 -0.049 0.004 0.952 0.920 0.985
GCST90277260 Diacylglycerol (16:1_18:1) levels 1 0.125 0.007 1.133 1.035 1.241
GCST90277262 Diacylglycerol (18:1_18:2) levels 3 0.090 0.047 1.094 1.001 1.195
GCST90277273 Phosphatidylcholine (14:0_18:1) levels 2 0.104 0.005 1.109 1.032 1.192
GCST90277278 Phosphatidylcholine (16:0_16:1) levels 1 0.129 0.007 1.138 1.037 1.249
GCST90277281 Phosphatidylcholine (16:0_18:1) levels 2 0.116 0.001 1123 1.047 1.205
GCST90277286 Phosphatidylcholine (16:0_20:3) levels 2 -0.050 0.008 0.951 0917 0.987
GCST90277292 Phosphatidylcholine (16:1_18:0) levels 1 0.130 0.007 1.138 1.036 1.251
GCST90277301 Phosphatidylcholine (18:0_18:3) levels 1 -0.126 0.012 0.881 0.798 0.973
GCST90277312 Phosphatidylcholine (18:1_20:3) levels 3 -0.053 0.016 0.948 0.908 0.990
GCST90277322 Phosphatidylcholine (0-16:0_20:3) levels 2 -0.055 0.007 0.946 0.909 0.985
GCST90277335 Phosphatidylcholine (O-18:0_16:1) levels 1 -0.161 2.79E-04 0.851 0.780 0.928
GCST90277348 Phosphatidylethanolamine (18:0_20:4) levels 8 0.038 0.002 1.039 1014 1.064
GCST90277360 Phosphatidylinositol (16:0_20:4) levels 3 0.074 0.008 1.076 1019 1.137
GCST90277380 Triacylglycerol (46:2) levels 1 0.123 0.008 1131 1.033 1.238
GCST90277382 Triacylglycerol (48:1) levels 1 0.118 0.006 1125 1.035 1.224
GCST90277383 Triacylglycerol (48:2) levels 1 0.101 0.005 1.107 1.032 1.187
GCST90277384 Triacylglycerol (48:3) levels 1 0.099 0.005 1.104 1.031 1.182
GCST90277386 Triacylglycerol (49:2) levels 1 0.116 0.006 1123 1.033 1.221
GCST90277387 Triacylglycerol (50:1) levels 2 0.113 0.001 1119 1.046 1.198
GCST90277388 Triacylglycerol (50:2) levels 1 0.101 0.005 1.106 1.031 1.185
GCST90277389 Triacylglycerol (50:3) levels 2 0.089 0.003 1.093 1.031 1.159
GCST90277390 Triacylglycerol (50:4) levels 2 0.084 0.003 1.087 1.030 1.149
GCST90277391 Triacylglycerol (50:5) levels 2 0.090 0.003 1.094 1.030 1.161
GCST90277393 Triacylglycerol (51:2) levels 1 0.109 0.005 1116 1.033 1.204
GCST90277395 Triacylglycerol (51:4) levels 1 0.104 0.006 1.109 1.030 1.194
GCST90277399 Triacylglycerol (52:5) levels 2 0.092 0.003 1.096 1.032 1164
GCST90277400 Triacylglycerol (52:6) levels 3 0.073 0.008 1.075 1019 1135
GCST90277401 Triacylglycerol (53:2) levels 1 0.118 0.006 1125 1.035 1.223
GCST90277403 Triacylglycerol (53:4) levels 2 0.097 0.002 1101 1.037 1.170
GCST90277407 Triacylglycerol (54:6) levels 2 0.092 0.006 1.097 1.026 1172
GCST90277331 Phosphatidylcholine (0-16:2_18:0) levels 1 0.051 0.054 1.053 0.999 1.109
GCST90277328 Phosphatidylcholine (O-16:1_18:2) levels 1 0.078 0.059 1.081 0.997 1171
GCST90277320 Phosphatidylcholine (O-16:0_18:1) levels 1 0.091 0.063 1.095 0.995 1.206
GCST90277319 Phosphatidylcholine (O-16:0_16:1) levels 1 -0.077 0.066 0.926 0.852 1.005

nsnp, number of single nucleotide polymorphism; OR, odds ratio; OR_LCIL, Odds ratio 95% lower confidence interval; OR_UCI, Odds ratio 95% upper confidence interval.





